Properties

Label 624.4.a.s.1.3
Level $624$
Weight $4$
Character 624.1
Self dual yes
Analytic conductor $36.817$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,4,Mod(1,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 624.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.8171918436\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.13916.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 16x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-3.29884\) of defining polynomial
Character \(\chi\) \(=\) 624.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +12.9600 q^{5} -1.76468 q^{7} +9.00000 q^{9} -25.1954 q^{11} +13.0000 q^{13} -38.8801 q^{15} -62.6216 q^{17} -139.798 q^{19} +5.29404 q^{21} +56.6216 q^{23} +42.9625 q^{25} -27.0000 q^{27} +75.4119 q^{29} +71.2900 q^{31} +75.5861 q^{33} -22.8703 q^{35} +55.7602 q^{37} -39.0000 q^{39} -40.0947 q^{41} -14.7854 q^{43} +116.640 q^{45} -531.136 q^{47} -339.886 q^{49} +187.865 q^{51} +368.053 q^{53} -326.533 q^{55} +419.395 q^{57} -165.872 q^{59} -145.878 q^{61} -15.8821 q^{63} +168.480 q^{65} -901.373 q^{67} -169.865 q^{69} +345.660 q^{71} -292.315 q^{73} -128.888 q^{75} +44.4617 q^{77} +722.695 q^{79} +81.0000 q^{81} -565.364 q^{83} -811.578 q^{85} -226.236 q^{87} -275.116 q^{89} -22.9408 q^{91} -213.870 q^{93} -1811.79 q^{95} -1821.49 q^{97} -226.758 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 9 q^{3} - 4 q^{5} - 6 q^{7} + 27 q^{9} - 32 q^{11} + 39 q^{13} + 12 q^{15} + 158 q^{17} - 70 q^{19} + 18 q^{21} - 176 q^{23} + 209 q^{25} - 81 q^{27} + 222 q^{29} - 54 q^{31} + 96 q^{33} - 496 q^{35}+ \cdots - 288 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 12.9600 1.15918 0.579590 0.814908i \(-0.303213\pi\)
0.579590 + 0.814908i \(0.303213\pi\)
\(6\) 0 0
\(7\) −1.76468 −0.0952837 −0.0476418 0.998864i \(-0.515171\pi\)
−0.0476418 + 0.998864i \(0.515171\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −25.1954 −0.690608 −0.345304 0.938491i \(-0.612224\pi\)
−0.345304 + 0.938491i \(0.612224\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) −38.8801 −0.669253
\(16\) 0 0
\(17\) −62.6216 −0.893409 −0.446705 0.894681i \(-0.647403\pi\)
−0.446705 + 0.894681i \(0.647403\pi\)
\(18\) 0 0
\(19\) −139.798 −1.68799 −0.843997 0.536347i \(-0.819804\pi\)
−0.843997 + 0.536347i \(0.819804\pi\)
\(20\) 0 0
\(21\) 5.29404 0.0550121
\(22\) 0 0
\(23\) 56.6216 0.513322 0.256661 0.966501i \(-0.417378\pi\)
0.256661 + 0.966501i \(0.417378\pi\)
\(24\) 0 0
\(25\) 42.9625 0.343700
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 75.4119 0.482884 0.241442 0.970415i \(-0.422380\pi\)
0.241442 + 0.970415i \(0.422380\pi\)
\(30\) 0 0
\(31\) 71.2900 0.413034 0.206517 0.978443i \(-0.433787\pi\)
0.206517 + 0.978443i \(0.433787\pi\)
\(32\) 0 0
\(33\) 75.5861 0.398723
\(34\) 0 0
\(35\) −22.8703 −0.110451
\(36\) 0 0
\(37\) 55.7602 0.247755 0.123877 0.992298i \(-0.460467\pi\)
0.123877 + 0.992298i \(0.460467\pi\)
\(38\) 0 0
\(39\) −39.0000 −0.160128
\(40\) 0 0
\(41\) −40.0947 −0.152725 −0.0763626 0.997080i \(-0.524331\pi\)
−0.0763626 + 0.997080i \(0.524331\pi\)
\(42\) 0 0
\(43\) −14.7854 −0.0524362 −0.0262181 0.999656i \(-0.508346\pi\)
−0.0262181 + 0.999656i \(0.508346\pi\)
\(44\) 0 0
\(45\) 116.640 0.386394
\(46\) 0 0
\(47\) −531.136 −1.64839 −0.824193 0.566309i \(-0.808371\pi\)
−0.824193 + 0.566309i \(0.808371\pi\)
\(48\) 0 0
\(49\) −339.886 −0.990921
\(50\) 0 0
\(51\) 187.865 0.515810
\(52\) 0 0
\(53\) 368.053 0.953886 0.476943 0.878934i \(-0.341745\pi\)
0.476943 + 0.878934i \(0.341745\pi\)
\(54\) 0 0
\(55\) −326.533 −0.800539
\(56\) 0 0
\(57\) 419.395 0.974564
\(58\) 0 0
\(59\) −165.872 −0.366012 −0.183006 0.983112i \(-0.558583\pi\)
−0.183006 + 0.983112i \(0.558583\pi\)
\(60\) 0 0
\(61\) −145.878 −0.306192 −0.153096 0.988211i \(-0.548924\pi\)
−0.153096 + 0.988211i \(0.548924\pi\)
\(62\) 0 0
\(63\) −15.8821 −0.0317612
\(64\) 0 0
\(65\) 168.480 0.321499
\(66\) 0 0
\(67\) −901.373 −1.64358 −0.821792 0.569787i \(-0.807026\pi\)
−0.821792 + 0.569787i \(0.807026\pi\)
\(68\) 0 0
\(69\) −169.865 −0.296367
\(70\) 0 0
\(71\) 345.660 0.577778 0.288889 0.957363i \(-0.406714\pi\)
0.288889 + 0.957363i \(0.406714\pi\)
\(72\) 0 0
