Properties

Label 624.2.q.g.289.1
Level $624$
Weight $2$
Character 624.289
Analytic conductor $4.983$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,2,Mod(289,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 624.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.98266508613\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 624.289
Dual form 624.2.q.g.529.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{3} +3.00000 q^{5} +(1.00000 - 1.73205i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(3.00000 + 5.19615i) q^{11} +(-3.50000 + 0.866025i) q^{13} +(1.50000 + 2.59808i) q^{15} +(1.50000 - 2.59808i) q^{17} +(1.00000 - 1.73205i) q^{19} +2.00000 q^{21} +(-3.00000 - 5.19615i) q^{23} +4.00000 q^{25} -1.00000 q^{27} +(-1.50000 - 2.59808i) q^{29} +4.00000 q^{31} +(-3.00000 + 5.19615i) q^{33} +(3.00000 - 5.19615i) q^{35} +(3.50000 + 6.06218i) q^{37} +(-2.50000 - 2.59808i) q^{39} +(1.50000 + 2.59808i) q^{41} +(-5.00000 + 8.66025i) q^{43} +(-1.50000 + 2.59808i) q^{45} -6.00000 q^{47} +(1.50000 + 2.59808i) q^{49} +3.00000 q^{51} +3.00000 q^{53} +(9.00000 + 15.5885i) q^{55} +2.00000 q^{57} +(3.50000 - 6.06218i) q^{61} +(1.00000 + 1.73205i) q^{63} +(-10.5000 + 2.59808i) q^{65} +(-5.00000 - 8.66025i) q^{67} +(3.00000 - 5.19615i) q^{69} +(3.00000 - 5.19615i) q^{71} -13.0000 q^{73} +(2.00000 + 3.46410i) q^{75} +12.0000 q^{77} +4.00000 q^{79} +(-0.500000 - 0.866025i) q^{81} +6.00000 q^{83} +(4.50000 - 7.79423i) q^{85} +(1.50000 - 2.59808i) q^{87} +(-9.00000 - 15.5885i) q^{89} +(-2.00000 + 6.92820i) q^{91} +(2.00000 + 3.46410i) q^{93} +(3.00000 - 5.19615i) q^{95} +(-7.00000 + 12.1244i) q^{97} -6.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} + 6 q^{5} + 2 q^{7} - q^{9} + 6 q^{11} - 7 q^{13} + 3 q^{15} + 3 q^{17} + 2 q^{19} + 4 q^{21} - 6 q^{23} + 8 q^{25} - 2 q^{27} - 3 q^{29} + 8 q^{31} - 6 q^{33} + 6 q^{35} + 7 q^{37} - 5 q^{39}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) 3.00000 1.34164 0.670820 0.741620i \(-0.265942\pi\)
0.670820 + 0.741620i \(0.265942\pi\)
\(6\) 0 0
\(7\) 1.00000 1.73205i 0.377964 0.654654i −0.612801 0.790237i \(-0.709957\pi\)
0.990766 + 0.135583i \(0.0432908\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 3.00000 + 5.19615i 0.904534 + 1.56670i 0.821541 + 0.570149i \(0.193114\pi\)
0.0829925 + 0.996550i \(0.473552\pi\)
\(12\) 0 0
\(13\) −3.50000 + 0.866025i −0.970725 + 0.240192i
\(14\) 0 0
\(15\) 1.50000 + 2.59808i 0.387298 + 0.670820i
\(16\) 0 0
\(17\) 1.50000 2.59808i 0.363803 0.630126i −0.624780 0.780801i \(-0.714811\pi\)
0.988583 + 0.150675i \(0.0481447\pi\)
\(18\) 0 0
\(19\) 1.00000 1.73205i 0.229416 0.397360i −0.728219 0.685344i \(-0.759652\pi\)
0.957635 + 0.287984i \(0.0929851\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) −3.00000 5.19615i −0.625543 1.08347i −0.988436 0.151642i \(-0.951544\pi\)
0.362892 0.931831i \(-0.381789\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −1.50000 2.59808i −0.278543 0.482451i 0.692480 0.721437i \(-0.256518\pi\)
−0.971023 + 0.238987i \(0.923185\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) −3.00000 + 5.19615i −0.522233 + 0.904534i
\(34\) 0 0
\(35\) 3.00000 5.19615i 0.507093 0.878310i
\(36\) 0 0
\(37\) 3.50000 + 6.06218i 0.575396 + 0.996616i 0.995998 + 0.0893706i \(0.0284856\pi\)
−0.420602 + 0.907245i \(0.638181\pi\)
\(38\) 0 0
\(39\) −2.50000 2.59808i −0.400320 0.416025i
\(40\) 0 0
\(41\) 1.50000 + 2.59808i 0.234261 + 0.405751i 0.959058 0.283211i \(-0.0913998\pi\)
−0.724797 + 0.688963i \(0.758066\pi\)
\(42\) 0 0
\(43\) −5.00000 + 8.66025i −0.762493 + 1.32068i 0.179069 + 0.983836i \(0.442691\pi\)
−0.941562 + 0.336840i \(0.890642\pi\)
\(44\) 0 0
\(45\) −1.50000 + 2.59808i −0.223607 + 0.387298i
\(46\) 0 0
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 0 0
\(49\) 1.50000 + 2.59808i 0.214286 + 0.371154i
\(50\) 0 0
\(51\) 3.00000 0.420084
\(52\) 0 0
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) 0 0
\(55\) 9.00000 + 15.5885i 1.21356 + 2.10195i
\(56\) 0 0
\(57\) 2.00000 0.264906
\(58\) 0 0
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) 3.50000 6.06218i 0.448129 0.776182i −0.550135 0.835076i \(-0.685424\pi\)
0.998264 + 0.0588933i \(0.0187572\pi\)
\(62\) 0 0
\(63\) 1.00000 + 1.73205i 0.125988 + 0.218218i
\(64\) 0 0
\(65\) −10.5000 + 2.59808i −1.30236 + 0.322252i
\(66\) 0 0
\(67\) −5.00000 8.66025i −0.610847 1.05802i −0.991098 0.133135i \(-0.957496\pi\)
0.380251 0.924883i \(-0.375838\pi\)
\(68\) 0 0
\(69\) 3.00000 5.19615i 0.361158 0.625543i
\(70\) 0 0
\(71\) 3.00000 5.19615i 0.356034 0.616670i −0.631260 0.775571i \(-0.717462\pi\)
0.987294 + 0.158901i \(0.0507952\pi\)
\(72\) 0 0
\(73\) −13.0000 −1.52153 −0.760767 0.649025i \(-0.775177\pi\)
−0.760767 + 0.649025i \(0.775177\pi\)
\(74\) 0 0
\(75\) 2.00000 + 3.46410i 0.230940 + 0.400000i
\(76\) 0 0
\(77\) 12.0000 1.36753
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) 4.50000 7.79423i 0.488094 0.845403i
\(86\) 0 0
\(87\) 1.50000 2.59808i 0.160817 0.278543i
\(88\) 0 0
\(89\) −9.00000 15.5885i −0.953998 1.65237i −0.736644 0.676280i \(-0.763591\pi\)
−0.217354 0.976093i \(-0.569742\pi\)
