Properties

Label 624.2.cn.d.401.4
Level $624$
Weight $2$
Character 624.401
Analytic conductor $4.983$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,2,Mod(305,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 0, 6, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.305");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 624.cn (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.98266508613\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: 16.0.9349208943630483456.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 48 x^{14} - 196 x^{13} + 642 x^{12} - 1668 x^{11} + 3580 x^{10} - 6328 x^{9} + \cdots + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 401.4
Root \(0.500000 + 0.331082i\) of defining polynomial
Character \(\chi\) \(=\) 624.401
Dual form 624.2.cn.d.305.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.73022 - 0.0795432i) q^{3} +(2.76293 - 2.76293i) q^{5} +(0.657464 + 2.45369i) q^{7} +(2.98735 - 0.275255i) q^{9} +(-0.150860 + 0.563016i) q^{11} +(-1.20856 + 3.39697i) q^{13} +(4.56072 - 5.00027i) q^{15} +(-0.547000 + 0.947432i) q^{17} +(-1.32717 + 0.355613i) q^{19} +(1.33273 + 4.19313i) q^{21} +(-0.876460 - 1.51807i) q^{23} -10.2676i q^{25} +(5.14688 - 0.713876i) q^{27} +(-5.12973 + 2.96165i) q^{29} +(-6.49983 - 6.49983i) q^{31} +(-0.216237 + 0.986144i) q^{33} +(8.59591 + 4.96285i) q^{35} +(-2.98942 - 0.801012i) q^{37} +(-1.82088 + 5.97364i) q^{39} +(5.11781 + 1.37131i) q^{41} +(-3.26299 - 1.88389i) q^{43} +(7.49333 - 9.01435i) q^{45} +(-5.51114 - 5.51114i) q^{47} +(0.473846 - 0.273575i) q^{49} +(-0.871071 + 1.68278i) q^{51} -3.04435i q^{53} +(1.13876 + 1.97239i) q^{55} +(-2.26801 + 0.720857i) q^{57} +(8.19009 - 2.19453i) q^{59} +(-4.67266 + 8.09329i) q^{61} +(2.63946 + 7.14905i) q^{63} +(6.04642 + 12.7248i) q^{65} +(-1.70856 + 6.37644i) q^{67} +(-1.63722 - 2.55689i) q^{69} +(0.220122 + 0.821505i) q^{71} +(-5.18078 + 5.18078i) q^{73} +(-0.816719 - 17.7653i) q^{75} -1.48065 q^{77} +13.1089 q^{79} +(8.84847 - 1.64456i) q^{81} +(-5.15394 + 5.15394i) q^{83} +(1.10637 + 4.12902i) q^{85} +(-8.63999 + 5.53235i) q^{87} +(2.50797 - 9.35988i) q^{89} +(-9.12969 - 0.732051i) q^{91} +(-11.7632 - 10.7291i) q^{93} +(-2.68434 + 4.64941i) q^{95} +(-0.592450 + 0.158747i) q^{97} +(-0.295697 + 1.72345i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{7} - 24 q^{13} + 16 q^{19} - 24 q^{21} - 16 q^{31} - 24 q^{33} + 16 q^{37} - 48 q^{39} + 24 q^{45} + 24 q^{49} + 24 q^{55} - 24 q^{57} - 24 q^{61} + 24 q^{63} - 32 q^{67} - 48 q^{69} + 56 q^{73}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{12}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73022 0.0795432i 0.998945 0.0459243i
\(4\) 0 0