\(73\) −292.315 −0.468669 −0.234335 0.972156i \(-0.575291\pi\)
−0.234335 + 0.972156i \(0.575291\pi\)
\(74\) 0 0
\(75\) −128.888 −0.198435
\(76\) 0 0
\(77\) 44.4617 0.0658037
\(78\) 0 0
\(79\) 722.695 1.02924 0.514618 0.857420i \(-0.327934\pi\)
0.514618 + 0.857420i \(0.327934\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −565.364 −0.747672 −0.373836 0.927495i \(-0.621958\pi\)
−0.373836 + 0.927495i \(0.621958\pi\)
\(84\) 0 0
\(85\) −811.578 −1.03562
\(86\) 0 0
\(87\) −226.236 −0.278793
\(88\) 0 0
\(89\) −275.116 −0.327665 −0.163833 0.986488i \(-0.552386\pi\)
−0.163833 + 0.986488i \(0.552386\pi\)
\(90\) 0 0
\(91\) −22.9408 −0.0264269
\(92\) 0 0
\(93\) −213.870 −0.238466
\(94\) 0 0
\(95\) −1811.79 −1.95669
\(96\) 0 0
\(97\) −1821.49 −1.90664 −0.953319 0.301964i \(-0.902358\pi\)
−0.953319 + 0.301964i \(0.902358\pi\)
\(98\) 0 0
\(99\) −226.758 −0.230203
\(100\) 0 0
\(101\) −278.714 −0.274584 −0.137292 0.990531i \(-0.543840\pi\)
−0.137292 + 0.990531i \(0.543840\pi\)
\(102\) 0 0
\(103\) 237.909 0.227591 0.113796 0.993504i \(-0.463699\pi\)
0.113796 + 0.993504i \(0.463699\pi\)
\(104\) 0 0
\(105\) 68.6109 0.0637689
\(106\) 0 0
\(107\) −922.569 −0.833534 −0.416767 0.909013i \(-0.636837\pi\)
−0.416767 + 0.909013i \(0.636837\pi\)
\(108\) 0 0
\(109\) −361.546 −0.317705 −0.158853 0.987302i \(-0.550779\pi\)
−0.158853 + 0.987302i \(0.550779\pi\)
\(110\) 0 0
\(111\) −167.281 −0.143041
\(112\) 0 0
\(113\) −1069.90 −0.890687 −0.445344 0.895360i \(-0.646918\pi\)
−0.445344 + 0.895360i \(0.646918\pi\)
\(114\) 0 0
\(115\) 733.817 0.595033
\(116\) 0 0
\(117\) 117.000 0.0924500
\(118\) 0 0
\(119\) 110.507 0.0851273
\(120\) 0 0
\(121\) −696.194 −0.523061
\(122\) 0 0
\(123\) 120.284 0.0881760
\(124\) 0 0
\(125\) −1063.21 −0.760770
\(126\) 0 0
\(127\) 1753.06 1.22488 0.612438 0.790518i \(-0.290189\pi\)
0.612438 + 0.790518i \(0.290189\pi\)
\(128\) 0 0
\(129\) 44.3563 0.0302741
\(130\) 0 0
\(131\) −1731.18 −1.15461 −0.577304 0.816529i \(-0.695895\pi\)
−0.577304 + 0.816529i \(0.695895\pi\)
\(132\) 0 0
\(133\) 246.699 0.160838
\(134\) 0 0
\(135\) −349.921 −0.223084
\(136\) 0 0
\(137\) 45.9710 0.0286684 0.0143342 0.999897i \(-0.495437\pi\)
0.0143342 + 0.999897i \(0.495437\pi\)
\(138\) 0 0
\(139\) −247.025 −0.150736 −0.0753682 0.997156i \(-0.524013\pi\)
−0.0753682 + 0.997156i \(0.524013\pi\)
\(140\) 0 0
\(141\) 1593.41 0.951696
\(142\) 0 0
\(143\) −327.540 −0.191540
\(144\) 0 0
\(145\) 977.341 0.559750
\(146\) 0 0
\(147\) 1019.66 0.572109
\(148\) 0 0
\(149\) −3389.84 −1.86380 −0.931901 0.362712i \(-0.881851\pi\)
−0.931901 + 0.362712i \(0.881851\pi\)
\(150\) 0 0
\(151\) 3123.16 1.68317 0.841587 0.540122i \(-0.181622\pi\)
0.841587 + 0.540122i \(0.181622\pi\)
\(152\) 0 0
\(153\) −563.594 −0.297803
\(154\) 0 0
\(155\) 923.921 0.478782
\(156\) 0 0
\(157\) −1878.59 −0.954955 −0.477477 0.878644i \(-0.658449\pi\)
−0.477477 + 0.878644i \(0.658449\pi\)
\(158\) 0 0
\(159\) −1104.16 −0.550727
\(160\) 0 0
\(161\) −99.9189 −0.0489112
\(162\) 0 0
\(163\) 2230.38 1.07176 0.535880 0.844294i \(-0.319980\pi\)
0.535880 + 0.844294i \(0.319980\pi\)
\(164\) 0 0
\(165\) 979.598 0.462192
\(166\) 0 0
\(167\) 952.254 0.441243 0.220622 0.975359i \(-0.429191\pi\)
0.220622 + 0.975359i \(0.429191\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) −1258.18 −0.562665
\(172\) 0 0
\(173\) −3124.52 −1.37314 −0.686569 0.727065i \(-0.740884\pi\)
−0.686569 + 0.727065i \(0.740884\pi\)
\(174\) 0 0
\(175\) −75.8150 −0.0327490
\(176\) 0 0
\(177\) 497.617 0.211317
\(178\) 0 0
\(179\) 1940.12 0.810120 0.405060 0.914290i \(-0.367251\pi\)
0.405060 + 0.914290i \(0.367251\pi\)
\(180\) 0 0
\(181\) −61.8517 −0.0254000 −0.0127000 0.999919i \(-0.504043\pi\)
−0.0127000 + 0.999919i \(0.504043\pi\)
\(182\) 0 0
\(183\) 437.633 0.176780
\(184\) 0 0
\(185\) 722.654 0.287192
\(186\) 0 0
\(187\) 1577.77 0.616996
\(188\) 0 0
\(189\) 47.6463 0.0183374
\(190\) 0 0
\(191\) −1333.55 −0.505197 −0.252598 0.967571i \(-0.581285\pi\)
−0.252598 + 0.967571i \(0.581285\pi\)
\(192\) 0 0
\(193\) 4030.89 1.50337 0.751683 0.659525i \(-0.229242\pi\)
0.751683 + 0.659525i \(0.229242\pi\)
\(194\) 0 0
\(195\) −505.441 −0.185617
\(196\) 0 0
\(197\) 2339.69 0.846173 0.423087 0.906089i \(-0.360947\pi\)
