Properties

Label 624.3.ba.a.577.2
Level $624$
Weight $3$
Character 624.577
Analytic conductor $17.003$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,3,Mod(385,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.385");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 624.ba (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.0027684961\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 577.2
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 624.577
Dual form 624.3.ba.a.385.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205 q^{3} +(4.73205 - 4.73205i) q^{5} +(2.73205 + 2.73205i) q^{7} +3.00000 q^{9} +(-1.73205 - 1.73205i) q^{11} +(9.92820 - 8.39230i) q^{13} +(8.19615 - 8.19615i) q^{15} +29.3205i q^{17} +(11.2679 - 11.2679i) q^{19} +(4.73205 + 4.73205i) q^{21} -29.3205i q^{23} -19.7846i q^{25} +5.19615 q^{27} +31.8564 q^{29} +(-26.9808 + 26.9808i) q^{31} +(-3.00000 - 3.00000i) q^{33} +25.8564 q^{35} +(-30.8564 - 30.8564i) q^{37} +(17.1962 - 14.5359i) q^{39} +(-14.4449 + 14.4449i) q^{41} -25.1769i q^{43} +(14.1962 - 14.1962i) q^{45} +(41.1962 + 41.1962i) q^{47} -34.0718i q^{49} +50.7846i q^{51} +2.28719 q^{53} -16.3923 q^{55} +(19.5167 - 19.5167i) q^{57} +(-54.6218 - 54.6218i) q^{59} -7.42563 q^{61} +(8.19615 + 8.19615i) q^{63} +(7.26795 - 86.6936i) q^{65} +(60.6936 - 60.6936i) q^{67} -50.7846i q^{69} +(-38.9090 + 38.9090i) q^{71} +(40.3205 + 40.3205i) q^{73} -34.2679i q^{75} -9.46410i q^{77} +148.210 q^{79} +9.00000 q^{81} +(-73.7987 + 73.7987i) q^{83} +(138.746 + 138.746i) q^{85} +55.1769 q^{87} +(25.5167 + 25.5167i) q^{89} +(50.0526 + 4.19615i) q^{91} +(-46.7321 + 46.7321i) q^{93} -106.641i q^{95} +(-86.0333 + 86.0333i) q^{97} +(-5.19615 - 5.19615i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{5} + 4 q^{7} + 12 q^{9} + 12 q^{13} + 12 q^{15} + 52 q^{19} + 12 q^{21} + 72 q^{29} - 4 q^{31} - 12 q^{33} + 48 q^{35} - 68 q^{37} + 48 q^{39} + 60 q^{41} + 36 q^{45} + 144 q^{47} + 120 q^{53}+ \cdots - 164 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205 0.577350
\(4\) 0 0
\(5\) 4.73205 4.73205i 0.946410 0.946410i −0.0522252 0.998635i \(-0.516631\pi\)
0.998635 + 0.0522252i \(0.0166314\pi\)
\(6\) 0 0
\(7\) 2.73205 + 2.73205i 0.390293 + 0.390293i 0.874792 0.484499i \(-0.160998\pi\)
−0.484499 + 0.874792i \(0.660998\pi\)
\(8\) 0 0
\(9\) 3.00000 0.333333
\(10\) 0 0
\(11\) −1.73205 1.73205i −0.157459 0.157459i 0.623981 0.781440i \(-0.285514\pi\)
−0.781440 + 0.623981i \(0.785514\pi\)
\(12\) 0 0
\(13\) 9.92820 8.39230i 0.763708 0.645562i
\(14\) 0 0
\(15\) 8.19615 8.19615i 0.546410 0.546410i
\(16\) 0 0
\(17\) 29.3205i 1.72474i 0.506282 + 0.862368i \(0.331019\pi\)
−0.506282 + 0.862368i \(0.668981\pi\)
\(18\) 0 0
\(19\) 11.2679 11.2679i 0.593050 0.593050i −0.345404 0.938454i \(-0.612258\pi\)
0.938454 + 0.345404i \(0.112258\pi\)
\(20\) 0 0
\(21\) 4.73205 + 4.73205i 0.225336 + 0.225336i
\(22\) 0 0
\(23\) 29.3205i 1.27480i −0.770531 0.637402i \(-0.780009\pi\)
0.770531 0.637402i \(-0.219991\pi\)
\(24\) 0 0
\(25\) 19.7846i 0.791384i
\(26\) 0 0
\(27\) 5.19615 0.192450
\(28\) 0 0
\(29\) 31.8564 1.09850 0.549248 0.835659i \(-0.314914\pi\)
0.549248 + 0.835659i \(0.314914\pi\)
\(30\) 0 0
\(31\) −26.9808 + 26.9808i −0.870347 + 0.870347i −0.992510 0.122163i \(-0.961017\pi\)
0.122163 + 0.992510i \(0.461017\pi\)
\(32\) 0 0
\(33\) −3.00000 3.00000i −0.0909091 0.0909091i
\(34\) 0 0
\(35\) 25.8564 0.738754
\(36\) 0 0
\(37\) −30.8564 30.8564i −0.833957 0.833957i 0.154099 0.988055i \(-0.450753\pi\)
−0.988055 + 0.154099i \(0.950753\pi\)
\(38\) 0 0
\(39\) 17.1962 14.5359i 0.440927 0.372715i
\(40\) 0 0
\(41\) −14.4449 + 14.4449i −0.352314 + 0.352314i −0.860970 0.508656i \(-0.830142\pi\)
0.508656 + 0.860970i \(0.330142\pi\)
\(42\) 0 0
\(43\) 25.1769i 0.585510i −0.956188 0.292755i \(-0.905428\pi\)
0.956188 0.292755i \(-0.0945720\pi\)
\(44\) 0 0
\(45\) 14.1962 14.1962i 0.315470 0.315470i
\(46\) 0 0
\(47\) 41.1962 + 41.1962i 0.876514 + 0.876514i 0.993172 0.116658i \(-0.0372182\pi\)
−0.116658 + 0.993172i \(0.537218\pi\)
\(48\) 0 0
\(49\) 34.0718i 0.695343i
\(50\) 0 0
\(51\) 50.7846i 0.995777i
\(52\) 0 0
\(53\) 2.28719 0.0431545 0.0215772 0.999767i \(-0.493131\pi\)
0.0215772 + 0.999767i \(0.493131\pi\)
\(54\) 0 0
\(55\) −16.3923 −0.298042
\(56\) 0 0
\(57\) 19.5167 19.5167i 0.342398 0.342398i
\(58\) 0 0
\(59\) −54.6218 54.6218i −0.925793 0.925793i 0.0716379 0.997431i \(-0.477177\pi\)
−0.997431 + 0.0716379i \(0.977177\pi\)
\(60\) 0 0
\(61\) −7.42563 −0.121732 −0.0608658 0.998146i \(-0.519386\pi\)
−0.0608658 + 0.998146i \(0.519386\pi\)
\(62\) 0 0
\(63\) 8.19615 + 8.19615i 0.130098 + 0.130098i
\(64\) 0 0
\(65\) 7.26795 86.6936i 0.111815 1.33375i
\(66\) 0 0
\(67\) 60.6936 60.6936i 0.905874 0.905874i −0.0900619 0.995936i \(-0.528706\pi\)
0.995936 + 0.0900619i \(0.0287065\pi\)
\(68\) 0 0
\(69\) 50.7846i 0.736009i
\(70\) 0 0
\(71\) −38.9090 + 38.9090i −0.548014 + 0.548014i −0.925866 0.377852i \(-0.876663\pi\)
0.377852 + 0.925866i \(0.376663\pi\)