\(5\) 2.76293 2.76293i 1.23562 1.23562i 0.273849 0.961773i \(-0.411703\pi\)
0.961773 0.273849i \(-0.0882968\pi\)
\(6\) 0 0
\(7\) 0.657464 + 2.45369i 0.248498 + 0.927407i 0.971593 + 0.236659i \(0.0760523\pi\)
−0.723095 + 0.690749i \(0.757281\pi\)
\(8\) 0 0
\(9\) 2.98735 0.275255i 0.995782 0.0917517i
\(10\) 0 0
\(11\) −0.150860 + 0.563016i −0.0454859 + 0.169756i −0.984932 0.172940i \(-0.944673\pi\)
0.939446 + 0.342696i \(0.111340\pi\)
\(12\) 0 0
\(13\) −1.20856 + 3.39697i −0.335195 + 0.942149i
\(14\) 0 0
\(15\) 4.56072 5.00027i 1.17757 1.29106i
\(16\) 0 0
\(17\) −0.547000 + 0.947432i −0.132667 + 0.229786i −0.924704 0.380687i \(-0.875687\pi\)
0.792037 + 0.610473i \(0.209021\pi\)
\(18\) 0 0
\(19\) −1.32717 + 0.355613i −0.304473 + 0.0815832i −0.407821 0.913062i \(-0.633711\pi\)
0.103348 + 0.994645i \(0.467044\pi\)
\(20\) 0 0
\(21\) 1.33273 + 4.19313i 0.290826 + 0.915017i
\(22\) 0 0
\(23\) −0.876460 1.51807i −0.182755 0.316540i 0.760063 0.649849i \(-0.225168\pi\)
−0.942818 + 0.333309i \(0.891835\pi\)
\(24\) 0 0
\(25\) 10.2676i 2.05352i
\(26\) 0 0
\(27\) 5.14688 0.713876i 0.990518 0.137386i
\(28\) 0 0
\(29\) −5.12973 + 2.96165i −0.952566 + 0.549965i −0.893877 0.448312i \(-0.852025\pi\)
−0.0586892 + 0.998276i \(0.518692\pi\)
\(30\) 0 0
\(31\) −6.49983 6.49983i −1.16740 1.16740i −0.982816 0.184588i \(-0.940905\pi\)
−0.184588 0.982816i \(-0.559095\pi\)
\(32\) 0 0
\(33\) −0.216237 + 0.986144i −0.0376420 + 0.171666i
\(34\) 0 0
\(35\) 8.59591 + 4.96285i 1.45297 + 0.838875i
\(36\) 0 0
\(37\) −2.98942 0.801012i −0.491457 0.131686i 0.00457534 0.999990i \(-0.498544\pi\)
−0.496032 + 0.868304i \(0.665210\pi\)
\(38\) 0 0
\(39\) −1.82088 + 5.97364i −0.291573 + 0.956548i
\(40\) 0 0
\(41\) 5.11781 + 1.37131i 0.799268 + 0.214163i 0.635262 0.772296i \(-0.280892\pi\)
0.164005 + 0.986459i \(0.447559\pi\)
\(42\) 0 0
\(43\) −3.26299 1.88389i −0.497602 0.287290i 0.230121 0.973162i \(-0.426088\pi\)
−0.727723 + 0.685872i \(0.759421\pi\)
\(44\) 0 0
\(45\) 7.49333 9.01435i 1.11704 1.34378i
\(46\) 0 0
\(47\) −5.51114 5.51114i −0.803883 0.803883i 0.179817 0.983700i \(-0.442449\pi\)
−0.983700 + 0.179817i \(0.942449\pi\)
\(48\) 0 0
\(49\) 0.473846 0.273575i 0.0676922 0.0390821i
\(50\) 0 0
\(51\) −0.871071 + 1.68278i −0.121974 + 0.235636i
\(52\) 0 0
\(53\) 3.04435i 0.418173i −0.977897 0.209087i \(-0.932951\pi\)
0.977897 0.209087i \(-0.0670490\pi\)
\(54\) 0 0
\(55\) 1.13876 + 1.97239i 0.153551 + 0.265957i
\(56\) 0 0
\(57\) −2.26801 + 0.720857i −0.300405 + 0.0954799i
\(58\) 0 0
\(59\) 8.19009 2.19453i 1.06626 0.285703i 0.317304 0.948324i \(-0.397223\pi\)
0.748955 + 0.662621i \(0.230556\pi\)
\(60\) 0 0
\(61\) −4.67266 + 8.09329i −0.598273 + 1.03624i 0.394803 + 0.918766i \(0.370813\pi\)
−0.993076 + 0.117474i \(0.962520\pi\)
\(62\) 0 0