0.423087 + 0.906089i \(0.360947\pi\)
\(198\) 0 0
\(199\) 3332.68 1.18717 0.593587 0.804770i \(-0.297711\pi\)
0.593587 + 0.804770i \(0.297711\pi\)
\(200\) 0 0
\(201\) 2704.12 0.948924
\(202\) 0 0
\(203\) −133.078 −0.0460110
\(204\) 0 0
\(205\) −519.628 −0.177036
\(206\) 0 0
\(207\) 509.594 0.171107
\(208\) 0 0
\(209\) 3522.26 1.16574
\(210\) 0 0
\(211\) 1037.82 0.338608 0.169304 0.985564i \(-0.445848\pi\)
0.169304 + 0.985564i \(0.445848\pi\)
\(212\) 0 0
\(213\) −1036.98 −0.333580
\(214\) 0 0
\(215\) −191.620 −0.0607830
\(216\) 0 0
\(217\) −125.804 −0.0393554
\(218\) 0 0
\(219\) 876.944 0.270586
\(220\) 0 0
\(221\) −814.080 −0.247787
\(222\) 0 0
\(223\) 2758.72 0.828418 0.414209 0.910182i \(-0.364058\pi\)
0.414209 + 0.910182i \(0.364058\pi\)
\(224\) 0 0
\(225\) 386.663 0.114567
\(226\) 0 0
\(227\) −841.159 −0.245946 −0.122973 0.992410i \(-0.539243\pi\)
−0.122973 + 0.992410i \(0.539243\pi\)
\(228\) 0 0
\(229\) 2030.90 0.586050 0.293025 0.956105i \(-0.405338\pi\)
0.293025 + 0.956105i \(0.405338\pi\)
\(230\) 0 0
\(231\) −133.385 −0.0379918
\(232\) 0 0
\(233\) 4876.76 1.37119 0.685595 0.727983i \(-0.259542\pi\)
0.685595 + 0.727983i \(0.259542\pi\)
\(234\) 0 0
\(235\) −6883.54 −1.91078
\(236\) 0 0
\(237\) −2168.09 −0.594229
\(238\) 0 0
\(239\) −4827.46 −1.30654 −0.653268 0.757127i \(-0.726603\pi\)
−0.653268 + 0.757127i \(0.726603\pi\)
\(240\) 0 0
\(241\) 4967.73 1.32780 0.663899 0.747822i \(-0.268900\pi\)
0.663899 + 0.747822i \(0.268900\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) −4404.93 −1.14866
\(246\) 0 0
\(247\) −1817.38 −0.468166
\(248\) 0 0
\(249\) 1696.09 0.431669
\(250\) 0 0
\(251\) −4056.06 −1.01999 −0.509993 0.860179i \(-0.670352\pi\)
−0.509993 + 0.860179i \(0.670352\pi\)
\(252\) 0 0
\(253\) −1426.60 −0.354504
\(254\) 0 0
\(255\) 2434.73 0.597917
\(256\) 0 0
\(257\) 5326.27 1.29278 0.646388 0.763008i \(-0.276279\pi\)
0.646388 + 0.763008i \(0.276279\pi\)
\(258\) 0 0
\(259\) −98.3988 −0.0236070
\(260\) 0 0
\(261\) 678.707 0.160961
\(262\) 0 0
\(263\) −5571.89 −1.30638 −0.653189 0.757195i \(-0.726569\pi\)
−0.653189 + 0.757195i \(0.726569\pi\)
\(264\) 0 0
\(265\) 4769.98 1.10573
\(266\) 0 0
\(267\) 825.348 0.189178
\(268\) 0 0
\(269\) 197.034 0.0446593 0.0223297 0.999751i \(-0.492892\pi\)
0.0223297 + 0.999751i \(0.492892\pi\)
\(270\) 0 0
\(271\) 5389.86 1.20816 0.604079 0.796925i \(-0.293541\pi\)
0.604079 + 0.796925i \(0.293541\pi\)
\(272\) 0 0
\(273\) 68.8225 0.0152576
\(274\) 0 0
\(275\) −1082.46 −0.237362
\(276\) 0 0
\(277\) −5465.12 −1.18544 −0.592721 0.805408i \(-0.701946\pi\)
−0.592721 + 0.805408i \(0.701946\pi\)
\(278\) 0 0
\(279\) 641.610 0.137678
\(280\) 0 0
\(281\) −4794.27 −1.01780 −0.508900 0.860825i \(-0.669948\pi\)
−0.508900 + 0.860825i \(0.669948\pi\)
\(282\) 0 0
\(283\) −2284.81 −0.479921 −0.239961 0.970783i \(-0.577135\pi\)
−0.239961 + 0.970783i \(0.577135\pi\)
\(284\) 0 0
\(285\) 5435.37 1.12970
\(286\) 0 0
\(287\) 70.7542 0.0145522
\(288\) 0 0
\(289\) −991.540 −0.201820
\(290\) 0 0
\(291\) 5464.46 1.10080
\(292\) 0 0
\(293\) −6690.87 −1.33408 −0.667039 0.745023i \(-0.732439\pi\)
−0.667039 + 0.745023i \(0.732439\pi\)
\(294\) 0 0
\(295\) −2149.71 −0.424275
\(296\) 0 0
\(297\) 680.275 0.132908
\(298\) 0 0
\(299\) 736.080 0.142370
\(300\) 0 0
\(301\) 26.0915 0.00499631
\(302\) 0 0
\(303\) 836.141 0.158531
\(304\) 0 0
\(305\) −1890.58 −0.354932
\(306\) 0 0
\(307\) 4001.88 0.743973 0.371986 0.928238i \(-0.378677\pi\)
0.371986 + 0.928238i \(0.378677\pi\)
\(308\) 0 0
\(309\) −713.728 −0.131400
\(310\) 0 0
\(311\) 244.283 0.0445402 0.0222701 0.999752i \(-0.492911\pi\)
0.0222701 + 0.999752i \(0.492911\pi\)
\(312\) 0 0
\(313\) 1849.39 0.333973 0.166986 0.985959i \(-0.446596\pi\)
0.166986 + 0.985959i \(0.446596\pi\)
\(314\) 0 0
\(315\) −205.833 −0.0368170
\(316\) 0 0
\(317\) 10115.8 1.79230 0.896151 0.443749i \(-0.146352\pi\)
0.896151 + 0.443749i \(0.146352\pi\)
\(318\) 0 0
\(319\) −1900.03 −0.333484
\(320\) 0 0
\(321\) 2767.71 0.481241
\(322\) 0 0
\(323\) 8754.38 1.50807
\(324\) 0 0
\(325\) 558.513 0.0953252
\(326\) 0 0
\(327\) 1084.64 0.183427
\(328\) 0 0
\(329\) 937.284 0.157064
\(330\) 0 0