\(90\) 0 0
\(91\) −2.00000 + 6.92820i −0.209657 + 0.726273i
\(92\) 0 0
\(93\) 2.00000 + 3.46410i 0.207390 + 0.359211i
\(94\) 0 0
\(95\) 3.00000 5.19615i 0.307794 0.533114i
\(96\) 0 0
\(97\) −7.00000 + 12.1244i −0.710742 + 1.23104i 0.253837 + 0.967247i \(0.418307\pi\)
−0.964579 + 0.263795i \(0.915026\pi\)
\(98\) 0 0
\(99\) −6.00000 −0.603023
\(100\) 0 0
\(101\) −7.50000 12.9904i −0.746278 1.29259i −0.949595 0.313478i \(-0.898506\pi\)
0.203317 0.979113i \(-0.434828\pi\)
\(102\) 0 0
\(103\) −14.0000 −1.37946 −0.689730 0.724066i \(-0.742271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) 0 0
\(105\) 6.00000 0.585540
\(106\) 0 0
\(107\) −3.00000 5.19615i −0.290021 0.502331i 0.683793 0.729676i \(-0.260329\pi\)
−0.973814 + 0.227345i \(0.926996\pi\)
\(108\) 0 0
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) 0 0
\(111\) −3.50000 + 6.06218i −0.332205 + 0.575396i
\(112\) 0 0
\(113\) 1.50000 2.59808i 0.141108 0.244406i −0.786806 0.617200i \(-0.788267\pi\)
0.927914 + 0.372794i \(0.121600\pi\)
\(114\) 0 0
\(115\) −9.00000 15.5885i −0.839254 1.45363i
\(116\) 0 0
\(117\) 1.00000 3.46410i 0.0924500 0.320256i
\(118\) 0 0
\(119\) −3.00000 5.19615i −0.275010 0.476331i
\(120\) 0 0
\(121\) −12.5000 + 21.6506i −1.13636 + 1.96824i
\(122\) 0 0
\(123\) −1.50000 + 2.59808i −0.135250 + 0.234261i
\(124\) 0 0
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) −2.00000 3.46410i −0.177471 0.307389i 0.763542 0.645758i \(-0.223458\pi\)
−0.941014 + 0.338368i \(0.890125\pi\)
\(128\) 0 0
\(129\) −10.0000 −0.880451
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) −2.00000 3.46410i −0.173422 0.300376i
\(134\) 0 0
\(135\) −3.00000 −0.258199
\(136\) 0 0
\(137\) −4.50000 + 7.79423i −0.384461 + 0.665906i −0.991694 0.128618i \(-0.958946\pi\)
0.607233 + 0.794524i \(0.292279\pi\)
\(138\) 0 0
\(139\) −2.00000 + 3.46410i −0.169638 + 0.293821i −0.938293 0.345843i \(-0.887593\pi\)
0.768655 + 0.639664i \(0.220926\pi\)
\(140\) 0 0
\(141\) −3.00000 5.19615i −0.252646 0.437595i
\(142\) 0 0
\(143\) −15.0000 15.5885i −1.25436 1.30357i
\(144\) 0 0
\(145\) −4.50000 7.79423i −0.373705 0.647275i
\(146\) 0 0
\(147\) −1.50000 + 2.59808i −0.123718 + 0.214286i
\(148\) 0 0
\(149\) 4.50000 7.79423i 0.368654 0.638528i −0.620701 0.784047i \(-0.713152\pi\)
0.989355 + 0.145519i \(0.0464853\pi\)
\(150\) 0 0
\(151\) 10.0000 0.813788 0.406894 0.913475i \(-0.366612\pi\)
0.406894 + 0.913475i \(0.366612\pi\)
\(152\) 0 0
\(153\) 1.50000 + 2.59808i 0.121268 + 0.210042i
\(154\) 0 0
\(155\) 12.0000 0.963863
\(156\) 0 0
\(157\) 5.00000 0.399043 0.199522 0.979893i \(-0.436061\pi\)
0.199522 + 0.979893i \(0.436061\pi\)
\(158\) 0 0
\(159\) 1.50000 + 2.59808i 0.118958 + 0.206041i
\(160\) 0 0
\(161\) −12.0000 −0.945732
\(162\) 0 0
\(163\) −2.00000 + 3.46410i −0.156652 + 0.271329i −0.933659 0.358162i \(-0.883403\pi\)
0.777007 + 0.629492i \(0.216737\pi\)
\(164\) 0 0
\(165\) −9.00000 + 15.5885i −0.700649 + 1.21356i
\(166\) 0 0
\(167\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(168\) 0 0
\(169\) 11.5000 6.06218i 0.884615 0.466321i
\(170\) 0 0
\(171\) 1.00000 + 1.73205i 0.0764719 + 0.132453i
\(172\) 0 0
\(173\) 3.00000 5.19615i 0.228086 0.395056i −0.729155 0.684349i \(-0.760087\pi\)
0.957241 + 0.289292i \(0.0934200\pi\)
\(174\) 0 0
\(175\) 4.00000 6.92820i 0.302372 0.523723i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.00000 + 5.19615i 0.224231 + 0.388379i 0.956088 0.293079i \(-0.0946798\pi\)
−0.731858 + 0.681457i \(0.761346\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) 7.00000 0.517455
\(184\) 0 0
\(185\) 10.5000 + 18.1865i 0.771975 + 1.33710i
\(186\) 0 0
\(187\) 18.0000 1.31629
\(188\) 0 0
\(189\) −1.00000 + 1.73205i −0.0727393 + 0.125988i
\(190\) 0 0
\(191\) −6.00000 + 10.3923i −0.434145 + 0.751961i −0.997225 0.0744412i \(-0.976283\pi\)
0.563081 + 0.826402i \(0.309616\pi\)
\(192\) 0 0
\(193\) −11.5000 19.9186i −0.827788 1.43377i −0.899770 0.436365i \(-0.856266\pi\)
0.0719816 0.997406i \(-0.477068\pi\)
\(194\) 0 0
\(195\) −7.50000 7.79423i −0.537086 0.558156i
\(196\) 0 0
\(197\) −3.00000 5.19615i −0.213741 0.370211i 0.739141 0.673550i \(-0.235232\pi\)
−0.952882 + 0.303340i \(0.901898\pi\)
\(198\) 0 0
\(199\) −5.00000 + 8.66025i −0.354441 + 0.613909i −0.987022 0.160585i \(-0.948662\pi\)
0.632581 + 0.774494i \(0.281995\pi\)
\(200\) 0 0
\(201\) 5.00000 8.66025i 0.352673 0.610847i
\(202\) 0 0
\(203\) −6.00000 −0.421117
\(204\) 0 0
\(205\) 4.50000 + 7.79423i 0.314294 + 0.544373i
\(206\) 0 0
\(207\) 6.00000 0.417029
\(208\) 0 0
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) −8.00000 13.8564i −0.550743 0.953914i −0.998221 0.0596196i \(-0.981011\pi\)
0.447478 0.894295i \(-0.352322\pi\)
\(212\) 0 0
\(213\) 6.00000 0.411113
\(214\) 0 0
\(215\) −15.0000 + 25.9808i −1.02299 + 1.77187i
\(216\) 0 0
\(217\) 4.00000 6.92820i 0.271538 0.470317i
\(218\) 0 0
\(219\) −6.50000 11.2583i −0.439229 0.760767i
\(220\) 0 0
\(221\) −3.00000 + 10.3923i −0.201802 + 0.699062i
\(222\) 0 0
\(223\) 4.00000 + 6.92820i 0.267860 + 0.463947i 0.968309 0.249756i \(-0.0803503\pi\)
−0.700449 + 0.713702i \(0.747017\pi\)