\(72\) 0 0
\(73\) 40.3205 + 40.3205i 0.552336 + 0.552336i 0.927114 0.374779i \(-0.122281\pi\)
−0.374779 + 0.927114i \(0.622281\pi\)
\(74\) 0 0
\(75\) 34.2679i 0.456906i
\(76\) 0 0
\(77\) 9.46410i 0.122910i
\(78\) 0 0
\(79\) 148.210 1.87608 0.938039 0.346528i \(-0.112640\pi\)
0.938039 + 0.346528i \(0.112640\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) −73.7987 + 73.7987i −0.889141 + 0.889141i −0.994441 0.105300i \(-0.966420\pi\)
0.105300 + 0.994441i \(0.466420\pi\)
\(84\) 0 0
\(85\) 138.746 + 138.746i 1.63231 + 1.63231i
\(86\) 0 0
\(87\) 55.1769 0.634217
\(88\) 0 0
\(89\) 25.5167 + 25.5167i 0.286704 + 0.286704i 0.835775 0.549071i \(-0.185019\pi\)
−0.549071 + 0.835775i \(0.685019\pi\)
\(90\) 0 0
\(91\) 50.0526 + 4.19615i 0.550028 + 0.0461116i
\(92\) 0 0
\(93\) −46.7321 + 46.7321i −0.502495 + 0.502495i
\(94\) 0 0
\(95\) 106.641i 1.12254i
\(96\) 0 0
\(97\) −86.0333 + 86.0333i −0.886941 + 0.886941i −0.994228 0.107287i \(-0.965784\pi\)
0.107287 + 0.994228i \(0.465784\pi\)
\(98\) 0 0
\(99\) −5.19615 5.19615i −0.0524864 0.0524864i
\(100\) 0 0
\(101\) 104.536i 1.03501i 0.855681 + 0.517504i \(0.173139\pi\)
−0.855681 + 0.517504i \(0.826861\pi\)
\(102\) 0 0
\(103\) 36.6795i 0.356112i −0.984020 0.178056i \(-0.943019\pi\)
0.984020 0.178056i \(-0.0569808\pi\)
\(104\) 0 0
\(105\) 44.7846 0.426520
\(106\) 0 0
\(107\) 123.464 1.15387 0.576935 0.816790i \(-0.304249\pi\)
0.576935 + 0.816790i \(0.304249\pi\)
\(108\) 0 0
\(109\) 119.315 119.315i 1.09464 1.09464i 0.0996097 0.995027i \(-0.468241\pi\)
0.995027 0.0996097i \(-0.0317594\pi\)
\(110\) 0 0
\(111\) −53.4449 53.4449i −0.481485 0.481485i
\(112\) 0 0
\(113\) −184.277 −1.63077 −0.815384 0.578920i \(-0.803474\pi\)
−0.815384 + 0.578920i \(0.803474\pi\)
\(114\) 0 0
\(115\) −138.746 138.746i −1.20649 1.20649i
\(116\) 0 0
\(117\) 29.7846 25.1769i 0.254569 0.215187i
\(118\) 0 0
\(119\) −80.1051 + 80.1051i −0.673152 + 0.673152i
\(120\) 0 0
\(121\) 115.000i 0.950413i
\(122\) 0 0
\(123\) −25.0192 + 25.0192i −0.203408 + 0.203408i
\(124\) 0 0
\(125\) 24.6795 + 24.6795i 0.197436 + 0.197436i
\(126\) 0 0
\(127\) 173.962i 1.36978i 0.728648 + 0.684888i \(0.240149\pi\)
−0.728648 + 0.684888i \(0.759851\pi\)
\(128\) 0 0
\(129\) 43.6077i 0.338044i
\(130\) 0 0
\(131\) −121.110 −0.924506 −0.462253 0.886748i \(-0.652959\pi\)
−0.462253 + 0.886748i \(0.652959\pi\)
\(132\) 0 0
\(133\) 61.5692 0.462926
\(134\) 0 0
\(135\) 24.5885 24.5885i 0.182137 0.182137i
\(136\) 0 0
\(137\) −130.053 130.053i −0.949289 0.949289i 0.0494861 0.998775i \(-0.484242\pi\)
−0.998775 + 0.0494861i \(0.984242\pi\)
\(138\) 0 0
\(139\) 27.1384 0.195241 0.0976203 0.995224i \(-0.468877\pi\)
0.0976203 + 0.995224i \(0.468877\pi\)
\(140\) 0 0
\(141\) 71.3538 + 71.3538i 0.506056 + 0.506056i
\(142\) 0 0
\(143\) −31.7321 2.66025i −0.221902 0.0186032i
\(144\) 0 0
\(145\) 150.746 150.746i 1.03963 1.03963i
\(146\) 0 0
\(147\) 59.0141i 0.401456i
\(148\) 0 0
\(149\) −168.224 + 168.224i −1.12902 + 1.12902i −0.138686 + 0.990336i \(0.544288\pi\)
−0.990336 + 0.138686i \(0.955712\pi\)
\(150\) 0 0
\(151\) 38.4064 + 38.4064i 0.254347 + 0.254347i 0.822750 0.568403i \(-0.192439\pi\)
−0.568403 + 0.822750i \(0.692439\pi\)
\(152\) 0 0
\(153\) 87.9615i 0.574912i
\(154\) 0 0
\(155\) 255.349i 1.64741i
\(156\) 0 0
\(157\) −227.215 −1.44723 −0.723616 0.690203i \(-0.757521\pi\)
−0.723616 + 0.690203i \(0.757521\pi\)
\(158\) 0 0
\(159\) 3.96152 0.0249152
\(160\) 0 0
\(161\) 80.1051 80.1051i 0.497547 0.497547i
\(162\) 0 0
\(163\) −12.4449 12.4449i −0.0763489 0.0763489i 0.667901 0.744250i \(-0.267193\pi\)
−0.744250 + 0.667901i \(0.767193\pi\)
\(164\) 0 0
\(165\) −28.3923 −0.172075
\(166\) 0 0
\(167\) −119.512 119.512i −0.715638 0.715638i 0.252071 0.967709i \(-0.418888\pi\)
−0.967709 + 0.252071i \(0.918888\pi\)
\(168\) 0 0
\(169\) 28.1384 166.641i 0.166500 0.986042i
\(170\) 0 0
\(171\) 33.8038 33.8038i 0.197683 0.197683i
\(172\) 0 0
\(173\) 69.3975i 0.401141i 0.979679 + 0.200571i \(0.0642796\pi\)
−0.979679 + 0.200571i \(0.935720\pi\)
\(174\) 0 0
\(175\) 54.0526 54.0526i 0.308872 0.308872i
\(176\) 0 0
\(177\) −94.6077 94.6077i −0.534507 0.534507i
\(178\) 0 0
\(179\) 165.282i 0.923363i 0.887046 + 0.461682i \(0.152754\pi\)
−0.887046 + 0.461682i \(0.847246\pi\)
\(180\) 0 0
\(181\) 283.856i 1.56827i 0.620592 + 0.784134i \(0.286892\pi\)
−0.620592 + 0.784134i \(0.713108\pi\)
\(182\) 0 0
\(183\) −12.8616 −0.0702818
\(184\) 0 0
\(185\) −292.028 −1.57853
\(186\) 0 0
\(187\) 50.7846 50.7846i 0.271575 0.271575i
\(188\) 0 0
\(189\) 14.1962 + 14.1962i 0.0751119 + 0.0751119i
\(190\) 0 0
\(191\) −9.28203 −0.0485970 −0.0242985 0.999705i \(-0.507735\pi\)
−0.0242985 + 0.999705i \(0.507735\pi\)
\(192\) 0 0
\(193\) −21.7180 21.7180i −0.112528 0.112528i 0.648601 0.761129i \(-0.275355\pi\)
−0.761129 + 0.648601i \(0.775355\pi\)
\(194\) 0 0
\(195\) 12.5885 150.158i 0.0645562 0.770039i
\(196\) 0 0
\(197\) −112.732 + 112.732i −0.572244 + 0.572244i −0.932755 0.360511i \(-0.882602\pi\)
0.360511 + 0.932755i \(0.382602\pi\)