\(331\) −6287.14 −1.04403 −0.522013 0.852938i \(-0.674819\pi\)
−0.522013 + 0.852938i \(0.674819\pi\)
\(332\) 0 0
\(333\) 501.842 0.0825849
\(334\) 0 0
\(335\) −11681.8 −1.90521
\(336\) 0 0
\(337\) 8013.83 1.29537 0.647687 0.761907i \(-0.275736\pi\)
0.647687 + 0.761907i \(0.275736\pi\)
\(338\) 0 0
\(339\) 3209.70 0.514238
\(340\) 0 0
\(341\) −1796.18 −0.285245
\(342\) 0 0
\(343\) 1205.07 0.189702
\(344\) 0 0
\(345\) −2201.45 −0.343543
\(346\) 0 0
\(347\) 8648.51 1.33797 0.668986 0.743275i \(-0.266728\pi\)
0.668986 + 0.743275i \(0.266728\pi\)
\(348\) 0 0
\(349\) −4093.84 −0.627903 −0.313952 0.949439i \(-0.601653\pi\)
−0.313952 + 0.949439i \(0.601653\pi\)
\(350\) 0 0
\(351\) −351.000 −0.0533761
\(352\) 0 0
\(353\) −2804.97 −0.422928 −0.211464 0.977386i \(-0.567823\pi\)
−0.211464 + 0.977386i \(0.567823\pi\)
\(354\) 0 0
\(355\) 4479.76 0.669750
\(356\) 0 0
\(357\) −331.521 −0.0491483
\(358\) 0 0
\(359\) 8549.11 1.25684 0.628419 0.777875i \(-0.283702\pi\)
0.628419 + 0.777875i \(0.283702\pi\)
\(360\) 0 0
\(361\) 12684.5 1.84933
\(362\) 0 0
\(363\) 2088.58 0.301989
\(364\) 0 0
\(365\) −3788.41 −0.543272
\(366\) 0 0
\(367\) −2955.54 −0.420375 −0.210188 0.977661i \(-0.567408\pi\)
−0.210188 + 0.977661i \(0.567408\pi\)
\(368\) 0 0
\(369\) −360.852 −0.0509084
\(370\) 0 0
\(371\) −649.495 −0.0908898
\(372\) 0 0
\(373\) 10712.0 1.48698 0.743490 0.668747i \(-0.233169\pi\)
0.743490 + 0.668747i \(0.233169\pi\)
\(374\) 0 0
\(375\) 3189.63 0.439231
\(376\) 0 0
\(377\) 980.355 0.133928
\(378\) 0 0
\(379\) −3698.52 −0.501267 −0.250633 0.968082i \(-0.580639\pi\)
−0.250633 + 0.968082i \(0.580639\pi\)
\(380\) 0 0
\(381\) −5259.19 −0.707183
\(382\) 0 0
\(383\) 477.469 0.0637011 0.0318505 0.999493i \(-0.489860\pi\)
0.0318505 + 0.999493i \(0.489860\pi\)
\(384\) 0 0
\(385\) 576.225 0.0762783
\(386\) 0 0
\(387\) −133.069 −0.0174787
\(388\) 0 0
\(389\) −1723.82 −0.224682 −0.112341 0.993670i \(-0.535835\pi\)
−0.112341 + 0.993670i \(0.535835\pi\)
\(390\) 0 0
\(391\) −3545.73 −0.458607
\(392\) 0 0
\(393\) 5193.53 0.666613
\(394\) 0 0
\(395\) 9366.16 1.19307
\(396\) 0 0
\(397\) 5468.16 0.691283 0.345641 0.938367i \(-0.387661\pi\)
0.345641 + 0.938367i \(0.387661\pi\)
\(398\) 0 0
\(399\) −740.096 −0.0928601
\(400\) 0 0
\(401\) −6727.20 −0.837757 −0.418878 0.908042i \(-0.637577\pi\)
−0.418878 + 0.908042i \(0.637577\pi\)
\(402\) 0 0
\(403\) 926.770 0.114555
\(404\) 0 0
\(405\) 1049.76 0.128798
\(406\) 0 0
\(407\) −1404.90 −0.171101
\(408\) 0 0
\(409\) 3274.63 0.395892 0.197946 0.980213i \(-0.436573\pi\)
0.197946 + 0.980213i \(0.436573\pi\)
\(410\) 0 0
\(411\) −137.913 −0.0165517
\(412\) 0 0
\(413\) 292.711 0.0348750
\(414\) 0 0
\(415\) −7327.14 −0.866687
\(416\) 0 0
\(417\) 741.074 0.0870277
\(418\) 0 0
\(419\) 351.961 0.0410368 0.0205184 0.999789i \(-0.493468\pi\)
0.0205184 + 0.999789i \(0.493468\pi\)
\(420\) 0 0
\(421\) −10956.4 −1.26836 −0.634182 0.773184i \(-0.718663\pi\)
−0.634182 + 0.773184i \(0.718663\pi\)
\(422\) 0 0
\(423\) −4780.22 −0.549462
\(424\) 0 0
\(425\) −2690.38 −0.307065
\(426\) 0 0
\(427\) 257.427 0.0291751
\(428\) 0 0
\(429\) 982.619 0.110586
\(430\) 0 0
\(431\) −4087.61 −0.456829 −0.228414 0.973564i \(-0.573354\pi\)
−0.228414 + 0.973564i \(0.573354\pi\)
\(432\) 0 0
\(433\) −15377.9 −1.70673 −0.853366 0.521313i \(-0.825443\pi\)
−0.853366 + 0.521313i \(0.825443\pi\)
\(434\) 0 0
\(435\) −2932.02 −0.323172
\(436\) 0 0
\(437\) −7915.59 −0.866485
\(438\) 0 0
\(439\) 6609.85 0.718613 0.359306 0.933220i \(-0.383013\pi\)
0.359306 + 0.933220i \(0.383013\pi\)
\(440\) 0 0
\(441\) −3058.97 −0.330307
\(442\) 0 0
\(443\) −2487.10 −0.266740 −0.133370 0.991066i \(-0.542580\pi\)
−0.133370 + 0.991066i \(0.542580\pi\)
\(444\) 0 0
\(445\) −3565.51 −0.379823
\(446\) 0 0
\(447\) 10169.5 1.07607
\(448\) 0 0
\(449\) −13228.9 −1.39045 −0.695226 0.718792i \(-0.744696\pi\)
−0.695226 + 0.718792i \(0.744696\pi\)
\(450\) 0 0
\(451\) 1010.20 0.105473
\(452\) 0 0
\(453\) −9369.48 −0.971781
\(454\) 0 0
\(455\) −297.314 −0.0306336
\(456\) 0 0
\(457\) 11721.5 1.19980 0.599898 0.800076i \(-0.295208\pi\)
0.599898 + 0.800076i \(0.295208\pi\)
\(458\) 0 0
\(459\) 1690.78 0.171937
\(460\) 0 0
\(461\) −1728.80 −0.174660 −0.0873301 0.996179i \(-0.527833\pi\)