\(224\) 0 0
\(225\) −2.00000 + 3.46410i −0.133333 + 0.230940i
\(226\) 0 0
\(227\) 9.00000 15.5885i 0.597351 1.03464i −0.395860 0.918311i \(-0.629553\pi\)
0.993210 0.116331i \(-0.0371134\pi\)
\(228\) 0 0
\(229\) −22.0000 −1.45380 −0.726900 0.686743i \(-0.759040\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) 0 0
\(231\) 6.00000 + 10.3923i 0.394771 + 0.683763i
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) −18.0000 −1.17419
\(236\) 0 0
\(237\) 2.00000 + 3.46410i 0.129914 + 0.225018i
\(238\) 0 0
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) 0.500000 0.866025i 0.0322078 0.0557856i −0.849472 0.527633i \(-0.823079\pi\)
0.881680 + 0.471848i \(0.156413\pi\)
\(242\) 0 0
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) 4.50000 + 7.79423i 0.287494 + 0.497955i
\(246\) 0 0
\(247\) −2.00000 + 6.92820i −0.127257 + 0.440831i
\(248\) 0 0
\(249\) 3.00000 + 5.19615i 0.190117 + 0.329293i
\(250\) 0 0
\(251\) −6.00000 + 10.3923i −0.378717 + 0.655956i −0.990876 0.134778i \(-0.956968\pi\)
0.612159 + 0.790735i \(0.290301\pi\)
\(252\) 0 0
\(253\) 18.0000 31.1769i 1.13165 1.96008i
\(254\) 0 0
\(255\) 9.00000 0.563602
\(256\) 0 0
\(257\) 1.50000 + 2.59808i 0.0935674 + 0.162064i 0.909010 0.416775i \(-0.136840\pi\)
−0.815442 + 0.578838i \(0.803506\pi\)
\(258\) 0 0
\(259\) 14.0000 0.869918
\(260\) 0 0
\(261\) 3.00000 0.185695
\(262\) 0 0
\(263\) −3.00000 5.19615i −0.184988 0.320408i 0.758585 0.651575i \(-0.225891\pi\)
−0.943572 + 0.331166i \(0.892558\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) 0 0
\(267\) 9.00000 15.5885i 0.550791 0.953998i
\(268\) 0 0
\(269\) −9.00000 + 15.5885i −0.548740 + 0.950445i 0.449622 + 0.893219i \(0.351559\pi\)
−0.998361 + 0.0572259i \(0.981774\pi\)
\(270\) 0 0
\(271\) −8.00000 13.8564i −0.485965 0.841717i 0.513905 0.857847i \(-0.328199\pi\)
−0.999870 + 0.0161307i \(0.994865\pi\)
\(272\) 0 0
\(273\) −7.00000 + 1.73205i −0.423659 + 0.104828i
\(274\) 0 0
\(275\) 12.0000 + 20.7846i 0.723627 + 1.25336i
\(276\) 0 0
\(277\) −8.50000 + 14.7224i −0.510716 + 0.884585i 0.489207 + 0.872167i \(0.337286\pi\)
−0.999923 + 0.0124177i \(0.996047\pi\)
\(278\) 0 0
\(279\) −2.00000 + 3.46410i −0.119737 + 0.207390i
\(280\) 0 0
\(281\) 9.00000 0.536895 0.268447 0.963294i \(-0.413489\pi\)
0.268447 + 0.963294i \(0.413489\pi\)
\(282\) 0 0
\(283\) 7.00000 + 12.1244i 0.416107 + 0.720718i 0.995544 0.0942988i \(-0.0300609\pi\)
−0.579437 + 0.815017i \(0.696728\pi\)
\(284\) 0 0
\(285\) 6.00000 0.355409
\(286\) 0 0
\(287\) 6.00000 0.354169
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 0 0
\(291\) −14.0000 −0.820695
\(292\) 0 0
\(293\) 10.5000 18.1865i 0.613417 1.06247i −0.377244 0.926114i \(-0.623128\pi\)
0.990660 0.136355i \(-0.0435386\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −3.00000 5.19615i −0.174078 0.301511i
\(298\) 0 0
\(299\) 15.0000 + 15.5885i 0.867472 + 0.901504i
\(300\) 0 0
\(301\) 10.0000 + 17.3205i 0.576390 + 0.998337i
\(302\) 0 0
\(303\) 7.50000 12.9904i 0.430864 0.746278i
\(304\) 0 0
\(305\) 10.5000 18.1865i 0.601228 1.04136i
\(306\) 0 0
\(307\) 10.0000 0.570730 0.285365 0.958419i \(-0.407885\pi\)
0.285365 + 0.958419i \(0.407885\pi\)
\(308\) 0 0
\(309\) −7.00000 12.1244i −0.398216 0.689730i
\(310\) 0 0
\(311\) 30.0000 1.70114 0.850572 0.525859i \(-0.176256\pi\)
0.850572 + 0.525859i \(0.176256\pi\)
\(312\) 0 0
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) 0 0
\(315\) 3.00000 + 5.19615i 0.169031 + 0.292770i
\(316\) 0 0
\(317\) 3.00000 0.168497 0.0842484 0.996445i \(-0.473151\pi\)
0.0842484 + 0.996445i \(0.473151\pi\)
\(318\) 0 0
\(319\) 9.00000 15.5885i 0.503903 0.872786i
\(320\) 0 0
\(321\) 3.00000 5.19615i 0.167444 0.290021i
\(322\) 0 0
\(323\) −3.00000 5.19615i −0.166924 0.289122i
\(324\) 0 0
\(325\) −14.0000 + 3.46410i −0.776580 + 0.192154i
\(326\) 0 0
\(327\) 7.00000 + 12.1244i 0.387101 + 0.670478i
\(328\) 0 0
\(329\) −6.00000 + 10.3923i −0.330791 + 0.572946i
\(330\) 0 0
\(331\) −2.00000 + 3.46410i −0.109930 + 0.190404i −0.915742 0.401768i \(-0.868396\pi\)
0.805812 + 0.592172i \(0.201729\pi\)
\(332\) 0 0
\(333\) −7.00000 −0.383598
\(334\) 0 0
\(335\) −15.0000 25.9808i −0.819538 1.41948i
\(336\) 0 0
\(337\) 23.0000 1.25289 0.626445 0.779466i \(-0.284509\pi\)
0.626445 + 0.779466i \(0.284509\pi\)
\(338\) 0 0
\(339\) 3.00000 0.162938
\(340\) 0 0
\(341\) 12.0000 + 20.7846i 0.649836 + 1.12555i
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) 9.00000 15.5885i 0.484544 0.839254i
\(346\) 0 0
\(347\) −15.0000 + 25.9808i −0.805242 + 1.39472i 0.110885 + 0.993833i \(0.464631\pi\)
−0.916127 + 0.400887i \(0.868702\pi\)
\(348\) 0 0
\(349\) 5.00000 + 8.66025i 0.267644 + 0.463573i 0.968253 0.249973i \(-0.0804216\pi\)
−0.700609 + 0.713545i \(0.747088\pi\)
\(350\) 0 0
\(351\) 3.50000 0.866025i 0.186816 0.0462250i
\(352\) 0 0
\(353\) 7.50000 + 12.9904i 0.399185 + 0.691408i 0.993626 0.112731i \(-0.0359599\pi\)
−0.594441 + 0.804139i \(0.702627\pi\)
\(354\) 0 0
\(355\) 9.00000 15.5885i 0.477670 0.827349i
\(356\) 0 0
\(357\) 3.00000 5.19615i 0.158777 0.275010i
\(358\) 0 0
\(359\) −6.00000 −0.316668 −0.158334 0.987386i \(-0.550612\pi\)