\(198\) 0 0
\(199\) 245.100i 1.23166i 0.787880 + 0.615829i \(0.211179\pi\)
−0.787880 + 0.615829i \(0.788821\pi\)
\(200\) 0 0
\(201\) 105.124 105.124i 0.523007 0.523007i
\(202\) 0 0
\(203\) 87.0333 + 87.0333i 0.428736 + 0.428736i
\(204\) 0 0
\(205\) 136.708i 0.666867i
\(206\) 0 0
\(207\) 87.9615i 0.424935i
\(208\) 0 0
\(209\) −39.0333 −0.186762
\(210\) 0 0
\(211\) −345.282 −1.63641 −0.818204 0.574928i \(-0.805030\pi\)
−0.818204 + 0.574928i \(0.805030\pi\)
\(212\) 0 0
\(213\) −67.3923 + 67.3923i −0.316396 + 0.316396i
\(214\) 0 0
\(215\) −119.138 119.138i −0.554132 0.554132i
\(216\) 0 0
\(217\) −147.426 −0.679381
\(218\) 0 0
\(219\) 69.8372 + 69.8372i 0.318891 + 0.318891i
\(220\) 0 0
\(221\) 246.067 + 291.100i 1.11342 + 1.31719i
\(222\) 0 0
\(223\) −170.588 + 170.588i −0.764971 + 0.764971i −0.977216 0.212246i \(-0.931922\pi\)
0.212246 + 0.977216i \(0.431922\pi\)
\(224\) 0 0
\(225\) 59.3538i 0.263795i
\(226\) 0 0
\(227\) −169.368 + 169.368i −0.746114 + 0.746114i −0.973747 0.227633i \(-0.926901\pi\)
0.227633 + 0.973747i \(0.426901\pi\)
\(228\) 0 0
\(229\) 141.823 + 141.823i 0.619315 + 0.619315i 0.945356 0.326041i \(-0.105715\pi\)
−0.326041 + 0.945356i \(0.605715\pi\)
\(230\) 0 0
\(231\) 16.3923i 0.0709624i
\(232\) 0 0
\(233\) 128.038i 0.549521i −0.961513 0.274761i \(-0.911401\pi\)
0.961513 0.274761i \(-0.0885986\pi\)
\(234\) 0 0
\(235\) 389.885 1.65908
\(236\) 0 0
\(237\) 256.708 1.08315
\(238\) 0 0
\(239\) −88.0192 + 88.0192i −0.368281 + 0.368281i −0.866850 0.498569i \(-0.833859\pi\)
0.498569 + 0.866850i \(0.333859\pi\)
\(240\) 0 0
\(241\) −147.459 147.459i −0.611863 0.611863i 0.331568 0.943431i \(-0.392422\pi\)
−0.943431 + 0.331568i \(0.892422\pi\)
\(242\) 0 0
\(243\) 15.5885 0.0641500
\(244\) 0 0
\(245\) −161.229 161.229i −0.658079 0.658079i
\(246\) 0 0
\(247\) 17.3064 206.435i 0.0700665 0.835767i
\(248\) 0 0
\(249\) −127.823 + 127.823i −0.513346 + 0.513346i
\(250\) 0 0
\(251\) 181.377i 0.722617i 0.932446 + 0.361308i \(0.117670\pi\)
−0.932446 + 0.361308i \(0.882330\pi\)
\(252\) 0 0
\(253\) −50.7846 + 50.7846i −0.200730 + 0.200730i
\(254\) 0 0
\(255\) 240.315 + 240.315i 0.942413 + 0.942413i
\(256\) 0 0
\(257\) 297.664i 1.15823i 0.815247 + 0.579113i \(0.196601\pi\)
−0.815247 + 0.579113i \(0.803399\pi\)
\(258\) 0 0
\(259\) 168.603i 0.650975i
\(260\) 0 0
\(261\) 95.5692 0.366166
\(262\) 0 0
\(263\) −22.8897 −0.0870332 −0.0435166 0.999053i \(-0.513856\pi\)
−0.0435166 + 0.999053i \(0.513856\pi\)
\(264\) 0 0
\(265\) 10.8231 10.8231i 0.0408418 0.0408418i
\(266\) 0 0
\(267\) 44.1962 + 44.1962i 0.165529 + 0.165529i
\(268\) 0 0
\(269\) 220.774 0.820722 0.410361 0.911923i \(-0.365403\pi\)
0.410361 + 0.911923i \(0.365403\pi\)
\(270\) 0 0
\(271\) −148.953 148.953i −0.549641 0.549641i 0.376696 0.926337i \(-0.377060\pi\)
−0.926337 + 0.376696i \(0.877060\pi\)
\(272\) 0 0
\(273\) 86.6936 + 7.26795i 0.317559 + 0.0266225i
\(274\) 0 0
\(275\) −34.2679 + 34.2679i −0.124611 + 0.124611i
\(276\) 0 0
\(277\) 27.2154i 0.0982505i −0.998793 0.0491253i \(-0.984357\pi\)
0.998793 0.0491253i \(-0.0156434\pi\)
\(278\) 0 0
\(279\) −80.9423 + 80.9423i −0.290116 + 0.290116i
\(280\) 0 0
\(281\) −51.6218 51.6218i −0.183707 0.183707i 0.609262 0.792969i \(-0.291466\pi\)
−0.792969 + 0.609262i \(0.791466\pi\)
\(282\) 0 0
\(283\) 93.8076i 0.331476i −0.986170 0.165738i \(-0.946999\pi\)
0.986170 0.165738i \(-0.0530006\pi\)
\(284\) 0 0
\(285\) 184.708i 0.648097i
\(286\) 0 0
\(287\) −78.9282 −0.275011
\(288\) 0 0
\(289\) −570.692 −1.97471
\(290\) 0 0
\(291\) −149.014 + 149.014i −0.512076 + 0.512076i
\(292\) 0 0
\(293\) −120.042 120.042i −0.409701 0.409701i 0.471934 0.881634i \(-0.343556\pi\)
−0.881634 + 0.471934i \(0.843556\pi\)
\(294\) 0 0
\(295\) −516.946 −1.75236
\(296\) 0 0
\(297\) −9.00000 9.00000i −0.0303030 0.0303030i
\(298\) 0 0
\(299\) −246.067 291.100i −0.822965 0.973578i
\(300\) 0 0
\(301\) 68.7846 68.7846i 0.228520 0.228520i
\(302\) 0 0
\(303\) 181.061i 0.597563i
\(304\) 0 0
\(305\) −35.1384 + 35.1384i −0.115208 + 0.115208i
\(306\) 0 0
\(307\) −7.48849 7.48849i −0.0243925 0.0243925i 0.694805 0.719198i \(-0.255491\pi\)
−0.719198 + 0.694805i \(0.755491\pi\)
\(308\) 0 0
\(309\) 63.5307i 0.205601i
\(310\) 0 0
\(311\) 289.377i 0.930472i −0.885187 0.465236i \(-0.845969\pi\)
0.885187 0.465236i \(-0.154031\pi\)
\(312\) 0 0
\(313\) 346.841 1.10812 0.554059 0.832477i \(-0.313078\pi\)
0.554059 + 0.832477i \(0.313078\pi\)
\(314\) 0 0
\(315\) 77.5692 0.246251
\(316\) 0 0
\(317\) −97.0192 + 97.0192i −0.306054 + 0.306054i −0.843377 0.537322i \(-0.819436\pi\)
0.537322 + 0.843377i \(0.319436\pi\)
\(318\) 0 0
\(319\) −55.1769 55.1769i −0.172968 0.172968i
\(320\) 0 0
\(321\) 213.846 0.666187
\(322\) 0 0
\(323\) 330.382 + 330.382i 1.02285 + 1.02285i
\(324\) 0 0
\(325\) −166.038 196.426i −0.510888 0.604387i
\(326\) 0 0
\(327\) 206.660 206.660i 0.631989 0.631989i
\(328\) 0 0
\(329\) 225.100i 0.684194i
\(330\) 0 0
\(331\) 126.130 126.130i 0.381056 0.381056i −0.490427 0.871483i \(-0.663159\pi\)