−0.0873301 + 0.996179i \(0.527833\pi\)
\(462\) 0 0
\(463\) 11326.0 1.13685 0.568425 0.822735i \(-0.307553\pi\)
0.568425 + 0.822735i \(0.307553\pi\)
\(464\) 0 0
\(465\) −2771.76 −0.276425
\(466\) 0 0
\(467\) 5221.54 0.517396 0.258698 0.965958i \(-0.416706\pi\)
0.258698 + 0.965958i \(0.416706\pi\)
\(468\) 0 0
\(469\) 1590.63 0.156607
\(470\) 0 0
\(471\) 5635.77 0.551343
\(472\) 0 0
\(473\) 372.524 0.0362129
\(474\) 0 0
\(475\) −6006.08 −0.580164
\(476\) 0 0
\(477\) 3312.48 0.317962
\(478\) 0 0
\(479\) 8525.01 0.813189 0.406595 0.913609i \(-0.366716\pi\)
0.406595 + 0.913609i \(0.366716\pi\)
\(480\) 0 0
\(481\) 724.883 0.0687148
\(482\) 0 0
\(483\) 299.757 0.0282389
\(484\) 0 0
\(485\) −23606.5 −2.21014
\(486\) 0 0
\(487\) −681.285 −0.0633921 −0.0316961 0.999498i \(-0.510091\pi\)
−0.0316961 + 0.999498i \(0.510091\pi\)
\(488\) 0 0
\(489\) −6691.14 −0.618781
\(490\) 0 0
\(491\) −20581.2 −1.89169 −0.945844 0.324623i \(-0.894763\pi\)
−0.945844 + 0.324623i \(0.894763\pi\)
\(492\) 0 0
\(493\) −4722.41 −0.431413
\(494\) 0 0
\(495\) −2938.79 −0.266846
\(496\) 0 0
\(497\) −609.978 −0.0550528
\(498\) 0 0
\(499\) 1204.64 0.108071 0.0540353 0.998539i \(-0.482792\pi\)
0.0540353 + 0.998539i \(0.482792\pi\)
\(500\) 0 0
\(501\) −2856.76 −0.254752
\(502\) 0 0
\(503\) −1026.69 −0.0910099 −0.0455050 0.998964i \(-0.514490\pi\)
−0.0455050 + 0.998964i \(0.514490\pi\)
\(504\) 0 0
\(505\) −3612.14 −0.318293
\(506\) 0 0
\(507\) −507.000 −0.0444116
\(508\) 0 0
\(509\) −1921.88 −0.167359 −0.0836797 0.996493i \(-0.526667\pi\)
−0.0836797 + 0.996493i \(0.526667\pi\)
\(510\) 0 0
\(511\) 515.842 0.0446565
\(512\) 0 0
\(513\) 3774.55 0.324855
\(514\) 0 0
\(515\) 3083.31 0.263819
\(516\) 0 0
\(517\) 13382.2 1.13839
\(518\) 0 0
\(519\) 9373.56 0.792782
\(520\) 0 0
\(521\) 10057.8 0.845756 0.422878 0.906187i \(-0.361020\pi\)
0.422878 + 0.906187i \(0.361020\pi\)
\(522\) 0 0
\(523\) −4124.89 −0.344874 −0.172437 0.985021i \(-0.555164\pi\)
−0.172437 + 0.985021i \(0.555164\pi\)
\(524\) 0 0
\(525\) 227.445 0.0189076
\(526\) 0 0
\(527\) −4464.29 −0.369009
\(528\) 0 0
\(529\) −8961.00 −0.736500
\(530\) 0 0
\(531\) −1492.85 −0.122004
\(532\) 0 0
\(533\) −521.231 −0.0423584
\(534\) 0 0
\(535\) −11956.5 −0.966217
\(536\) 0 0
\(537\) −5820.36 −0.467723
\(538\) 0 0
\(539\) 8563.55 0.684338
\(540\) 0 0
\(541\) 4880.50 0.387854 0.193927 0.981016i \(-0.437878\pi\)
0.193927 + 0.981016i \(0.437878\pi\)
\(542\) 0 0
\(543\) 185.555 0.0146647
\(544\) 0 0
\(545\) −4685.65 −0.368278
\(546\) 0 0
\(547\) −9833.32 −0.768633 −0.384316 0.923201i \(-0.625563\pi\)
−0.384316 + 0.923201i \(0.625563\pi\)
\(548\) 0 0
\(549\) −1312.90 −0.102064
\(550\) 0 0
\(551\) −10542.4 −0.815106
\(552\) 0 0
\(553\) −1275.32 −0.0980693
\(554\) 0 0
\(555\) −2167.96 −0.165811
\(556\) 0 0
\(557\) 671.131 0.0510534 0.0255267 0.999674i \(-0.491874\pi\)
0.0255267 + 0.999674i \(0.491874\pi\)
\(558\) 0 0
\(559\) −192.211 −0.0145432
\(560\) 0 0
\(561\) −4733.32 −0.356223
\(562\) 0 0
\(563\) 7438.83 0.556855 0.278428 0.960457i \(-0.410187\pi\)
0.278428 + 0.960457i \(0.410187\pi\)
\(564\) 0 0
\(565\) −13865.9 −1.03247
\(566\) 0 0
\(567\) −142.939 −0.0105871
\(568\) 0 0
\(569\) 19242.7 1.41774 0.708870 0.705339i \(-0.249205\pi\)
0.708870 + 0.705339i \(0.249205\pi\)
\(570\) 0 0
\(571\) −12917.3 −0.946713 −0.473357 0.880871i \(-0.656958\pi\)
−0.473357 + 0.880871i \(0.656958\pi\)
\(572\) 0 0
\(573\) 4000.66 0.291675
\(574\) 0 0
\(575\) 2432.60 0.176429
\(576\) 0 0
\(577\) −13343.4 −0.962727 −0.481363 0.876521i \(-0.659858\pi\)
−0.481363 + 0.876521i \(0.659858\pi\)
\(578\) 0 0
\(579\) −12092.7 −0.867969
\(580\) 0 0
\(581\) 997.686 0.0712409
\(582\) 0 0
\(583\) −9273.23 −0.658761
\(584\) 0 0
\(585\) 1516.32 0.107166
\(586\) 0 0
\(587\) −20799.6 −1.46251 −0.731254 0.682105i \(-0.761065\pi\)
−0.731254 + 0.682105i \(0.761065\pi\)
\(588\) 0 0
\(589\) −9966.22 −0.697200
\(590\) 0 0
\(591\) −7019.08 −0.488538
\(592\) 0 0
\(593\) 24109.9 1.66960 0.834801 0.550551i \(-0.185582\pi\)
0.834801 + 0.550551i \(0.185582\pi\)
\(594\) 0 0
\(595\) 1432.17 0.0986780
\(596\) 0 0
\(597\) −9998.04 −0.685415
\(598\) 0 0
\(599\) −25368.9 −1.73046 −0.865228 0.501378i \(-0.832827\pi\)