−0.158334 + 0.987386i \(0.550612\pi\)
\(360\) 0 0
\(361\) 7.50000 + 12.9904i 0.394737 + 0.683704i
\(362\) 0 0
\(363\) −25.0000 −1.31216
\(364\) 0 0
\(365\) −39.0000 −2.04135
\(366\) 0 0
\(367\) 1.00000 + 1.73205i 0.0521996 + 0.0904123i 0.890945 0.454112i \(-0.150043\pi\)
−0.838745 + 0.544524i \(0.816710\pi\)
\(368\) 0 0
\(369\) −3.00000 −0.156174
\(370\) 0 0
\(371\) 3.00000 5.19615i 0.155752 0.269771i
\(372\) 0 0
\(373\) −14.5000 + 25.1147i −0.750782 + 1.30039i 0.196663 + 0.980471i \(0.436990\pi\)
−0.947444 + 0.319921i \(0.896344\pi\)
\(374\) 0 0
\(375\) −1.50000 2.59808i −0.0774597 0.134164i
\(376\) 0 0
\(377\) 7.50000 + 7.79423i 0.386270 + 0.401423i
\(378\) 0 0
\(379\) 10.0000 + 17.3205i 0.513665 + 0.889695i 0.999874 + 0.0158521i \(0.00504609\pi\)
−0.486209 + 0.873843i \(0.661621\pi\)
\(380\) 0 0
\(381\) 2.00000 3.46410i 0.102463 0.177471i
\(382\) 0 0
\(383\) 12.0000 20.7846i 0.613171 1.06204i −0.377531 0.925997i \(-0.623227\pi\)
0.990702 0.136047i \(-0.0434398\pi\)
\(384\) 0 0
\(385\) 36.0000 1.83473
\(386\) 0 0
\(387\) −5.00000 8.66025i −0.254164 0.440225i
\(388\) 0 0
\(389\) 39.0000 1.97738 0.988689 0.149979i \(-0.0479205\pi\)
0.988689 + 0.149979i \(0.0479205\pi\)
\(390\) 0 0
\(391\) −18.0000 −0.910299
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 12.0000 0.603786
\(396\) 0 0
\(397\) −7.00000 + 12.1244i −0.351320 + 0.608504i −0.986481 0.163876i \(-0.947600\pi\)
0.635161 + 0.772380i \(0.280934\pi\)
\(398\) 0 0
\(399\) 2.00000 3.46410i 0.100125 0.173422i
\(400\) 0 0
\(401\) 1.50000 + 2.59808i 0.0749064 + 0.129742i 0.901046 0.433724i \(-0.142801\pi\)
−0.826139 + 0.563466i \(0.809468\pi\)
\(402\) 0 0
\(403\) −14.0000 + 3.46410i −0.697390 + 0.172559i
\(404\) 0 0
\(405\) −1.50000 2.59808i −0.0745356 0.129099i
\(406\) 0 0
\(407\) −21.0000 + 36.3731i −1.04093 + 1.80295i
\(408\) 0 0
\(409\) 0.500000 0.866025i 0.0247234 0.0428222i −0.853399 0.521258i \(-0.825463\pi\)
0.878122 + 0.478436i \(0.158796\pi\)
\(410\) 0 0
\(411\) −9.00000 −0.443937
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 18.0000 0.883585
\(416\) 0 0
\(417\) −4.00000 −0.195881
\(418\) 0 0
\(419\) 12.0000 + 20.7846i 0.586238 + 1.01539i 0.994720 + 0.102628i \(0.0327251\pi\)
−0.408481 + 0.912767i \(0.633942\pi\)
\(420\) 0 0
\(421\) 29.0000 1.41337 0.706687 0.707527i \(-0.250189\pi\)
0.706687 + 0.707527i \(0.250189\pi\)
\(422\) 0 0
\(423\) 3.00000 5.19615i 0.145865 0.252646i
\(424\) 0 0
\(425\) 6.00000 10.3923i 0.291043 0.504101i
\(426\) 0 0
\(427\) −7.00000 12.1244i −0.338754 0.586739i
\(428\) 0 0
\(429\) 6.00000 20.7846i 0.289683 1.00349i
\(430\) 0 0
\(431\) −3.00000 5.19615i −0.144505 0.250290i 0.784683 0.619897i \(-0.212826\pi\)
−0.929188 + 0.369607i \(0.879492\pi\)
\(432\) 0 0
\(433\) 6.50000 11.2583i 0.312370 0.541041i −0.666505 0.745501i \(-0.732210\pi\)
0.978875 + 0.204460i \(0.0655438\pi\)
\(434\) 0 0
\(435\) 4.50000 7.79423i 0.215758 0.373705i
\(436\) 0 0
\(437\) −12.0000 −0.574038
\(438\) 0 0
\(439\) 7.00000 + 12.1244i 0.334092 + 0.578664i 0.983310 0.181938i \(-0.0582371\pi\)
−0.649218 + 0.760602i \(0.724904\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 36.0000 1.71041 0.855206 0.518289i \(-0.173431\pi\)
0.855206 + 0.518289i \(0.173431\pi\)
\(444\) 0 0
\(445\) −27.0000 46.7654i −1.27992 2.21689i
\(446\) 0 0
\(447\) 9.00000 0.425685
\(448\) 0 0
\(449\) −9.00000 + 15.5885i −0.424736 + 0.735665i −0.996396 0.0848262i \(-0.972967\pi\)
0.571660 + 0.820491i \(0.306300\pi\)
\(450\) 0 0
\(451\) −9.00000 + 15.5885i −0.423793 + 0.734032i
\(452\) 0 0
\(453\) 5.00000 + 8.66025i 0.234920 + 0.406894i
\(454\) 0 0
\(455\) −6.00000 + 20.7846i −0.281284 + 0.974398i
\(456\) 0 0
\(457\) −5.50000 9.52628i −0.257279 0.445621i 0.708233 0.705979i \(-0.249493\pi\)
−0.965512 + 0.260358i \(0.916159\pi\)
\(458\) 0 0
\(459\) −1.50000 + 2.59808i −0.0700140 + 0.121268i
\(460\) 0 0
\(461\) −7.50000 + 12.9904i −0.349310 + 0.605022i −0.986127 0.165992i \(-0.946917\pi\)
0.636817 + 0.771015i \(0.280251\pi\)
\(462\) 0 0
\(463\) −38.0000 −1.76601 −0.883005 0.469364i \(-0.844483\pi\)
−0.883005 + 0.469364i \(0.844483\pi\)
\(464\) 0 0
\(465\) 6.00000 + 10.3923i 0.278243 + 0.481932i
\(466\) 0 0
\(467\) 18.0000 0.832941 0.416470 0.909149i \(-0.363267\pi\)
0.416470 + 0.909149i \(0.363267\pi\)
\(468\) 0 0
\(469\) −20.0000 −0.923514
\(470\) 0 0
\(471\) 2.50000 + 4.33013i 0.115194 + 0.199522i
\(472\) 0 0
\(473\) −60.0000 −2.75880
\(474\) 0 0
\(475\) 4.00000 6.92820i 0.183533 0.317888i
\(476\) 0 0
\(477\) −1.50000 + 2.59808i −0.0686803 + 0.118958i
\(478\) 0 0
\(479\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(480\) 0 0
\(481\) −17.5000 18.1865i −0.797931 0.829235i
\(482\) 0 0
\(483\) −6.00000 10.3923i −0.273009 0.472866i
\(484\) 0 0
\(485\) −21.0000 + 36.3731i −0.953561 + 1.65162i
\(486\) 0 0
\(487\) 1.00000 1.73205i 0.0453143 0.0784867i −0.842479 0.538730i \(-0.818904\pi\)
0.887793 + 0.460243i \(0.152238\pi\)
\(488\) 0 0
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) −9.00000 15.5885i −0.406164 0.703497i 0.588292 0.808649i \(-0.299801\pi\)
−0.994456 + 0.105151i \(0.966467\pi\)