0.871483 + 0.490427i \(0.163159\pi\)
\(332\) 0 0
\(333\) −92.5692 92.5692i −0.277986 0.277986i
\(334\) 0 0
\(335\) 574.410i 1.71466i
\(336\) 0 0
\(337\) 423.061i 1.25538i 0.778465 + 0.627688i \(0.215998\pi\)
−0.778465 + 0.627688i \(0.784002\pi\)
\(338\) 0 0
\(339\) −319.177 −0.941525
\(340\) 0 0
\(341\) 93.4641 0.274088
\(342\) 0 0
\(343\) 226.956 226.956i 0.661680 0.661680i
\(344\) 0 0
\(345\) −240.315 240.315i −0.696566 0.696566i
\(346\) 0 0
\(347\) 191.867 0.552930 0.276465 0.961024i \(-0.410837\pi\)
0.276465 + 0.961024i \(0.410837\pi\)
\(348\) 0 0
\(349\) 36.7898 + 36.7898i 0.105415 + 0.105415i 0.757847 0.652432i \(-0.226251\pi\)
−0.652432 + 0.757847i \(0.726251\pi\)
\(350\) 0 0
\(351\) 51.5885 43.6077i 0.146976 0.124238i
\(352\) 0 0
\(353\) 117.870 117.870i 0.333911 0.333911i −0.520159 0.854070i \(-0.674127\pi\)
0.854070 + 0.520159i \(0.174127\pi\)
\(354\) 0 0
\(355\) 368.238i 1.03729i
\(356\) 0 0
\(357\) −138.746 + 138.746i −0.388645 + 0.388645i
\(358\) 0 0
\(359\) −13.1192 13.1192i −0.0365437 0.0365437i 0.688599 0.725143i \(-0.258226\pi\)
−0.725143 + 0.688599i \(0.758226\pi\)
\(360\) 0 0
\(361\) 107.067i 0.296583i
\(362\) 0 0
\(363\) 199.186i 0.548721i
\(364\) 0 0
\(365\) 381.597 1.04547
\(366\) 0 0
\(367\) 600.708 1.63681 0.818403 0.574645i \(-0.194860\pi\)
0.818403 + 0.574645i \(0.194860\pi\)
\(368\) 0 0
\(369\) −43.3346 + 43.3346i −0.117438 + 0.117438i
\(370\) 0 0
\(371\) 6.24871 + 6.24871i 0.0168429 + 0.0168429i
\(372\) 0 0
\(373\) 671.836 1.80117 0.900584 0.434682i \(-0.143139\pi\)
0.900584 + 0.434682i \(0.143139\pi\)
\(374\) 0 0
\(375\) 42.7461 + 42.7461i 0.113990 + 0.113990i
\(376\) 0 0
\(377\) 316.277 267.349i 0.838931 0.709148i
\(378\) 0 0
\(379\) −158.799 + 158.799i −0.418994 + 0.418994i −0.884857 0.465863i \(-0.845744\pi\)
0.465863 + 0.884857i \(0.345744\pi\)
\(380\) 0 0
\(381\) 301.310i 0.790840i
\(382\) 0 0
\(383\) −233.445 + 233.445i −0.609517 + 0.609517i −0.942820 0.333303i \(-0.891837\pi\)
0.333303 + 0.942820i \(0.391837\pi\)
\(384\) 0 0
\(385\) −44.7846 44.7846i −0.116324 0.116324i
\(386\) 0 0
\(387\) 75.5307i 0.195170i
\(388\) 0 0
\(389\) 27.6950i 0.0711953i −0.999366 0.0355976i \(-0.988667\pi\)
0.999366 0.0355976i \(-0.0113335\pi\)
\(390\) 0 0
\(391\) 859.692 2.19870
\(392\) 0 0
\(393\) −209.769 −0.533764
\(394\) 0 0
\(395\) 701.338 701.338i 1.77554 1.77554i
\(396\) 0 0
\(397\) −398.692 398.692i −1.00426 1.00426i −0.999991 0.00427158i \(-0.998640\pi\)
−0.00427158 0.999991i \(-0.501360\pi\)
\(398\) 0 0
\(399\) 106.641 0.267271
\(400\) 0 0
\(401\) −139.450 139.450i −0.347756 0.347756i 0.511517 0.859273i \(-0.329084\pi\)
−0.859273 + 0.511517i \(0.829084\pi\)
\(402\) 0 0
\(403\) −41.4397 + 494.301i −0.102828 + 1.22655i
\(404\) 0 0
\(405\) 42.5885 42.5885i 0.105157 0.105157i
\(406\) 0 0
\(407\) 106.890i 0.262628i
\(408\) 0 0
\(409\) 401.813 401.813i 0.982427 0.982427i −0.0174209 0.999848i \(-0.505546\pi\)
0.999848 + 0.0174209i \(0.00554553\pi\)
\(410\) 0 0
\(411\) −225.258 225.258i −0.548072 0.548072i
\(412\) 0 0
\(413\) 298.459i 0.722661i
\(414\) 0 0
\(415\) 698.438i 1.68298i
\(416\) 0 0
\(417\) 47.0052 0.112722
\(418\) 0 0
\(419\) −139.177 −0.332164 −0.166082 0.986112i \(-0.553112\pi\)
−0.166082 + 0.986112i \(0.553112\pi\)
\(420\) 0 0
\(421\) 360.244 360.244i 0.855685 0.855685i −0.135141 0.990826i \(-0.543149\pi\)
0.990826 + 0.135141i \(0.0431487\pi\)
\(422\) 0 0
\(423\) 123.588 + 123.588i 0.292171 + 0.292171i
\(424\) 0 0
\(425\) 580.095 1.36493
\(426\) 0 0
\(427\) −20.2872 20.2872i −0.0475110 0.0475110i
\(428\) 0 0
\(429\) −54.9615 4.60770i −0.128115 0.0107405i
\(430\) 0 0
\(431\) −213.522 + 213.522i −0.495410 + 0.495410i −0.910006 0.414596i \(-0.863923\pi\)
0.414596 + 0.910006i \(0.363923\pi\)
\(432\) 0 0
\(433\) 446.708i 1.03166i −0.856692 0.515829i \(-0.827484\pi\)
0.856692 0.515829i \(-0.172516\pi\)
\(434\) 0 0
\(435\) 261.100 261.100i 0.600230 0.600230i
\(436\) 0 0
\(437\) −330.382 330.382i −0.756023 0.756023i
\(438\) 0 0
\(439\) 164.238i 0.374119i 0.982349 + 0.187060i \(0.0598958\pi\)
−0.982349 + 0.187060i \(0.940104\pi\)
\(440\) 0 0
\(441\) 102.215i 0.231781i
\(442\) 0 0
\(443\) 458.736 1.03552 0.517761 0.855526i \(-0.326766\pi\)
0.517761 + 0.855526i \(0.326766\pi\)
\(444\) 0 0
\(445\) 241.492 0.542679
\(446\) 0 0
\(447\) −291.373 + 291.373i −0.651841 + 0.651841i
\(448\) 0 0
\(449\) 221.776 + 221.776i 0.493932 + 0.493932i 0.909543 0.415610i \(-0.136432\pi\)
−0.415610 + 0.909543i \(0.636432\pi\)
\(450\) 0 0
\(451\) 50.0385 0.110950
\(452\) 0 0
\(453\) 66.5218 + 66.5218i 0.146847 + 0.146847i
\(454\) 0 0
\(455\) 256.708 216.995i 0.564193 0.476912i
\(456\) 0 0
\(457\) 52.9615 52.9615i 0.115890 0.115890i −0.646784 0.762673i \(-0.723886\pi\)
0.762673 + 0.646784i \(0.223886\pi\)
\(458\) 0 0
\(459\) 152.354i 0.331926i
\(460\) 0 0
\(461\) 67.4500 67.4500i 0.146312 0.146312i −0.630156 0.776468i \(-0.717009\pi\)
0.776468 + 0.630156i \(0.217009\pi\)
\(462\) 0 0
\(463\) −549.247 549.247i −1.18628 1.18628i −0.978088 0.208191i \(-0.933242\pi\)