−0.865228 + 0.501378i \(0.832827\pi\)
\(600\) 0 0
\(601\) 29275.8 1.98700 0.993498 0.113853i \(-0.0363192\pi\)
0.993498 + 0.113853i \(0.0363192\pi\)
\(602\) 0 0
\(603\) −8112.35 −0.547862
\(604\) 0 0
\(605\) −9022.70 −0.606322
\(606\) 0 0
\(607\) 12370.9 0.827218 0.413609 0.910455i \(-0.364268\pi\)
0.413609 + 0.910455i \(0.364268\pi\)
\(608\) 0 0
\(609\) 399.233 0.0265645
\(610\) 0 0
\(611\) −6904.77 −0.457180
\(612\) 0 0
\(613\) 18862.5 1.24282 0.621411 0.783485i \(-0.286560\pi\)
0.621411 + 0.783485i \(0.286560\pi\)
\(614\) 0 0
\(615\) 1558.89 0.102212
\(616\) 0 0
\(617\) −24546.7 −1.60164 −0.800822 0.598903i \(-0.795604\pi\)
−0.800822 + 0.598903i \(0.795604\pi\)
\(618\) 0 0
\(619\) 19413.6 1.26058 0.630289 0.776361i \(-0.282936\pi\)
0.630289 + 0.776361i \(0.282936\pi\)
\(620\) 0 0
\(621\) −1528.78 −0.0987889
\(622\) 0 0
\(623\) 485.491 0.0312212
\(624\) 0 0
\(625\) −19149.5 −1.22557
\(626\) 0 0
\(627\) −10566.8 −0.673042
\(628\) 0 0
\(629\) −3491.79 −0.221346
\(630\) 0 0
\(631\) −18875.9 −1.19087 −0.595433 0.803405i \(-0.703020\pi\)
−0.595433 + 0.803405i \(0.703020\pi\)
\(632\) 0 0
\(633\) −3113.45 −0.195495
\(634\) 0 0
\(635\) 22719.8 1.41985
\(636\) 0 0
\(637\) −4418.52 −0.274832
\(638\) 0 0
\(639\) 3110.94 0.192593
\(640\) 0 0
\(641\) 22270.4 1.37228 0.686138 0.727472i \(-0.259305\pi\)
0.686138 + 0.727472i \(0.259305\pi\)
\(642\) 0 0
\(643\) 28426.7 1.74345 0.871726 0.489994i \(-0.163001\pi\)
0.871726 + 0.489994i \(0.163001\pi\)
\(644\) 0 0
\(645\) 574.859 0.0350931
\(646\) 0 0
\(647\) −1087.22 −0.0660635 −0.0330317 0.999454i \(-0.510516\pi\)
−0.0330317 + 0.999454i \(0.510516\pi\)
\(648\) 0 0
\(649\) 4179.21 0.252771
\(650\) 0 0
\(651\) 377.412 0.0227219
\(652\) 0 0
\(653\) 26132.1 1.56605 0.783023 0.621992i \(-0.213677\pi\)
0.783023 + 0.621992i \(0.213677\pi\)
\(654\) 0 0
\(655\) −22436.1 −1.33840
\(656\) 0 0
\(657\) −2630.83 −0.156223
\(658\) 0 0
\(659\) 11713.5 0.692403 0.346202 0.938160i \(-0.387471\pi\)
0.346202 + 0.938160i \(0.387471\pi\)
\(660\) 0 0
\(661\) −23074.5 −1.35778 −0.678892 0.734238i \(-0.737540\pi\)
−0.678892 + 0.734238i \(0.737540\pi\)
\(662\) 0 0
\(663\) 2442.24 0.143060
\(664\) 0 0
\(665\) 3197.23 0.186441
\(666\) 0 0
\(667\) 4269.94 0.247875
\(668\) 0 0
\(669\) −8276.15 −0.478288
\(670\) 0 0
\(671\) 3675.44 0.211459
\(672\) 0 0
\(673\) 32482.6 1.86049 0.930247 0.366934i \(-0.119592\pi\)
0.930247 + 0.366934i \(0.119592\pi\)
\(674\) 0 0
\(675\) −1159.99 −0.0661451
\(676\) 0 0
\(677\) 3909.65 0.221950 0.110975 0.993823i \(-0.464603\pi\)
0.110975 + 0.993823i \(0.464603\pi\)
\(678\) 0 0
\(679\) 3214.34 0.181672
\(680\) 0 0
\(681\) 2523.48 0.141997
\(682\) 0 0
\(683\) −25361.0 −1.42081 −0.710405 0.703793i \(-0.751488\pi\)
−0.710405 + 0.703793i \(0.751488\pi\)
\(684\) 0 0
\(685\) 595.785 0.0332318
\(686\) 0 0
\(687\) −6092.69 −0.338356
\(688\) 0 0
\(689\) 4784.69 0.264561
\(690\) 0 0
\(691\) −24519.5 −1.34988 −0.674938 0.737874i \(-0.735830\pi\)
−0.674938 + 0.737874i \(0.735830\pi\)
\(692\) 0 0
\(693\) 400.155 0.0219346
\(694\) 0 0
\(695\) −3201.45 −0.174731
\(696\) 0 0
\(697\) 2510.79 0.136446
\(698\) 0 0
\(699\) −14630.3 −0.791657
\(700\) 0 0
\(701\) −24859.3 −1.33941 −0.669703 0.742629i \(-0.733579\pi\)
−0.669703 + 0.742629i \(0.733579\pi\)
\(702\) 0 0
\(703\) −7795.18 −0.418209
\(704\) 0 0
\(705\) 20650.6 1.10319
\(706\) 0 0
\(707\) 491.840 0.0261634
\(708\) 0 0
\(709\) 9799.70 0.519091 0.259546 0.965731i \(-0.416427\pi\)
0.259546 + 0.965731i \(0.416427\pi\)
\(710\) 0 0
\(711\) 6504.26 0.343078
\(712\) 0 0
\(713\) 4036.55 0.212020
\(714\) 0 0
\(715\) −4244.93 −0.222030
\(716\) 0 0
\(717\) 14482.4 0.754329
\(718\) 0 0
\(719\) 33260.6 1.72519 0.862595 0.505896i \(-0.168838\pi\)
0.862595 + 0.505896i \(0.168838\pi\)
\(720\) 0 0
\(721\) −419.833 −0.0216857
\(722\) 0 0
\(723\) −14903.2 −0.766605
\(724\) 0 0
\(725\) 3239.89 0.165967
\(726\) 0 0
\(727\) −7477.82 −0.381482 −0.190741 0.981640i \(-0.561089\pi\)
−0.190741 + 0.981640i \(0.561089\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 925.887 0.0468470
\(732\) 0 0
\(733\) −759.810 −0.0382868 −0.0191434 0.999817i \(-0.506094\pi\)
−0.0191434 + 0.999817i \(0.506094\pi\)
\(734\) 0 0