\(492\) 0 0
\(493\) −9.00000 −0.405340
\(494\) 0 0
\(495\) −18.0000 −0.809040
\(496\) 0 0
\(497\) −6.00000 10.3923i −0.269137 0.466159i
\(498\) 0 0
\(499\) −32.0000 −1.43252 −0.716258 0.697835i \(-0.754147\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 3.00000 5.19615i 0.133763 0.231685i −0.791361 0.611349i \(-0.790627\pi\)
0.925124 + 0.379664i \(0.123960\pi\)
\(504\) 0 0
\(505\) −22.5000 38.9711i −1.00124 1.73419i
\(506\) 0 0
\(507\) 11.0000 + 6.92820i 0.488527 + 0.307692i
\(508\) 0 0
\(509\) −1.50000 2.59808i −0.0664863 0.115158i 0.830866 0.556473i \(-0.187846\pi\)
−0.897352 + 0.441315i \(0.854512\pi\)
\(510\) 0 0
\(511\) −13.0000 + 22.5167i −0.575086 + 0.996078i
\(512\) 0 0
\(513\) −1.00000 + 1.73205i −0.0441511 + 0.0764719i
\(514\) 0 0
\(515\) −42.0000 −1.85074
\(516\) 0 0
\(517\) −18.0000 31.1769i −0.791639 1.37116i
\(518\) 0 0
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) 33.0000 1.44576 0.722878 0.690976i \(-0.242819\pi\)
0.722878 + 0.690976i \(0.242819\pi\)
\(522\) 0 0
\(523\) −17.0000 29.4449i −0.743358 1.28753i −0.950958 0.309320i \(-0.899899\pi\)
0.207600 0.978214i \(-0.433435\pi\)
\(524\) 0 0
\(525\) 8.00000 0.349149
\(526\) 0 0
\(527\) 6.00000 10.3923i 0.261364 0.452696i
\(528\) 0 0
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −7.50000 7.79423i −0.324861 0.337606i
\(534\) 0 0
\(535\) −9.00000 15.5885i −0.389104 0.673948i
\(536\) 0 0
\(537\) −3.00000 + 5.19615i −0.129460 + 0.224231i
\(538\) 0 0
\(539\) −9.00000 + 15.5885i −0.387657 + 0.671442i
\(540\) 0 0
\(541\) 29.0000 1.24681 0.623404 0.781900i \(-0.285749\pi\)
0.623404 + 0.781900i \(0.285749\pi\)
\(542\) 0 0
\(543\) −3.50000 6.06218i −0.150199 0.260153i
\(544\) 0 0
\(545\) 42.0000 1.79908
\(546\) 0 0
\(547\) 34.0000 1.45374 0.726868 0.686778i \(-0.240975\pi\)
0.726868 + 0.686778i \(0.240975\pi\)
\(548\) 0 0
\(549\) 3.50000 + 6.06218i 0.149376 + 0.258727i
\(550\) 0 0
\(551\) −6.00000 −0.255609
\(552\) 0 0
\(553\) 4.00000 6.92820i 0.170097 0.294617i
\(554\) 0 0
\(555\) −10.5000 + 18.1865i −0.445700 + 0.771975i
\(556\) 0 0
\(557\) −1.50000 2.59808i −0.0635570 0.110084i 0.832496 0.554031i \(-0.186911\pi\)
−0.896053 + 0.443947i \(0.853578\pi\)
\(558\) 0 0
\(559\) 10.0000 34.6410i 0.422955 1.46516i
\(560\) 0 0
\(561\) 9.00000 + 15.5885i 0.379980 + 0.658145i
\(562\) 0 0
\(563\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(564\) 0 0
\(565\) 4.50000 7.79423i 0.189316 0.327906i
\(566\) 0 0
\(567\) −2.00000 −0.0839921
\(568\) 0 0
\(569\) −3.00000 5.19615i −0.125767 0.217834i 0.796266 0.604947i \(-0.206806\pi\)
−0.922032 + 0.387113i \(0.873472\pi\)
\(570\) 0 0
\(571\) 22.0000 0.920671 0.460336 0.887745i \(-0.347729\pi\)
0.460336 + 0.887745i \(0.347729\pi\)
\(572\) 0 0
\(573\) −12.0000 −0.501307
\(574\) 0 0
\(575\) −12.0000 20.7846i −0.500435 0.866778i
\(576\) 0 0
\(577\) 11.0000 0.457936 0.228968 0.973434i \(-0.426465\pi\)
0.228968 + 0.973434i \(0.426465\pi\)
\(578\) 0 0
\(579\) 11.5000 19.9186i 0.477924 0.827788i
\(580\) 0 0
\(581\) 6.00000 10.3923i 0.248922 0.431145i
\(582\) 0 0
\(583\) 9.00000 + 15.5885i 0.372742 + 0.645608i
\(584\) 0 0
\(585\) 3.00000 10.3923i 0.124035 0.429669i
\(586\) 0 0
\(587\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(588\) 0 0
\(589\) 4.00000 6.92820i 0.164817 0.285472i
\(590\) 0 0
\(591\) 3.00000 5.19615i 0.123404 0.213741i
\(592\) 0 0
\(593\) 9.00000 0.369586 0.184793 0.982777i \(-0.440839\pi\)
0.184793 + 0.982777i \(0.440839\pi\)
\(594\) 0 0
\(595\) −9.00000 15.5885i −0.368964 0.639064i
\(596\) 0 0
\(597\) −10.0000 −0.409273
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) 18.5000 + 32.0429i 0.754631 + 1.30706i 0.945558 + 0.325455i \(0.105517\pi\)
−0.190927 + 0.981604i \(0.561149\pi\)
\(602\) 0 0
\(603\) 10.0000 0.407231
\(604\) 0 0
\(605\) −37.5000 + 64.9519i −1.52459 + 2.64067i
\(606\) 0 0
\(607\) 16.0000 27.7128i 0.649420 1.12483i −0.333842 0.942629i \(-0.608345\pi\)
0.983262 0.182199i \(-0.0583216\pi\)
\(608\) 0 0
\(609\) −3.00000 5.19615i −0.121566 0.210559i
\(610\) 0 0
\(611\) 21.0000 5.19615i 0.849569 0.210214i
\(612\) 0 0
\(613\) 15.5000 + 26.8468i 0.626039 + 1.08433i 0.988339 + 0.152270i \(0.0486583\pi\)
−0.362300 + 0.932062i \(0.618008\pi\)
\(614\) 0 0
\(615\) −4.50000 + 7.79423i −0.181458 + 0.314294i
\(616\) 0 0
\(617\) 7.50000 12.9904i 0.301939 0.522973i −0.674636 0.738150i \(-0.735700\pi\)
0.976575 + 0.215177i \(0.0690329\pi\)
\(618\) 0 0
\(619\) −8.00000 −0.321547 −0.160774 0.986991i \(-0.551399\pi\)
−0.160774 + 0.986991i \(0.551399\pi\)
\(620\) 0 0
\(621\) 3.00000 + 5.19615i 0.120386 + 0.208514i
\(622\) 0 0
\(623\) −36.0000 −1.44231
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 6.00000 + 10.3923i 0.239617 + 0.415029i
\(628\) 0 0
\(629\) 21.0000 0.837325
\(630\) 0 0
\(631\) 10.0000 17.3205i 0.398094 0.689519i −0.595397 0.803432i \(-0.703005\pi\)
0.993491 + 0.113913i \(0.0363385\pi\)
\(632\) 0 0
\(633\) 8.00000 13.8564i 0.317971 0.550743i
\(634\) 0 0
\(635\) −6.00000 10.3923i −0.238103 0.412406i
\(636\) 0 0
\(637\) −7.50000 7.79423i −0.297161 0.308819i
\(638\) 0 0
\(639\) 3.00000 + 5.19615i 0.118678 + 0.205557i