−0.208191 0.978088i \(-0.566758\pi\)
\(464\) 0 0
\(465\) 442.277i 0.951133i
\(466\) 0 0
\(467\) 30.1821i 0.0646297i −0.999478 0.0323148i \(-0.989712\pi\)
0.999478 0.0323148i \(-0.0102879\pi\)
\(468\) 0 0
\(469\) 331.636 0.707113
\(470\) 0 0
\(471\) −393.549 −0.835560
\(472\) 0 0
\(473\) −43.6077 + 43.6077i −0.0921939 + 0.0921939i
\(474\) 0 0
\(475\) −222.932 222.932i −0.469330 0.469330i
\(476\) 0 0
\(477\) 6.86156 0.0143848
\(478\) 0 0
\(479\) 258.870 + 258.870i 0.540439 + 0.540439i 0.923658 0.383218i \(-0.125184\pi\)
−0.383218 + 0.923658i \(0.625184\pi\)
\(480\) 0 0
\(481\) −565.305 47.3923i −1.17527 0.0985287i
\(482\) 0 0
\(483\) 138.746 138.746i 0.287259 0.287259i
\(484\) 0 0
\(485\) 814.228i 1.67882i
\(486\) 0 0
\(487\) 274.560 274.560i 0.563779 0.563779i −0.366600 0.930379i \(-0.619478\pi\)
0.930379 + 0.366600i \(0.119478\pi\)
\(488\) 0 0
\(489\) −21.5551 21.5551i −0.0440800 0.0440800i
\(490\) 0 0
\(491\) 220.726i 0.449543i 0.974412 + 0.224771i \(0.0721635\pi\)
−0.974412 + 0.224771i \(0.927836\pi\)
\(492\) 0 0
\(493\) 934.046i 1.89462i
\(494\) 0 0
\(495\) −49.1769 −0.0993473
\(496\) 0 0
\(497\) −212.603 −0.427772
\(498\) 0 0
\(499\) 625.065 625.065i 1.25264 1.25264i 0.298102 0.954534i \(-0.403647\pi\)
0.954534 0.298102i \(-0.0963534\pi\)
\(500\) 0 0
\(501\) −207.000 207.000i −0.413174 0.413174i
\(502\) 0 0
\(503\) 696.018 1.38373 0.691867 0.722025i \(-0.256789\pi\)
0.691867 + 0.722025i \(0.256789\pi\)
\(504\) 0 0
\(505\) 494.669 + 494.669i 0.979543 + 0.979543i
\(506\) 0 0
\(507\) 48.7372 288.631i 0.0961286 0.569291i
\(508\) 0 0
\(509\) 401.678 401.678i 0.789151 0.789151i −0.192204 0.981355i \(-0.561563\pi\)
0.981355 + 0.192204i \(0.0615634\pi\)
\(510\) 0 0
\(511\) 220.315i 0.431146i
\(512\) 0 0
\(513\) 58.5500 58.5500i 0.114133 0.114133i
\(514\) 0 0
\(515\) −173.569 173.569i −0.337028 0.337028i
\(516\) 0 0
\(517\) 142.708i 0.276030i
\(518\) 0 0
\(519\) 120.200i 0.231599i
\(520\) 0 0
\(521\) −602.651 −1.15672 −0.578360 0.815782i \(-0.696307\pi\)
−0.578360 + 0.815782i \(0.696307\pi\)
\(522\) 0 0
\(523\) −854.677 −1.63418 −0.817091 0.576509i \(-0.804414\pi\)
−0.817091 + 0.576509i \(0.804414\pi\)
\(524\) 0 0
\(525\) 93.6218 93.6218i 0.178327 0.178327i
\(526\) 0 0
\(527\) −791.090 791.090i −1.50112 1.50112i
\(528\) 0 0
\(529\) −330.692 −0.625127
\(530\) 0 0
\(531\) −163.865 163.865i −0.308598 0.308598i
\(532\) 0 0
\(533\) −22.1858 + 264.637i −0.0416245 + 0.496505i
\(534\) 0 0
\(535\) 584.238 584.238i 1.09203 1.09203i
\(536\) 0 0
\(537\) 286.277i 0.533104i
\(538\) 0 0
\(539\) −59.0141 + 59.0141i −0.109488 + 0.109488i
\(540\) 0 0
\(541\) −344.244 344.244i −0.636310 0.636310i 0.313333 0.949643i \(-0.398554\pi\)
−0.949643 + 0.313333i \(0.898554\pi\)
\(542\) 0 0
\(543\) 491.654i 0.905440i
\(544\) 0 0
\(545\) 1129.21i 2.07195i
\(546\) 0 0
\(547\) −842.200 −1.53967 −0.769835 0.638242i \(-0.779662\pi\)
−0.769835 + 0.638242i \(0.779662\pi\)
\(548\) 0 0
\(549\) −22.2769 −0.0405772
\(550\) 0 0
\(551\) 358.956 358.956i 0.651463 0.651463i
\(552\) 0 0
\(553\) 404.918 + 404.918i 0.732220 + 0.732220i
\(554\) 0 0
\(555\) −505.808 −0.911365
\(556\) 0 0
\(557\) 99.2576 + 99.2576i 0.178200 + 0.178200i 0.790571 0.612370i \(-0.209784\pi\)
−0.612370 + 0.790571i \(0.709784\pi\)
\(558\) 0 0
\(559\) −211.292 249.962i −0.377983 0.447158i
\(560\) 0 0
\(561\) 87.9615 87.9615i 0.156794 0.156794i
\(562\) 0 0
\(563\) 647.174i 1.14951i 0.818326 + 0.574755i \(0.194903\pi\)
−0.818326 + 0.574755i \(0.805097\pi\)
\(564\) 0 0
\(565\) −872.008 + 872.008i −1.54338 + 1.54338i
\(566\) 0 0
\(567\) 24.5885 + 24.5885i 0.0433659 + 0.0433659i
\(568\) 0 0
\(569\) 701.223i 1.23238i −0.787598 0.616189i \(-0.788676\pi\)
0.787598 0.616189i \(-0.211324\pi\)
\(570\) 0 0
\(571\) 218.746i 0.383093i 0.981484 + 0.191547i \(0.0613503\pi\)
−0.981484 + 0.191547i \(0.938650\pi\)
\(572\) 0 0
\(573\) −16.0770 −0.0280575
\(574\) 0 0
\(575\) −580.095 −1.00886
\(576\) 0 0
\(577\) −12.3590 + 12.3590i −0.0214194 + 0.0214194i −0.717735 0.696316i \(-0.754821\pi\)
0.696316 + 0.717735i \(0.254821\pi\)
\(578\) 0 0
\(579\) −37.6166 37.6166i −0.0649683 0.0649683i
\(580\) 0 0
\(581\) −403.244 −0.694051
\(582\) 0 0
\(583\) −3.96152 3.96152i −0.00679507 0.00679507i
\(584\) 0 0
\(585\) 21.8038 260.081i 0.0372715 0.444582i
\(586\) 0 0
\(587\) 106.219 106.219i 0.180953 0.180953i −0.610818 0.791771i \(-0.709159\pi\)
0.791771 + 0.610818i \(0.209159\pi\)
\(588\) 0 0
\(589\) 608.036i 1.03232i
\(590\) 0 0
\(591\) −195.258 + 195.258i −0.330385 + 0.330385i
\(592\) 0 0
\(593\) 770.645 + 770.645i 1.29957 + 1.29957i 0.928675 + 0.370895i \(0.120949\pi\)
0.370895 + 0.928675i \(0.379051\pi\)
\(594\) 0 0
\(595\) 758.123i 1.27416i
\(596\) 0 0
\(597\) 424.526i 0.711098i
\(598\) 0 0
\(599\) 130.392 0.217683 0.108842 0.994059i \(-0.465286\pi\)
0.108842 + 0.994059i \(0.465286\pi\)
\(600\) 0 0
\(601\) −551.108 −0.916984 −0.458492 0.888698i \(-0.651610\pi\)
−0.458492 + 0.888698i \(0.651610\pi\)
\(602\) 0 0