\(735\) 13214.8 0.663177
\(736\) 0 0
\(737\) 22710.4 1.13507
\(738\) 0 0
\(739\) −7873.29 −0.391913 −0.195956 0.980613i \(-0.562781\pi\)
−0.195956 + 0.980613i \(0.562781\pi\)
\(740\) 0 0
\(741\) 5452.13 0.270295
\(742\) 0 0
\(743\) −26778.1 −1.32220 −0.661099 0.750299i \(-0.729910\pi\)
−0.661099 + 0.750299i \(0.729910\pi\)
\(744\) 0 0
\(745\) −43932.5 −2.16048
\(746\) 0 0
\(747\) −5088.28 −0.249224
\(748\) 0 0
\(749\) 1628.04 0.0794222
\(750\) 0 0
\(751\) 17975.7 0.873424 0.436712 0.899601i \(-0.356143\pi\)
0.436712 + 0.899601i \(0.356143\pi\)
\(752\) 0 0
\(753\) 12168.2 0.588889
\(754\) 0 0
\(755\) 40476.3 1.95110
\(756\) 0 0
\(757\) −10835.1 −0.520223 −0.260112 0.965579i \(-0.583759\pi\)
−0.260112 + 0.965579i \(0.583759\pi\)
\(758\) 0 0
\(759\) 4279.80 0.204673
\(760\) 0 0
\(761\) −15334.7 −0.730463 −0.365231 0.930917i \(-0.619010\pi\)
−0.365231 + 0.930917i \(0.619010\pi\)
\(762\) 0 0
\(763\) 638.013 0.0302721
\(764\) 0 0
\(765\) −7304.20 −0.345208
\(766\) 0 0
\(767\) −2156.34 −0.101514
\(768\) 0 0
\(769\) −23503.2 −1.10214 −0.551070 0.834459i \(-0.685780\pi\)
−0.551070 + 0.834459i \(0.685780\pi\)
\(770\) 0 0
\(771\) −15978.8 −0.746385
\(772\) 0 0
\(773\) 23536.4 1.09514 0.547570 0.836760i \(-0.315553\pi\)
0.547570 + 0.836760i \(0.315553\pi\)
\(774\) 0 0
\(775\) 3062.80 0.141960
\(776\) 0 0
\(777\) 295.197 0.0136295
\(778\) 0 0
\(779\) 5605.16 0.257799
\(780\) 0 0
\(781\) −8709.02 −0.399018
\(782\) 0 0
\(783\) −2036.12 −0.0929311
\(784\) 0 0
\(785\) −24346.6 −1.10697
\(786\) 0 0
\(787\) −23939.3 −1.08430 −0.542150 0.840282i \(-0.682390\pi\)
−0.542150 + 0.840282i \(0.682390\pi\)
\(788\) 0 0
\(789\) 16715.7 0.754237
\(790\) 0 0
\(791\) 1888.03 0.0848679
\(792\) 0 0
\(793\) −1896.41 −0.0849224
\(794\) 0 0
\(795\) −14309.9 −0.638392
\(796\) 0 0
\(797\) 13136.7 0.583847 0.291923 0.956442i \(-0.405705\pi\)
0.291923 + 0.956442i \(0.405705\pi\)
\(798\) 0 0
\(799\) 33260.6 1.47268
\(800\) 0 0
\(801\) −2476.04 −0.109222
\(802\) 0 0
\(803\) 7364.98 0.323667
\(804\) 0 0
\(805\) −1294.95 −0.0566970
\(806\) 0 0
\(807\) −591.101 −0.0257841
\(808\) 0 0
\(809\) 18751.0 0.814896 0.407448 0.913228i \(-0.366419\pi\)
0.407448 + 0.913228i \(0.366419\pi\)
\(810\) 0 0
\(811\) 5391.15 0.233426 0.116713 0.993166i \(-0.462764\pi\)
0.116713 + 0.993166i \(0.462764\pi\)
\(812\) 0 0
\(813\) −16169.6 −0.697530
\(814\) 0 0
\(815\) 28905.8 1.24236
\(816\) 0 0
\(817\) 2066.98 0.0885120
\(818\) 0 0
\(819\) −206.467 −0.00880898
\(820\) 0 0
\(821\) 40576.7 1.72489 0.862446 0.506149i \(-0.168932\pi\)
0.862446 + 0.506149i \(0.168932\pi\)
\(822\) 0 0
\(823\) 29261.2 1.23934 0.619672 0.784861i \(-0.287265\pi\)
0.619672 + 0.784861i \(0.287265\pi\)
\(824\) 0 0
\(825\) 3247.37 0.137041
\(826\) 0 0
\(827\) 30518.5 1.28323 0.641617 0.767026i \(-0.278264\pi\)
0.641617 + 0.767026i \(0.278264\pi\)
\(828\) 0 0
\(829\) −28135.3 −1.17875 −0.589373 0.807861i \(-0.700625\pi\)
−0.589373 + 0.807861i \(0.700625\pi\)
\(830\) 0 0
\(831\) 16395.4 0.684415
\(832\) 0 0
\(833\) 21284.2 0.885298
\(834\) 0 0
\(835\) 12341.2 0.511481
\(836\) 0 0
\(837\) −1924.83 −0.0794885
\(838\) 0 0
\(839\) −20520.4 −0.844388 −0.422194 0.906506i \(-0.638740\pi\)
−0.422194 + 0.906506i \(0.638740\pi\)
\(840\) 0 0
\(841\) −18702.0 −0.766823
\(842\) 0 0
\(843\) 14382.8 0.587627
\(844\) 0 0
\(845\) 2190.25 0.0891678
\(846\) 0 0
\(847\) 1228.56 0.0498392
\(848\) 0 0
\(849\) 6854.42 0.277083
\(850\) 0 0
\(851\) 3157.23 0.127178
\(852\) 0 0
\(853\) 34721.4 1.39371 0.696857 0.717210i \(-0.254581\pi\)
0.696857 + 0.717210i \(0.254581\pi\)
\(854\) 0 0
\(855\) −16306.1 −0.652230
\(856\) 0 0
\(857\) 40484.5 1.61368 0.806841 0.590769i \(-0.201175\pi\)
0.806841 + 0.590769i \(0.201175\pi\)
\(858\) 0 0
\(859\) 7347.38 0.291839 0.145919 0.989296i \(-0.453386\pi\)
0.145919 + 0.989296i \(0.453386\pi\)
\(860\) 0 0
\(861\) −212.263 −0.00840173
\(862\) 0 0
\(863\) 43530.1 1.71701 0.858505 0.512804i \(-0.171393\pi\)
0.858505 + 0.512804i \(0.171393\pi\)
\(864\) 0 0
\(865\) −40493.9 −1.59172
\(866\) 0 0
\(867\) 2974.62 0.116521
\(868\) 0 0
\(869\) −18208.6 −0.710798
\(870\) 0 0
\(871\) −11717.8 −0.455848
\(872\) 0 0
\(873\) −16393.4 −0.635546
\(874\) 0 0
\(875\) 1876.22 0.0724890