\(640\) 0 0
\(641\) 1.50000 2.59808i 0.0592464 0.102618i −0.834881 0.550431i \(-0.814464\pi\)
0.894127 + 0.447813i \(0.147797\pi\)
\(642\) 0 0
\(643\) −8.00000 + 13.8564i −0.315489 + 0.546443i −0.979541 0.201243i \(-0.935502\pi\)
0.664052 + 0.747686i \(0.268835\pi\)
\(644\) 0 0
\(645\) −30.0000 −1.18125
\(646\) 0 0
\(647\) 12.0000 + 20.7846i 0.471769 + 0.817127i 0.999478 0.0322975i \(-0.0102824\pi\)
−0.527710 + 0.849425i \(0.676949\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 8.00000 0.313545
\(652\) 0 0
\(653\) −21.0000 36.3731i −0.821794 1.42339i −0.904345 0.426801i \(-0.859640\pi\)
0.0825519 0.996587i \(-0.473693\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 6.50000 11.2583i 0.253589 0.439229i
\(658\) 0 0
\(659\) 12.0000 20.7846i 0.467454 0.809653i −0.531855 0.846836i \(-0.678505\pi\)
0.999309 + 0.0371821i \(0.0118382\pi\)
\(660\) 0 0
\(661\) −2.50000 4.33013i −0.0972387 0.168422i 0.813302 0.581842i \(-0.197668\pi\)
−0.910541 + 0.413419i \(0.864334\pi\)
\(662\) 0 0
\(663\) −10.5000 + 2.59808i −0.407786 + 0.100901i
\(664\) 0 0
\(665\) −6.00000 10.3923i −0.232670 0.402996i
\(666\) 0 0
\(667\) −9.00000 + 15.5885i −0.348481 + 0.603587i
\(668\) 0 0
\(669\) −4.00000 + 6.92820i −0.154649 + 0.267860i
\(670\) 0 0
\(671\) 42.0000 1.62139
\(672\) 0 0
\(673\) 6.50000 + 11.2583i 0.250557 + 0.433977i 0.963679 0.267063i \(-0.0860531\pi\)
−0.713123 + 0.701039i \(0.752720\pi\)
\(674\) 0 0
\(675\) −4.00000 −0.153960
\(676\) 0 0
\(677\) 18.0000 0.691796 0.345898 0.938272i \(-0.387574\pi\)
0.345898 + 0.938272i \(0.387574\pi\)
\(678\) 0 0
\(679\) 14.0000 + 24.2487i 0.537271 + 0.930580i
\(680\) 0 0
\(681\) 18.0000 0.689761
\(682\) 0 0
\(683\) −24.0000 + 41.5692i −0.918334 + 1.59060i −0.116390 + 0.993204i \(0.537132\pi\)
−0.801945 + 0.597398i \(0.796201\pi\)
\(684\) 0 0
\(685\) −13.5000 + 23.3827i −0.515808 + 0.893407i
\(686\) 0 0
\(687\) −11.0000 19.0526i −0.419676 0.726900i
\(688\) 0 0
\(689\) −10.5000 + 2.59808i −0.400018 + 0.0989788i
\(690\) 0 0
\(691\) 13.0000 + 22.5167i 0.494543 + 0.856574i 0.999980 0.00628943i \(-0.00200200\pi\)
−0.505437 + 0.862864i \(0.668669\pi\)
\(692\) 0 0
\(693\) −6.00000 + 10.3923i −0.227921 + 0.394771i
\(694\) 0 0
\(695\) −6.00000 + 10.3923i −0.227593 + 0.394203i
\(696\) 0 0
\(697\) 9.00000 0.340899
\(698\) 0 0
\(699\) −3.00000 5.19615i −0.113470 0.196537i
\(700\) 0 0
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 0 0
\(703\) 14.0000 0.528020
\(704\) 0 0
\(705\) −9.00000 15.5885i −0.338960 0.587095i
\(706\) 0 0
\(707\) −30.0000 −1.12827
\(708\) 0 0
\(709\) −2.50000 + 4.33013i −0.0938895 + 0.162621i −0.909145 0.416481i \(-0.863263\pi\)
0.815255 + 0.579102i \(0.196597\pi\)
\(710\) 0 0
\(711\) −2.00000 + 3.46410i −0.0750059 + 0.129914i
\(712\) 0 0
\(713\) −12.0000 20.7846i −0.449404 0.778390i
\(714\) 0 0
\(715\) −45.0000 46.7654i −1.68290 1.74893i
\(716\) 0 0
\(717\) −3.00000 5.19615i −0.112037 0.194054i
\(718\) 0 0
\(719\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(720\) 0 0
\(721\) −14.0000 + 24.2487i −0.521387 + 0.903069i
\(722\) 0 0
\(723\) 1.00000 0.0371904
\(724\) 0 0
\(725\) −6.00000 10.3923i −0.222834 0.385961i
\(726\) 0 0
\(727\) −14.0000 −0.519231 −0.259616 0.965712i \(-0.583596\pi\)
−0.259616 + 0.965712i \(0.583596\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 15.0000 + 25.9808i 0.554795 + 0.960933i
\(732\) 0 0
\(733\) −31.0000 −1.14501 −0.572506 0.819901i \(-0.694029\pi\)
−0.572506 + 0.819901i \(0.694029\pi\)
\(734\) 0 0
\(735\) −4.50000 + 7.79423i −0.165985 + 0.287494i
\(736\) 0 0
\(737\) 30.0000 51.9615i 1.10506 1.91403i
\(738\) 0 0
\(739\) −8.00000 13.8564i −0.294285 0.509716i 0.680534 0.732717i \(-0.261748\pi\)
−0.974818 + 0.223001i \(0.928415\pi\)
\(740\) 0 0
\(741\) −7.00000 + 1.73205i −0.257151 + 0.0636285i
\(742\) 0 0
\(743\) −18.0000 31.1769i −0.660356 1.14377i −0.980522 0.196409i \(-0.937072\pi\)
0.320166 0.947361i \(-0.396261\pi\)
\(744\) 0 0
\(745\) 13.5000 23.3827i 0.494602 0.856675i
\(746\) 0 0
\(747\) −3.00000 + 5.19615i −0.109764 + 0.190117i
\(748\) 0 0
\(749\) −12.0000 −0.438470
\(750\) 0 0
\(751\) 7.00000 + 12.1244i 0.255434 + 0.442424i 0.965013 0.262201i \(-0.0844484\pi\)
−0.709580 + 0.704625i \(0.751115\pi\)
\(752\) 0 0
\(753\) −12.0000 −0.437304
\(754\) 0 0
\(755\) 30.0000 1.09181
\(756\) 0 0
\(757\) 17.0000 + 29.4449i 0.617876 + 1.07019i 0.989873 + 0.141958i \(0.0453398\pi\)
−0.371997 + 0.928234i \(0.621327\pi\)
\(758\) 0 0
\(759\) 36.0000 1.30672
\(760\) 0 0
\(761\) 15.0000 25.9808i 0.543750 0.941802i −0.454935 0.890525i \(-0.650337\pi\)
0.998684 0.0512772i \(-0.0163292\pi\)
\(762\) 0 0
\(763\) 14.0000 24.2487i 0.506834 0.877862i
\(764\) 0 0
\(765\) 4.50000 + 7.79423i 0.162698 + 0.281801i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −7.00000 12.1244i −0.252426 0.437215i 0.711767 0.702416i \(-0.247895\pi\)
−0.964193 + 0.265200i \(0.914562\pi\)
\(770\) 0 0
\(771\) −1.50000 + 2.59808i −0.0540212 + 0.0935674i
\(772\) 0 0
\(773\) 15.0000 25.9808i 0.539513 0.934463i −0.459418 0.888220i \(-0.651942\pi\)
0.998930 0.0462427i \(-0.0147248\pi\)
\(774\) 0 0