\(603\) 182.081 182.081i 0.301958 0.301958i
\(604\) 0 0
\(605\) −544.186 544.186i −0.899481 0.899481i
\(606\) 0 0
\(607\) −63.6001 −0.104778 −0.0523889 0.998627i \(-0.516684\pi\)
−0.0523889 + 0.998627i \(0.516684\pi\)
\(608\) 0 0
\(609\) 150.746 + 150.746i 0.247531 + 0.247531i
\(610\) 0 0
\(611\) 754.734 + 63.2731i 1.23524 + 0.103557i
\(612\) 0 0
\(613\) −26.3487 + 26.3487i −0.0429832 + 0.0429832i −0.728272 0.685289i \(-0.759676\pi\)
0.685289 + 0.728272i \(0.259676\pi\)
\(614\) 0 0
\(615\) 236.785i 0.385016i
\(616\) 0 0
\(617\) 375.391 375.391i 0.608413 0.608413i −0.334118 0.942531i \(-0.608438\pi\)
0.942531 + 0.334118i \(0.108438\pi\)
\(618\) 0 0
\(619\) −264.070 264.070i −0.426608 0.426608i 0.460863 0.887471i \(-0.347540\pi\)
−0.887471 + 0.460863i \(0.847540\pi\)
\(620\) 0 0
\(621\) 152.354i 0.245336i
\(622\) 0 0
\(623\) 139.426i 0.223797i
\(624\) 0 0
\(625\) 728.184 1.16510
\(626\) 0 0
\(627\) −67.6077 −0.107827
\(628\) 0 0
\(629\) 904.726 904.726i 1.43836 1.43836i
\(630\) 0 0
\(631\) 441.594 + 441.594i 0.699831 + 0.699831i 0.964374 0.264543i \(-0.0852210\pi\)
−0.264543 + 0.964374i \(0.585221\pi\)
\(632\) 0 0
\(633\) −598.046 −0.944780
\(634\) 0 0
\(635\) 823.195 + 823.195i 1.29637 + 1.29637i
\(636\) 0 0
\(637\) −285.941 338.272i −0.448887 0.531039i
\(638\) 0 0
\(639\) −116.727 + 116.727i −0.182671 + 0.182671i
\(640\) 0 0
\(641\) 829.910i 1.29471i 0.762188 + 0.647356i \(0.224125\pi\)
−0.762188 + 0.647356i \(0.775875\pi\)
\(642\) 0 0
\(643\) −424.196 + 424.196i −0.659714 + 0.659714i −0.955312 0.295598i \(-0.904481\pi\)
0.295598 + 0.955312i \(0.404481\pi\)
\(644\) 0 0
\(645\) −206.354 206.354i −0.319928 0.319928i
\(646\) 0 0
\(647\) 477.913i 0.738660i 0.929298 + 0.369330i \(0.120413\pi\)
−0.929298 + 0.369330i \(0.879587\pi\)
\(648\) 0 0
\(649\) 189.215i 0.291549i
\(650\) 0 0
\(651\) −255.349 −0.392241
\(652\) 0 0
\(653\) −243.380 −0.372710 −0.186355 0.982482i \(-0.559667\pi\)
−0.186355 + 0.982482i \(0.559667\pi\)
\(654\) 0 0
\(655\) −573.100 + 573.100i −0.874962 + 0.874962i
\(656\) 0 0
\(657\) 120.962 + 120.962i 0.184112 + 0.184112i
\(658\) 0 0
\(659\) 190.677 0.289343 0.144671 0.989480i \(-0.453788\pi\)
0.144671 + 0.989480i \(0.453788\pi\)
\(660\) 0 0
\(661\) −446.149 446.149i −0.674960 0.674960i 0.283895 0.958855i \(-0.408373\pi\)
−0.958855 + 0.283895i \(0.908373\pi\)
\(662\) 0 0
\(663\) 426.200 + 504.200i 0.642835 + 0.760483i
\(664\) 0 0
\(665\) 291.349 291.349i 0.438118 0.438118i
\(666\) 0 0
\(667\) 934.046i 1.40037i
\(668\) 0 0
\(669\) −295.468 + 295.468i −0.441656 + 0.441656i
\(670\) 0 0
\(671\) 12.8616 + 12.8616i 0.0191678 + 0.0191678i
\(672\) 0 0
\(673\) 176.221i 0.261843i 0.991393 + 0.130922i \(0.0417936\pi\)
−0.991393 + 0.130922i \(0.958206\pi\)
\(674\) 0 0
\(675\) 102.804i 0.152302i
\(676\) 0 0
\(677\) 672.600 0.993500 0.496750 0.867894i \(-0.334527\pi\)
0.496750 + 0.867894i \(0.334527\pi\)
\(678\) 0 0
\(679\) −470.095 −0.692334
\(680\) 0 0
\(681\) −293.354 + 293.354i −0.430769 + 0.430769i
\(682\) 0 0
\(683\) −306.191 306.191i −0.448303 0.448303i 0.446487 0.894790i \(-0.352675\pi\)
−0.894790 + 0.446487i \(0.852675\pi\)
\(684\) 0 0
\(685\) −1230.83 −1.79683
\(686\) 0 0
\(687\) 245.645 + 245.645i 0.357562 + 0.357562i
\(688\) 0 0
\(689\) 22.7077 19.1948i 0.0329574 0.0278589i
\(690\) 0 0
\(691\) 474.865 474.865i 0.687215 0.687215i −0.274401 0.961615i \(-0.588479\pi\)
0.961615 + 0.274401i \(0.0884795\pi\)
\(692\) 0 0
\(693\) 28.3923i 0.0409701i
\(694\) 0 0
\(695\) 128.420 128.420i 0.184778 0.184778i
\(696\) 0 0
\(697\) −423.531 423.531i −0.607648 0.607648i
\(698\) 0 0
\(699\) 221.769i 0.317266i
\(700\) 0 0
\(701\) 204.480i 0.291697i −0.989307 0.145848i \(-0.953409\pi\)
0.989307 0.145848i \(-0.0465912\pi\)
\(702\) 0 0
\(703\) −695.377 −0.989156
\(704\) 0 0
\(705\) 675.300 0.957872
\(706\) 0 0
\(707\) −285.597 + 285.597i −0.403957 + 0.403957i
\(708\) 0 0
\(709\) −629.018 629.018i −0.887190 0.887190i 0.107062 0.994252i \(-0.465856\pi\)
−0.994252 + 0.107062i \(0.965856\pi\)
\(710\) 0 0
\(711\) 444.631 0.625360
\(712\) 0 0
\(713\) 791.090 + 791.090i 1.10952 + 1.10952i
\(714\) 0 0
\(715\) −162.746 + 137.569i −0.227617 + 0.192405i
\(716\) 0 0
\(717\) −152.454 + 152.454i −0.212627 + 0.212627i
\(718\) 0 0
\(719\) 863.290i 1.20068i −0.799745 0.600340i \(-0.795032\pi\)
0.799745 0.600340i \(-0.204968\pi\)
\(720\) 0 0
\(721\) 100.210 100.210i 0.138988 0.138988i
\(722\) 0 0
\(723\) −255.406 255.406i −0.353259 0.353259i
\(724\) 0 0
\(725\) 630.267i 0.869333i
\(726\) 0 0
\(727\) 605.577i 0.832980i 0.909140 + 0.416490i \(0.136740\pi\)
−0.909140 + 0.416490i \(0.863260\pi\)
\(728\) 0 0
\(729\) 27.0000 0.0370370
\(730\) 0 0
\(731\) 738.200 1.00985
\(732\) 0 0
\(733\) 205.946 205.946i 0.280963 0.280963i −0.552530 0.833493i \(-0.686337\pi\)
0.833493 + 0.552530i \(0.186337\pi\)
\(734\) 0 0
\(735\) −279.258 279.258i −0.379942 0.379942i
\(736\) 0 0
\(737\) −210.249 −0.285276
\(738\) 0 0
\(739\) 58.7884 + 58.7884i 0.0795513 + 0.0795513i 0.745763 0.666212i \(-0.232085\pi\)