\(876\) 0 0
\(877\) −24155.9 −0.930088 −0.465044 0.885287i \(-0.653962\pi\)
−0.465044 + 0.885287i \(0.653962\pi\)
\(878\) 0 0
\(879\) 20072.6 0.770230
\(880\) 0 0
\(881\) −21971.9 −0.840239 −0.420120 0.907469i \(-0.638012\pi\)
−0.420120 + 0.907469i \(0.638012\pi\)
\(882\) 0 0
\(883\) −5032.44 −0.191795 −0.0958976 0.995391i \(-0.530572\pi\)
−0.0958976 + 0.995391i \(0.530572\pi\)
\(884\) 0 0
\(885\) 6449.13 0.244955
\(886\) 0 0
\(887\) 5082.60 0.192398 0.0961990 0.995362i \(-0.469331\pi\)
0.0961990 + 0.995362i \(0.469331\pi\)
\(888\) 0 0
\(889\) −3093.60 −0.116711
\(890\) 0 0
\(891\) −2040.82 −0.0767342
\(892\) 0 0
\(893\) 74251.8 2.78247
\(894\) 0 0
\(895\) 25144.0 0.939075
\(896\) 0 0
\(897\) −2208.24 −0.0821973
\(898\) 0 0
\(899\) 5376.12 0.199448
\(900\) 0 0
\(901\) −23048.1 −0.852211
\(902\) 0 0
\(903\) −78.2746 −0.00288462
\(904\) 0 0
\(905\) −801.601 −0.0294432
\(906\) 0 0
\(907\) −2515.37 −0.0920853 −0.0460427 0.998939i \(-0.514661\pi\)
−0.0460427 + 0.998939i \(0.514661\pi\)
\(908\) 0 0
\(909\) −2508.42 −0.0915282
\(910\) 0 0
\(911\) −22288.3 −0.810588 −0.405294 0.914186i \(-0.632831\pi\)
−0.405294 + 0.914186i \(0.632831\pi\)
\(912\) 0 0
\(913\) 14244.6 0.516348
\(914\) 0 0
\(915\) 5671.74 0.204920
\(916\) 0 0
\(917\) 3054.97 0.110015
\(918\) 0 0
\(919\) 49002.3 1.75891 0.879454 0.475985i \(-0.157908\pi\)
0.879454 + 0.475985i \(0.157908\pi\)
\(920\) 0 0
\(921\) −12005.7 −0.429533
\(922\) 0 0
\(923\) 4493.58 0.160247
\(924\) 0 0
\(925\) 2395.60 0.0851533
\(926\) 0 0
\(927\) 2141.18 0.0758637
\(928\) 0 0
\(929\) 9791.91 0.345815 0.172907 0.984938i \(-0.444684\pi\)
0.172907 + 0.984938i \(0.444684\pi\)
\(930\) 0 0
\(931\) 47515.4 1.67267
\(932\) 0 0
\(933\) −732.849 −0.0257153
\(934\) 0 0
\(935\) 20448.0 0.715209
\(936\) 0 0
\(937\) 44528.6 1.55249 0.776246 0.630430i \(-0.217122\pi\)
0.776246 + 0.630430i \(0.217122\pi\)
\(938\) 0 0
\(939\) −5548.16 −0.192819
\(940\) 0 0
\(941\) 31492.9 1.09101 0.545505 0.838108i \(-0.316338\pi\)
0.545505 + 0.838108i \(0.316338\pi\)
\(942\) 0 0
\(943\) −2270.22 −0.0783973
\(944\) 0 0
\(945\) 617.498 0.0212563
\(946\) 0 0
\(947\) 9774.64 0.335410 0.167705 0.985837i \(-0.446364\pi\)
0.167705 + 0.985837i \(0.446364\pi\)
\(948\) 0 0
\(949\) −3800.09 −0.129985
\(950\) 0 0
\(951\) −30347.4 −1.03479
\(952\) 0 0
\(953\) −52688.0 −1.79090 −0.895451 0.445159i \(-0.853147\pi\)
−0.895451 + 0.445159i \(0.853147\pi\)
\(954\) 0 0
\(955\) −17282.9 −0.585614
\(956\) 0 0
\(957\) 5700.09 0.192537
\(958\) 0 0
\(959\) −81.1240 −0.00273163
\(960\) 0 0
\(961\) −24708.7 −0.829403
\(962\) 0 0
\(963\) −8303.12 −0.277845
\(964\) 0 0
\(965\) 52240.4 1.74267
\(966\) 0 0
\(967\) −25246.9 −0.839591 −0.419796 0.907619i \(-0.637898\pi\)
−0.419796 + 0.907619i \(0.637898\pi\)
\(968\) 0 0
\(969\) −26263.1 −0.870685
\(970\) 0 0
\(971\) 11021.4 0.364257 0.182129 0.983275i \(-0.441701\pi\)
0.182129 + 0.983275i \(0.441701\pi\)
\(972\) 0 0
\(973\) 435.919 0.0143627
\(974\) 0 0
\(975\) −1675.54 −0.0550360
\(976\) 0 0
\(977\) −50522.8 −1.65442 −0.827209 0.561894i \(-0.810073\pi\)
−0.827209 + 0.561894i \(0.810073\pi\)
\(978\) 0 0
\(979\) 6931.64 0.226288
\(980\) 0 0
\(981\) −3253.92 −0.105902
\(982\) 0 0
\(983\) −30291.7 −0.982865 −0.491433 0.870916i \(-0.663527\pi\)
−0.491433 + 0.870916i \(0.663527\pi\)
\(984\) 0 0
\(985\) 30322.5 0.980868
\(986\) 0 0
\(987\) −2811.85 −0.0906811
\(988\) 0 0
\(989\) −837.174 −0.0269167
\(990\) 0 0
\(991\) 59053.5 1.89293 0.946466 0.322805i \(-0.104626\pi\)
0.946466 + 0.322805i \(0.104626\pi\)
\(992\) 0 0
\(993\) 18861.4 0.602769
\(994\) 0 0
\(995\) 43191.7 1.37615
\(996\) 0 0
\(997\) −6231.88 −0.197960 −0.0989798 0.995089i \(-0.531558\pi\)
−0.0989798 + 0.995089i \(0.531558\pi\)
\(998\) 0 0
\(999\) −1505.53 −0.0476804
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.4.a.s.1.3 3
3.2 odd 2 1872.4.a.bl.1.1 3
4.3 odd 2 312.4.a.h.1.3 3
8.3 odd 2 2496.4.a.bm.1.1 3
8.5 even 2 2496.4.a.bq.1.1 3
12.11 even 2 936.4.a.l.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.a.h.1.3 3 4.3 odd 2
624.4.a.s.1.3 3 1.1 even 1 trivial
936.4.a.l.1.1 3 12.11 even 2
1872.4.a.bl.1.1 3 3.2 odd 2
2496.4.a.bm.1.1 3 8.3 odd 2
2496.4.a.bq.1.1 3 8.5 even 2