\(63\) 2.63946 + 7.14905i 0.332541 + 0.900695i
\(64\) 0 0
\(65\) 6.04642 + 12.7248i 0.749966 + 1.57831i
\(66\) 0 0
\(67\) −1.70856 + 6.37644i −0.208734 + 0.779006i 0.779545 + 0.626346i \(0.215450\pi\)
−0.988279 + 0.152659i \(0.951216\pi\)
\(68\) 0 0
\(69\) −1.63722 2.55689i −0.197099 0.307813i
\(70\) 0 0
\(71\) 0.220122 + 0.821505i 0.0261236 + 0.0974947i 0.977757 0.209742i \(-0.0672624\pi\)
−0.951633 + 0.307237i \(0.900596\pi\)
\(72\) 0 0
\(73\) −5.18078 + 5.18078i −0.606365 + 0.606365i −0.941994 0.335629i \(-0.891051\pi\)
0.335629 + 0.941994i \(0.391051\pi\)
\(74\) 0 0
\(75\) −0.816719 17.7653i −0.0943066 2.05135i
\(76\) 0 0
\(77\) −1.48065 −0.168736
\(78\) 0 0
\(79\) 13.1089 1.47486 0.737431 0.675422i \(-0.236039\pi\)
0.737431 + 0.675422i \(0.236039\pi\)
\(80\) 0 0
\(81\) 8.84847 1.64456i 0.983163 0.182729i
\(82\) 0 0
\(83\) −5.15394 + 5.15394i −0.565719 + 0.565719i −0.930926 0.365208i \(-0.880998\pi\)
0.365208 + 0.930926i \(0.380998\pi\)
\(84\) 0 0
\(85\) 1.10637 + 4.12902i 0.120002 + 0.447855i
\(86\) 0 0
\(87\) −8.63999 + 5.53235i −0.926305 + 0.593130i
\(88\) 0 0
\(89\) 2.50797 9.35988i 0.265844 0.992145i −0.695887 0.718151i \(-0.744989\pi\)
0.961731 0.273994i \(-0.0883448\pi\)
\(90\) 0 0
\(91\) −9.12969 0.732051i −0.957051 0.0767398i
\(92\) 0 0
\(93\) −11.7632 10.7291i −1.21978 1.11256i
\(94\) 0 0
\(95\) −2.68434 + 4.64941i −0.275407 + 0.477019i
\(96\) 0 0
\(97\) −0.592450 + 0.158747i −0.0601542 + 0.0161183i −0.288771 0.957398i \(-0.593247\pi\)
0.228616 + 0.973517i \(0.426580\pi\)
\(98\) 0 0
\(99\) −0.295697 + 1.72345i −0.0297187 + 0.173213i
\(100\) 0 0
\(101\) −2.91789 5.05394i −0.290341 0.502886i 0.683549 0.729904i \(-0.260435\pi\)
−0.973890 + 0.227019i \(0.927102\pi\)
\(102\) 0 0
\(103\) 2.07313i 0.204272i 0.994770 + 0.102136i \(0.0325677\pi\)
−0.994770 + 0.102136i \(0.967432\pi\)
\(104\) 0 0
\(105\) 15.2676 + 7.90310i 1.48997 + 0.771263i
\(106\) 0 0
\(107\) 2.99520 1.72928i 0.289557 0.167176i −0.348185 0.937426i \(-0.613202\pi\)
0.637742 + 0.770250i \(0.279869\pi\)
\(108\) 0 0
\(109\) −10.9901 10.9901i −1.05266 1.05266i −0.998534 0.0541251i \(-0.982763\pi\)
−0.0541251 0.998534i \(-0.517237\pi\)
\(110\) 0 0
\(111\) −5.23607 1.14814i −0.496986 0.108977i
\(112\) 0 0
\(113\) 9.43719 + 5.44856i 0.887776 + 0.512558i 0.873214 0.487336i \(-0.162031\pi\)
0.0145614 + 0.999894i \(0.495365\pi\)
\(114\) 0 0
\(115\) −6.61594 1.77274i −0.616940 0.165308i
\(116\) 0 0
\(117\) −2.67536 + 10.4806i −0.247337 + 0.968930i
\(118\) 0 0
\(119\) −2.68434 0.719266i −0.246073 0.0659350i
\(120\) 0 0
\(121\) 9.23205 + 5.33013i 0.839277 + 0.484557i
\(122\) 0 0
\(123\) 8.96403 + 1.96559i 0.808260 + 0.177231i
\(124\) 0 0
\(125\) −14.5541 14.5541i −1.30175 1.30175i
\(126\) 0 0