\(775\) 16.0000 0.574737
\(776\) 0 0
\(777\) 7.00000 + 12.1244i 0.251124 + 0.434959i
\(778\) 0 0
\(779\) 6.00000 0.214972
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) 0 0
\(783\) 1.50000 + 2.59808i 0.0536056 + 0.0928477i
\(784\) 0 0
\(785\) 15.0000 0.535373
\(786\) 0 0
\(787\) −14.0000 + 24.2487i −0.499046 + 0.864373i −0.999999 0.00110111i \(-0.999650\pi\)
0.500953 + 0.865474i \(0.332983\pi\)
\(788\) 0 0
\(789\) 3.00000 5.19615i 0.106803 0.184988i
\(790\) 0 0
\(791\) −3.00000 5.19615i −0.106668 0.184754i
\(792\) 0 0
\(793\) −7.00000 + 24.2487i −0.248577 + 0.861097i
\(794\) 0 0
\(795\) 4.50000 + 7.79423i 0.159599 + 0.276433i
\(796\) 0 0
\(797\) −15.0000 + 25.9808i −0.531327 + 0.920286i 0.468004 + 0.883726i \(0.344973\pi\)
−0.999331 + 0.0365596i \(0.988360\pi\)
\(798\) 0 0
\(799\) −9.00000 + 15.5885i −0.318397 + 0.551480i
\(800\) 0 0
\(801\) 18.0000 0.635999
\(802\) 0 0
\(803\) −39.0000 67.5500i −1.37628 2.38379i
\(804\) 0 0
\(805\) −36.0000 −1.26883
\(806\) 0 0
\(807\) −18.0000 −0.633630
\(808\) 0 0
\(809\) 25.5000 + 44.1673i 0.896532 + 1.55284i 0.831897 + 0.554930i \(0.187255\pi\)
0.0646355 + 0.997909i \(0.479412\pi\)
\(810\) 0 0
\(811\) 4.00000 0.140459 0.0702295 0.997531i \(-0.477627\pi\)
0.0702295 + 0.997531i \(0.477627\pi\)
\(812\) 0 0
\(813\) 8.00000 13.8564i 0.280572 0.485965i
\(814\) 0 0
\(815\) −6.00000 + 10.3923i −0.210171 + 0.364027i
\(816\) 0 0
\(817\) 10.0000 + 17.3205i 0.349856 + 0.605968i
\(818\) 0 0
\(819\) −5.00000 5.19615i −0.174714 0.181568i
\(820\) 0 0
\(821\) −9.00000 15.5885i −0.314102 0.544041i 0.665144 0.746715i \(-0.268370\pi\)
−0.979246 + 0.202674i \(0.935037\pi\)
\(822\) 0 0
\(823\) −20.0000 + 34.6410i −0.697156 + 1.20751i 0.272292 + 0.962215i \(0.412218\pi\)
−0.969448 + 0.245295i \(0.921115\pi\)
\(824\) 0 0
\(825\) −12.0000 + 20.7846i −0.417786 + 0.723627i
\(826\) 0 0
\(827\) 48.0000 1.66912 0.834562 0.550914i \(-0.185721\pi\)
0.834562 + 0.550914i \(0.185721\pi\)
\(828\) 0 0
\(829\) −8.50000 14.7224i −0.295217 0.511331i 0.679818 0.733381i \(-0.262059\pi\)
−0.975035 + 0.222049i \(0.928725\pi\)
\(830\) 0 0
\(831\) −17.0000 −0.589723
\(832\) 0 0
\(833\) 9.00000 0.311832
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −4.00000 −0.138260
\(838\) 0 0
\(839\) −6.00000 + 10.3923i −0.207143 + 0.358782i −0.950813 0.309764i \(-0.899750\pi\)
0.743670 + 0.668546i \(0.233083\pi\)
\(840\) 0 0
\(841\) 10.0000 17.3205i 0.344828 0.597259i
\(842\) 0 0
\(843\) 4.50000 + 7.79423i 0.154988 + 0.268447i
\(844\) 0 0
\(845\) 34.5000 18.1865i 1.18684 0.625636i
\(846\) 0 0
\(847\) 25.0000 + 43.3013i 0.859010 + 1.48785i
\(848\) 0 0
\(849\) −7.00000 + 12.1244i −0.240239 + 0.416107i
\(850\) 0 0
\(851\) 21.0000 36.3731i 0.719871 1.24685i
\(852\) 0 0
\(853\) −19.0000 −0.650548 −0.325274 0.945620i \(-0.605456\pi\)
−0.325274 + 0.945620i \(0.605456\pi\)
\(854\) 0 0
\(855\) 3.00000 + 5.19615i 0.102598 + 0.177705i
\(856\) 0 0
\(857\) 21.0000 0.717346 0.358673 0.933463i \(-0.383229\pi\)
0.358673 + 0.933463i \(0.383229\pi\)
\(858\) 0 0
\(859\) −26.0000 −0.887109 −0.443554 0.896248i \(-0.646283\pi\)
−0.443554 + 0.896248i \(0.646283\pi\)
\(860\) 0 0
\(861\) 3.00000 + 5.19615i 0.102240 + 0.177084i
\(862\) 0 0
\(863\) −18.0000 −0.612727 −0.306364 0.951915i \(-0.599112\pi\)
−0.306364 + 0.951915i \(0.599112\pi\)
\(864\) 0 0
\(865\) 9.00000 15.5885i 0.306009 0.530023i
\(866\) 0 0
\(867\) −4.00000 + 6.92820i −0.135847 + 0.235294i
\(868\) 0 0
\(869\) 12.0000 + 20.7846i 0.407072 + 0.705070i
\(870\) 0 0
\(871\) 25.0000 + 25.9808i 0.847093 + 0.880325i
\(872\) 0 0
\(873\) −7.00000 12.1244i −0.236914 0.410347i
\(874\) 0 0
\(875\) −3.00000 + 5.19615i −0.101419 + 0.175662i
\(876\) 0 0
\(877\) −20.5000 + 35.5070i −0.692236 + 1.19899i 0.278868 + 0.960329i \(0.410041\pi\)
−0.971104 + 0.238658i \(0.923292\pi\)
\(878\) 0 0
\(879\) 21.0000 0.708312
\(880\) 0 0
\(881\) −16.5000 28.5788i −0.555899 0.962846i −0.997833 0.0657979i \(-0.979041\pi\)
0.441934 0.897048i \(-0.354293\pi\)
\(882\) 0 0
\(883\) −8.00000 −0.269221 −0.134611 0.990899i \(-0.542978\pi\)
−0.134611 + 0.990899i \(0.542978\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −24.0000 41.5692i −0.805841 1.39576i −0.915722 0.401813i \(-0.868380\pi\)
0.109881 0.993945i \(-0.464953\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) 0 0
\(891\) 3.00000 5.19615i 0.100504 0.174078i
\(892\) 0 0
\(893\) −6.00000 + 10.3923i −0.200782 + 0.347765i
\(894\) 0 0
\(895\) 9.00000 + 15.5885i 0.300837 + 0.521065i
\(896\) 0 0
\(897\) −6.00000 + 20.7846i −0.200334 + 0.693978i
\(898\) 0 0
\(899\) −6.00000 10.3923i −0.200111 0.346603i
\(900\) 0 0
\(901\) 4.50000 7.79423i 0.149917 0.259663i
\(902\) 0 0
\(903\) −10.0000 + 17.3205i −0.332779 + 0.576390i
\(904\) 0 0
\(905\) −21.0000 −0.698064
\(906\) 0 0
\(907\) 22.0000 + 38.1051i 0.730498 + 1.26526i 0.956671 + 0.291172i \(0.0940453\pi\)
−0.226173 + 0.974087i \(0.572621\pi\)
\(908\) 0 0
\(909\) 15.0000 0.497519
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 0 0
\(913\) 18.0000 + 31.1769i 0.595713 + 1.03181i
\(914\) 0 0
\(915\) 21.0000 0.694239