−0.666212 + 0.745763i \(0.732085\pi\)
\(740\) 0 0
\(741\) 29.9756 357.555i 0.0404529 0.482531i
\(742\) 0 0
\(743\) 885.509 885.509i 1.19180 1.19180i 0.215241 0.976561i \(-0.430946\pi\)
0.976561 0.215241i \(-0.0690536\pi\)
\(744\) 0 0
\(745\) 1592.09i 2.13704i
\(746\) 0 0
\(747\) −221.396 + 221.396i −0.296380 + 0.296380i
\(748\) 0 0
\(749\) 337.310 + 337.310i 0.450347 + 0.450347i
\(750\) 0 0
\(751\) 19.5720i 0.0260612i −0.999915 0.0130306i \(-0.995852\pi\)
0.999915 0.0130306i \(-0.00414789\pi\)
\(752\) 0 0
\(753\) 314.154i 0.417203i
\(754\) 0 0
\(755\) 363.482 0.481433
\(756\) 0 0
\(757\) 677.836 0.895424 0.447712 0.894178i \(-0.352239\pi\)
0.447712 + 0.894178i \(0.352239\pi\)
\(758\) 0 0
\(759\) −87.9615 + 87.9615i −0.115891 + 0.115891i
\(760\) 0 0
\(761\) −62.4449 62.4449i −0.0820563 0.0820563i 0.664887 0.746944i \(-0.268480\pi\)
−0.746944 + 0.664887i \(0.768480\pi\)
\(762\) 0 0
\(763\) 651.951 0.854458
\(764\) 0 0
\(765\) 416.238 + 416.238i 0.544102 + 0.544102i
\(766\) 0 0
\(767\) −1000.70 83.8935i −1.30469 0.109379i
\(768\) 0 0
\(769\) −71.5950 + 71.5950i −0.0931014 + 0.0931014i −0.752124 0.659022i \(-0.770970\pi\)
0.659022 + 0.752124i \(0.270970\pi\)
\(770\) 0 0
\(771\) 515.569i 0.668702i
\(772\) 0 0
\(773\) −778.817 + 778.817i −1.00752 + 1.00752i −0.00755317 + 0.999971i \(0.502404\pi\)
−0.999971 + 0.00755317i \(0.997596\pi\)
\(774\) 0 0
\(775\) 533.804 + 533.804i 0.688779 + 0.688779i
\(776\) 0 0
\(777\) 292.028i 0.375841i
\(778\) 0 0
\(779\) 325.528i 0.417879i
\(780\) 0 0
\(781\) 134.785 0.172580
\(782\) 0 0
\(783\) 165.531 0.211406
\(784\) 0 0
\(785\) −1075.19 + 1075.19i −1.36967 + 1.36967i
\(786\) 0 0
\(787\) −548.883 548.883i −0.697437 0.697437i 0.266420 0.963857i \(-0.414159\pi\)
−0.963857 + 0.266420i \(0.914159\pi\)
\(788\) 0 0
\(789\) −39.6462 −0.0502486
\(790\) 0 0
\(791\) −503.454 503.454i −0.636478 0.636478i
\(792\) 0 0
\(793\) −73.7231 + 62.3181i −0.0929674 + 0.0785853i
\(794\) 0 0
\(795\) 18.7461 18.7461i 0.0235800 0.0235800i
\(796\) 0 0
\(797\) 41.5871i 0.0521795i 0.999660 + 0.0260898i \(0.00830557\pi\)
−0.999660 + 0.0260898i \(0.991694\pi\)
\(798\) 0 0
\(799\) −1207.89 + 1207.89i −1.51175 + 1.51175i
\(800\) 0 0
\(801\) 76.5500 + 76.5500i 0.0955680 + 0.0955680i
\(802\) 0 0
\(803\) 139.674i 0.173941i
\(804\) 0 0
\(805\) 758.123i 0.941768i
\(806\) 0 0
\(807\) 382.392 0.473844
\(808\) 0 0
\(809\) −1338.40 −1.65439 −0.827194 0.561916i \(-0.810064\pi\)
−0.827194 + 0.561916i \(0.810064\pi\)
\(810\) 0 0
\(811\) −257.258 + 257.258i −0.317210 + 0.317210i −0.847695 0.530484i \(-0.822010\pi\)
0.530484 + 0.847695i \(0.322010\pi\)
\(812\) 0 0
\(813\) −257.993 257.993i −0.317335 0.317335i
\(814\) 0 0
\(815\) −117.779 −0.144515
\(816\) 0 0
\(817\) −283.692 283.692i −0.347236 0.347236i
\(818\) 0 0
\(819\) 150.158 + 12.5885i 0.183343 + 0.0153705i
\(820\) 0 0
\(821\) −306.873 + 306.873i −0.373779 + 0.373779i −0.868852 0.495072i \(-0.835142\pi\)
0.495072 + 0.868852i \(0.335142\pi\)
\(822\) 0 0
\(823\) 1037.92i 1.26114i 0.776131 + 0.630571i \(0.217179\pi\)
−0.776131 + 0.630571i \(0.782821\pi\)
\(824\) 0 0
\(825\) −59.3538 + 59.3538i −0.0719440 + 0.0719440i
\(826\) 0 0
\(827\) −658.153 658.153i −0.795831 0.795831i 0.186604 0.982435i \(-0.440252\pi\)
−0.982435 + 0.186604i \(0.940252\pi\)
\(828\) 0 0
\(829\) 372.354i 0.449160i −0.974456 0.224580i \(-0.927899\pi\)
0.974456 0.224580i \(-0.0721010\pi\)
\(830\) 0 0
\(831\) 47.1384i 0.0567250i
\(832\) 0 0
\(833\) 999.002 1.19928
\(834\) 0 0
\(835\) −1131.07 −1.35457
\(836\) 0 0
\(837\) −140.196 + 140.196i −0.167498 + 0.167498i
\(838\) 0 0
\(839\) −1018.87 1018.87i −1.21438 1.21438i −0.969570 0.244813i \(-0.921273\pi\)
−0.244813 0.969570i \(-0.578727\pi\)
\(840\) 0 0
\(841\) 173.831 0.206695
\(842\) 0 0
\(843\) −89.4115 89.4115i −0.106064 0.106064i
\(844\) 0 0
\(845\) −655.401 921.706i −0.775623 1.09078i
\(846\) 0 0
\(847\) 314.186 314.186i 0.370940 0.370940i
\(848\) 0 0
\(849\) 162.480i 0.191378i
\(850\) 0 0
\(851\) −904.726 + 904.726i −1.06313 + 1.06313i
\(852\) 0 0
\(853\) −366.790 366.790i −0.430000 0.430000i 0.458628 0.888628i \(-0.348341\pi\)
−0.888628 + 0.458628i \(0.848341\pi\)
\(854\) 0 0
\(855\) 319.923i 0.374179i
\(856\) 0 0
\(857\) 469.244i 0.547542i 0.961795 + 0.273771i \(0.0882711\pi\)
−0.961795 + 0.273771i \(0.911729\pi\)
\(858\) 0 0
\(859\) 1238.66 1.44197 0.720987 0.692948i \(-0.243689\pi\)
0.720987 + 0.692948i \(0.243689\pi\)
\(860\) 0 0
\(861\) −136.708 −0.158778
\(862\) 0 0
\(863\) 5.71143 5.71143i 0.00661811 0.00661811i −0.703790 0.710408i \(-0.748510\pi\)
0.710408 + 0.703790i \(0.248510\pi\)
\(864\) 0 0
\(865\) 328.392 + 328.392i 0.379644 + 0.379644i
\(866\) 0 0
\(867\) −988.468 −1.14010
\(868\) 0 0
\(869\) −256.708 256.708i −0.295406 0.295406i
\(870\) 0 0
\(871\) 93.2192 1111.94i 0.107025 1.27662i
\(872\) 0 0
\(873\) −258.100 + 258.100i −0.295647 + 0.295647i
\(874\) 0 0
\(875\) 134.851i 0.154116i
\(876\) 0 0
\(877\) 591.287 591.287i 0.674216 0.674216i −0.284469 0.958685i \(-0.591817\pi\)