\(127\) −8.06551 + 4.65662i −0.715698 + 0.413209i −0.813167 0.582030i \(-0.802259\pi\)
0.0974690 + 0.995239i \(0.468925\pi\)
\(128\) 0 0
\(129\) −5.79555 3.00000i −0.510270 0.264135i
\(130\) 0 0
\(131\) 0.917828i 0.0801910i 0.999196 + 0.0400955i \(0.0127662\pi\)
−0.999196 + 0.0400955i \(0.987234\pi\)
\(132\) 0 0
\(133\) −1.74513 3.02265i −0.151322 0.262097i
\(134\) 0 0
\(135\) 12.2481 16.1929i 1.05415 1.39366i
\(136\) 0 0
\(137\) −8.32493 + 2.23066i −0.711247 + 0.190578i −0.596263 0.802789i \(-0.703348\pi\)
−0.114984 + 0.993367i \(0.536682\pi\)
\(138\) 0 0
\(139\) 1.65662 2.86936i 0.140513 0.243376i −0.787177 0.616727i \(-0.788458\pi\)
0.927690 + 0.373352i \(0.121791\pi\)
\(140\) 0 0
\(141\) −9.97388 9.09713i −0.839952 0.766117i
\(142\) 0 0
\(143\) −1.73022 1.19291i −0.144689 0.0997557i
\(144\) 0 0
\(145\) −5.99026 + 22.3559i −0.497464 + 1.85656i
\(146\) 0 0
\(147\) 0.798098 0.511037i 0.0658260 0.0421496i
\(148\) 0 0
\(149\) −2.03304 7.58742i −0.166553 0.621585i −0.997837 0.0657369i \(-0.979060\pi\)
0.831284 0.555848i \(-0.187606\pi\)
\(150\) 0 0
\(151\) −10.2600 + 10.2600i −0.834946 + 0.834946i −0.988189 0.153243i \(-0.951028\pi\)
0.153243 + 0.988189i \(0.451028\pi\)
\(152\) 0 0
\(153\) −1.37329 + 2.98087i −0.111024 + 0.240989i
\(154\) 0 0
\(155\) −35.9172 −2.88494
\(156\) 0 0
\(157\) −6.71547 −0.535953 −0.267976 0.963425i \(-0.586355\pi\)
−0.267976 + 0.963425i \(0.586355\pi\)
\(158\) 0 0
\(159\) −0.242157 5.26740i −0.0192043 0.417732i
\(160\) 0 0
\(161\) 3.14864 3.14864i 0.248148 0.248148i
\(162\) 0 0
\(163\) 0.407550 + 1.52100i 0.0319217 + 0.119134i 0.980048 0.198760i \(-0.0636913\pi\)
−0.948127 + 0.317893i \(0.897025\pi\)
\(164\) 0 0
\(165\) 2.12720 + 3.32210i 0.165602 + 0.258625i
\(166\) 0 0
\(167\) 6.32673 23.6117i 0.489577 1.82713i −0.0689223 0.997622i \(-0.521956\pi\)
0.558499 0.829505i \(-0.311377\pi\)
\(168\) 0 0
\(169\) −10.0788 8.21088i −0.775289 0.631606i
\(170\) 0 0
\(171\) −3.86682 + 1.42765i −0.295703 + 0.109175i
\(172\) 0 0
\(173\) −10.3837 + 17.9850i −0.789456 + 1.36738i 0.136845 + 0.990593i \(0.456304\pi\)
−0.926301 + 0.376785i \(0.877029\pi\)
\(174\) 0 0
\(175\) 25.1935 6.75058i 1.90445 0.510296i
\(176\) 0 0
\(177\) 13.9961 4.44849i 1.05201 0.334369i
\(178\) 0 0
\(179\) 7.00018 + 12.1247i 0.523218 + 0.906241i 0.999635 + 0.0270211i \(0.00860212\pi\)
−0.476416 + 0.879220i \(0.658065\pi\)
\(180\) 0 0
\(181\) 25.5405i 1.89841i 0.314653 + 0.949207i \(0.398112\pi\)
−0.314653 + 0.949207i \(0.601888\pi\)
\(182\) 0 0
\(183\) −7.44098 + 14.3749i −0.550053 + 1.06262i
\(184\) 0 0
\(185\) −10.4727 + 6.04642i −0.769968 + 0.444541i
\(186\) 0 0
\(187\) −0.450899 0.450899i −0.0329730 0.0329730i
\(188\) 0 0
\(189\) 5.13552 + 12.1595i 0.373554 + 0.884473i