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −8.00000 + 13.8564i −0.263896 + 0.457081i −0.967274 0.253735i \(-0.918341\pi\)
0.703378 + 0.710816i \(0.251674\pi\)
\(920\) 0 0
\(921\) 5.00000 + 8.66025i 0.164756 + 0.285365i
\(922\) 0 0
\(923\) −6.00000 + 20.7846i −0.197492 + 0.684134i
\(924\) 0 0
\(925\) 14.0000 + 24.2487i 0.460317 + 0.797293i
\(926\) 0 0
\(927\) 7.00000 12.1244i 0.229910 0.398216i
\(928\) 0 0
\(929\) −16.5000 + 28.5788i −0.541347 + 0.937641i 0.457480 + 0.889220i \(0.348752\pi\)
−0.998827 + 0.0484211i \(0.984581\pi\)
\(930\) 0 0
\(931\) 6.00000 0.196642
\(932\) 0 0
\(933\) 15.0000 + 25.9808i 0.491078 + 0.850572i
\(934\) 0 0
\(935\) 54.0000 1.76599
\(936\) 0 0
\(937\) 47.0000 1.53542 0.767712 0.640796i \(-0.221395\pi\)
0.767712 + 0.640796i \(0.221395\pi\)
\(938\) 0 0
\(939\) −5.00000 8.66025i −0.163169 0.282617i
\(940\) 0 0
\(941\) 42.0000 1.36916 0.684580 0.728937i \(-0.259985\pi\)
0.684580 + 0.728937i \(0.259985\pi\)
\(942\) 0 0
\(943\) 9.00000 15.5885i 0.293080 0.507630i
\(944\) 0 0
\(945\) −3.00000 + 5.19615i −0.0975900 + 0.169031i
\(946\) 0 0
\(947\) 12.0000 + 20.7846i 0.389948 + 0.675409i 0.992442 0.122714i \(-0.0391598\pi\)
−0.602494 + 0.798123i \(0.705826\pi\)
\(948\) 0 0
\(949\) 45.5000 11.2583i 1.47699 0.365461i
\(950\) 0 0
\(951\) 1.50000 + 2.59808i 0.0486408 + 0.0842484i
\(952\) 0 0
\(953\) −27.0000 + 46.7654i −0.874616 + 1.51488i −0.0174443 + 0.999848i \(0.505553\pi\)
−0.857171 + 0.515031i \(0.827780\pi\)
\(954\) 0 0
\(955\) −18.0000 + 31.1769i −0.582466 + 1.00886i
\(956\) 0 0
\(957\) 18.0000 0.581857
\(958\) 0 0
\(959\) 9.00000 + 15.5885i 0.290625 + 0.503378i
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 6.00000 0.193347
\(964\) 0 0
\(965\) −34.5000 59.7558i −1.11059 1.92361i
\(966\) 0 0
\(967\) 22.0000 0.707472 0.353736 0.935345i \(-0.384911\pi\)
0.353736 + 0.935345i \(0.384911\pi\)
\(968\) 0 0
\(969\) 3.00000 5.19615i 0.0963739 0.166924i
\(970\) 0 0
\(971\) 30.0000 51.9615i 0.962746 1.66752i 0.247193 0.968966i \(-0.420492\pi\)
0.715553 0.698558i \(-0.246175\pi\)
\(972\) 0 0
\(973\) 4.00000 + 6.92820i 0.128234 + 0.222108i
\(974\) 0 0
\(975\) −10.0000 10.3923i −0.320256 0.332820i
\(976\) 0 0
\(977\) 1.50000 + 2.59808i 0.0479893 + 0.0831198i 0.889022 0.457864i \(-0.151385\pi\)
−0.841033 + 0.540984i \(0.818052\pi\)
\(978\) 0 0
\(979\) 54.0000 93.5307i 1.72585 2.98926i
\(980\) 0 0
\(981\) −7.00000 + 12.1244i −0.223493 + 0.387101i
\(982\) 0 0
\(983\) 36.0000 1.14822 0.574111 0.818778i \(-0.305348\pi\)
0.574111 + 0.818778i \(0.305348\pi\)
\(984\) 0 0
\(985\) −9.00000 15.5885i −0.286764 0.496690i
\(986\) 0 0
\(987\) −12.0000 −0.381964
\(988\) 0 0
\(989\) 60.0000 1.90789
\(990\) 0 0
\(991\) 19.0000 + 32.9090i 0.603555 + 1.04539i 0.992278 + 0.124033i \(0.0395829\pi\)
−0.388723 + 0.921355i \(0.627084\pi\)
\(992\) 0 0
\(993\) −4.00000 −0.126936
\(994\) 0 0
\(995\) −15.0000 + 25.9808i −0.475532 + 0.823646i
\(996\) 0 0
\(997\) −2.50000 + 4.33013i −0.0791758 + 0.137136i −0.902895 0.429862i \(-0.858562\pi\)
0.823719 + 0.566999i \(0.191896\pi\)
\(998\) 0 0
\(999\) −3.50000 6.06218i −0.110735 0.191799i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.2.q.g.289.1 2
3.2 odd 2 1872.2.t.c.289.1 2
4.3 odd 2 78.2.e.a.55.1 2
12.11 even 2 234.2.h.a.55.1 2
13.3 even 3 8112.2.a.m.1.1 1
13.9 even 3 inner 624.2.q.g.529.1 2
13.10 even 6 8112.2.a.c.1.1 1
20.3 even 4 1950.2.z.g.1849.2 4
20.7 even 4 1950.2.z.g.1849.1 4
20.19 odd 2 1950.2.i.m.601.1 2
39.35 odd 6 1872.2.t.c.1153.1 2
52.3 odd 6 1014.2.a.c.1.1 1
52.7 even 12 1014.2.i.b.823.2 4
52.11 even 12 1014.2.b.c.337.1 2
52.15 even 12 1014.2.b.c.337.2 2
52.19 even 12 1014.2.i.b.823.1 4
52.23 odd 6 1014.2.a.f.1.1 1
52.31 even 4 1014.2.i.b.361.2 4
52.35 odd 6 78.2.e.a.61.1 yes 2
52.43 odd 6 1014.2.e.a.529.1 2
52.47 even 4 1014.2.i.b.361.1 4
52.51 odd 2 1014.2.e.a.991.1 2
156.11 odd 12 3042.2.b.h.1351.2 2
156.23 even 6 3042.2.a.h.1.1 1
156.35 even 6 234.2.h.a.217.1 2
156.107 even 6 3042.2.a.i.1.1 1
156.119 odd 12 3042.2.b.h.1351.1 2
260.87 even 12 1950.2.z.g.1699.2 4
260.139 odd 6 1950.2.i.m.451.1 2
260.243 even 12 1950.2.z.g.1699.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.2.e.a.55.1 2 4.3 odd 2
78.2.e.a.61.1 yes 2 52.35 odd 6
234.2.h.a.55.1 2 12.11 even 2
234.2.h.a.217.1 2 156.35 even 6
624.2.q.g.289.1 2 1.1 even 1 trivial
624.2.q.g.529.1 2 13.9 even 3 inner
1014.2.a.c.1.1 1 52.3 odd 6
1014.2.a.f.1.1 1 52.23 odd 6
1014.2.b.c.337.1 2 52.11 even 12
1014.2.b.c.337.2 2 52.15 even 12
1014.2.e.a.529.1 2 52.43 odd 6
1014.2.e.a.991.1 2 52.51 odd 2
1014.2.i.b.361.1 4 52.47 even 4
1014.2.i.b.361.2 4 52.31 even 4
1014.2.i.b.823.1 4 52.19 even 12
1014.2.i.b.823.2 4 52.7 even 12
1872.2.t.c.289.1 2 3.2 odd 2
1872.2.t.c.1153.1 2 39.35 odd 6
1950.2.i.m.451.1 2 260.139 odd 6
1950.2.i.m.601.1 2 20.19 odd 2
1950.2.z.g.1699.1 4 260.243 even 12
1950.2.z.g.1699.2 4 260.87 even 12
1950.2.z.g.1849.1 4 20.7 even 4
1950.2.z.g.1849.2 4 20.3 even 4
3042.2.a.h.1.1 1 156.23 even 6
3042.2.a.i.1.1 1 156.107 even 6
3042.2.b.h.1351.1 2 156.119 odd 12
3042.2.b.h.1351.2 2 156.11 odd 12
8112.2.a.c.1.1 1 13.10 even 6
8112.2.a.m.1.1 1 13.3 even 3