0.958685 + 0.284469i \(0.0918174\pi\)
\(878\) 0 0
\(879\) −207.919 207.919i −0.236541 0.236541i
\(880\) 0 0
\(881\) 663.997i 0.753686i 0.926277 + 0.376843i \(0.122990\pi\)
−0.926277 + 0.376843i \(0.877010\pi\)
\(882\) 0 0
\(883\) 570.192i 0.645744i 0.946443 + 0.322872i \(0.104648\pi\)
−0.946443 + 0.322872i \(0.895352\pi\)
\(884\) 0 0
\(885\) −895.377 −1.01173
\(886\) 0 0
\(887\) −481.031 −0.542312 −0.271156 0.962535i \(-0.587406\pi\)
−0.271156 + 0.962535i \(0.587406\pi\)
\(888\) 0 0
\(889\) −475.272 + 475.272i −0.534614 + 0.534614i
\(890\) 0 0
\(891\) −15.5885 15.5885i −0.0174955 0.0174955i
\(892\) 0 0
\(893\) 928.392 1.03963
\(894\) 0 0
\(895\) 782.123 + 782.123i 0.873880 + 0.873880i
\(896\) 0 0
\(897\) −426.200 504.200i −0.475139 0.562096i
\(898\) 0 0
\(899\) −859.510 + 859.510i −0.956074 + 0.956074i
\(900\) 0 0
\(901\) 67.0615i 0.0744301i
\(902\) 0 0
\(903\) 119.138 119.138i 0.131936 0.131936i
\(904\) 0 0
\(905\) 1343.22 + 1343.22i 1.48422 + 1.48422i
\(906\) 0 0
\(907\) 193.331i 0.213154i −0.994304 0.106577i \(-0.966011\pi\)
0.994304 0.106577i \(-0.0339891\pi\)
\(908\) 0 0
\(909\) 313.608i 0.345003i
\(910\) 0 0
\(911\) 868.743 0.953615 0.476808 0.879008i \(-0.341794\pi\)
0.476808 + 0.879008i \(0.341794\pi\)
\(912\) 0 0
\(913\) 255.646 0.280007
\(914\) 0 0
\(915\) −60.8616 + 60.8616i −0.0665154 + 0.0665154i
\(916\) 0 0
\(917\) −330.879 330.879i −0.360828 0.360828i
\(918\) 0 0
\(919\) −389.108 −0.423403 −0.211702 0.977334i \(-0.567900\pi\)
−0.211702 + 0.977334i \(0.567900\pi\)
\(920\) 0 0
\(921\) −12.9705 12.9705i −0.0140830 0.0140830i
\(922\) 0 0
\(923\) −59.7602 + 712.832i −0.0647456 + 0.772299i
\(924\) 0 0
\(925\) −610.482 + 610.482i −0.659980 + 0.659980i
\(926\) 0 0
\(927\) 110.038i 0.118704i
\(928\) 0 0
\(929\) −429.870 + 429.870i −0.462724 + 0.462724i −0.899547 0.436823i \(-0.856103\pi\)
0.436823 + 0.899547i \(0.356103\pi\)
\(930\) 0 0
\(931\) −383.919 383.919i −0.412373 0.412373i
\(932\) 0 0
\(933\) 501.215i 0.537208i
\(934\) 0 0
\(935\) 480.631i 0.514044i
\(936\) 0 0
\(937\) 916.441 0.978059 0.489029 0.872267i \(-0.337351\pi\)
0.489029 + 0.872267i \(0.337351\pi\)
\(938\) 0 0
\(939\) 600.746 0.639772
\(940\) 0 0
\(941\) 835.601 835.601i 0.887993 0.887993i −0.106337 0.994330i \(-0.533912\pi\)
0.994330 + 0.106337i \(0.0339124\pi\)
\(942\) 0 0
\(943\) 423.531 + 423.531i 0.449131 + 0.449131i
\(944\) 0 0
\(945\) 134.354 0.142173
\(946\) 0 0
\(947\) 378.506 + 378.506i 0.399690 + 0.399690i 0.878124 0.478434i \(-0.158795\pi\)
−0.478434 + 0.878124i \(0.658795\pi\)
\(948\) 0 0
\(949\) 738.692 + 61.9282i 0.778390 + 0.0652563i
\(950\) 0 0
\(951\) −168.042 + 168.042i −0.176701 + 0.176701i
\(952\) 0 0
\(953\) 839.556i 0.880961i −0.897762 0.440481i \(-0.854808\pi\)
0.897762 0.440481i \(-0.145192\pi\)
\(954\) 0 0
\(955\) −43.9230 + 43.9230i −0.0459927 + 0.0459927i
\(956\) 0 0
\(957\) −95.5692 95.5692i −0.0998633 0.0998633i
\(958\) 0 0
\(959\) 710.620i 0.741001i
\(960\) 0 0
\(961\) 494.923i 0.515008i
\(962\) 0 0
\(963\) 370.392 0.384623
\(964\) 0 0
\(965\) −205.541 −0.212996
\(966\) 0 0
\(967\) 375.745 375.745i 0.388567 0.388567i −0.485609 0.874176i \(-0.661402\pi\)
0.874176 + 0.485609i \(0.161402\pi\)
\(968\) 0 0
\(969\) 572.238 + 572.238i 0.590545 + 0.590545i
\(970\) 0 0
\(971\) −134.523 −0.138541 −0.0692703 0.997598i \(-0.522067\pi\)
−0.0692703 + 0.997598i \(0.522067\pi\)
\(972\) 0 0
\(973\) 74.1436 + 74.1436i 0.0762010 + 0.0762010i
\(974\) 0 0
\(975\) −287.587 340.219i −0.294961 0.348943i
\(976\) 0 0
\(977\) 708.060 708.060i 0.724729 0.724729i −0.244836 0.969565i \(-0.578734\pi\)
0.969565 + 0.244836i \(0.0787340\pi\)
\(978\) 0 0
\(979\) 88.3923i 0.0902884i
\(980\) 0 0
\(981\) 357.946 357.946i 0.364879 0.364879i
\(982\) 0 0
\(983\) 904.881 + 904.881i 0.920530 + 0.920530i 0.997067 0.0765369i \(-0.0243863\pi\)
−0.0765369 + 0.997067i \(0.524386\pi\)
\(984\) 0 0
\(985\) 1066.91i 1.08315i
\(986\) 0 0
\(987\) 389.885i 0.395020i
\(988\) 0 0
\(989\) −738.200 −0.746410
\(990\) 0 0
\(991\) −29.0155 −0.0292790 −0.0146395 0.999893i \(-0.504660\pi\)
−0.0146395 + 0.999893i \(0.504660\pi\)
\(992\) 0 0
\(993\) 218.463 218.463i 0.220003 0.220003i
\(994\) 0 0
\(995\) 1159.83 + 1159.83i 1.16565 + 1.16565i
\(996\) 0 0
\(997\) 336.123 0.337134 0.168567 0.985690i \(-0.446086\pi\)
0.168567 + 0.985690i \(0.446086\pi\)
\(998\) 0 0
\(999\) −160.335 160.335i −0.160495 0.160495i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.3.ba.a.577.2 4
4.3 odd 2 78.3.f.a.31.1 4
12.11 even 2 234.3.i.b.109.1 4
13.8 odd 4 inner 624.3.ba.a.385.2 4
52.31 even 4 1014.3.f.a.775.1 4
52.47 even 4 78.3.f.a.73.1 yes 4
52.51 odd 2 1014.3.f.a.577.1 4
156.47 odd 4 234.3.i.b.73.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.3.f.a.31.1 4 4.3 odd 2
78.3.f.a.73.1 yes 4 52.47 even 4
234.3.i.b.73.1 4 156.47 odd 4
234.3.i.b.109.1 4 12.11 even 2
624.3.ba.a.385.2 4 13.8 odd 4 inner
624.3.ba.a.577.2 4 1.1 even 1 trivial
1014.3.f.a.577.1 4 52.51 odd 2
1014.3.f.a.775.1 4 52.31 even 4