\(190\) 0 0
\(191\) 20.4783 + 11.8231i 1.48176 + 0.855493i 0.999786 0.0206939i \(-0.00658754\pi\)
0.481972 + 0.876187i \(0.339921\pi\)
\(192\) 0 0
\(193\) 10.2375 + 2.74313i 0.736912 + 0.197455i 0.607705 0.794163i \(-0.292090\pi\)
0.129207 + 0.991618i \(0.458757\pi\)
\(194\) 0 0
\(195\) 11.4738 + 21.5357i 0.821658 + 1.54221i
\(196\) 0 0
\(197\) −3.34959 0.897520i −0.238649 0.0639457i 0.137512 0.990500i \(-0.456089\pi\)
−0.376161 + 0.926554i \(0.622756\pi\)
\(198\) 0 0
\(199\) 2.67432 + 1.54402i 0.189577 + 0.109453i 0.591785 0.806096i \(-0.298424\pi\)
−0.402207 + 0.915549i \(0.631757\pi\)
\(200\) 0 0
\(201\) −2.44899 + 11.1686i −0.172738 + 0.787770i
\(202\) 0 0
\(203\) −10.6396 10.6396i −0.746752 0.746752i
\(204\) 0 0
\(205\) 17.9290 10.3513i 1.25222 0.722968i
\(206\) 0 0
\(207\) −3.03615 4.29376i −0.211027 0.298437i
\(208\) 0 0
\(209\) 0.800864i 0.0553969i
\(210\) 0 0
\(211\) −2.47900 4.29376i −0.170662 0.295595i 0.767990 0.640462i \(-0.221257\pi\)
−0.938651 + 0.344867i \(0.887924\pi\)
\(212\) 0 0
\(213\) 0.446205 + 1.40388i 0.0305734 + 0.0961921i
\(214\) 0 0
\(215\) −14.2205 + 3.81037i −0.969829 + 0.259865i
\(216\) 0 0
\(217\) 11.6752 20.2220i 0.792561 1.37276i
\(218\) 0 0
\(219\) −8.55181 + 9.37601i −0.577878 + 0.633572i
\(220\) 0 0
\(221\) −2.55731 3.00317i −0.172023 0.202015i
\(222\) 0 0
\(223\) −4.93415 + 18.4145i −0.330415 + 1.23313i 0.578340 + 0.815796i \(0.303701\pi\)
−0.908755 + 0.417330i \(0.862966\pi\)
\(224\) 0 0
\(225\) −2.82621 30.6729i −0.188414 2.04486i
\(226\) 0 0
\(227\) −1.38733 5.17758i −0.0920803 0.343648i 0.904480 0.426515i \(-0.140259\pi\)
−0.996561 + 0.0828671i \(0.973592\pi\)
\(228\) 0 0
\(229\) 2.78436 2.78436i 0.183996 0.183996i −0.609099 0.793094i \(-0.708469\pi\)
0.793094 + 0.609099i \(0.208469\pi\)
\(230\) 0 0
\(231\) −2.56186 + 0.117776i −0.168558 + 0.00774908i
\(232\) 0 0
\(233\) 3.83663 0.251346 0.125673 0.992072i \(-0.459891\pi\)
0.125673 + 0.992072i \(0.459891\pi\)
\(234\) 0 0
\(235\) −30.4538 −1.98659
\(236\) 0 0
\(237\) 22.6813 1.04272i 1.47331 0.0677320i
\(238\) 0 0
\(239\) −0.751524 + 0.751524i −0.0486121 + 0.0486121i −0.730995 0.682383i \(-0.760944\pi\)
0.682383 + 0.730995i \(0.260944\pi\)
\(240\) 0 0
\(241\) −7.23751 27.0107i −0.466209 1.73991i −0.652851 0.757487i \(-0.726427\pi\)
0.186642 0.982428i \(-0.440240\pi\)
\(242\) 0 0
\(243\) 15.1790 3.54930i 0.973734 0.227688i
\(244\) 0 0
\(245\) 0.553335 2.06507i 0.0353513 0.131933i
\(246\) 0 0
\(247\) 0.395956 4.93812i 0.0251941 0.314205i
\(248\) 0 0
\(249\) −8.50751 + 9.32743i −0.539141 + 0.591102i
\(250\) 0 0
\(251\) 7.56320 13.0998i 0.477385 0.826855i −0.522279 0.852775i \(-0.674918\pi\)
0.999664 + 0.0259196i \(0.00825138\pi\)
\(252\) 0 0
\(253\) 0.986923 0.264445i 0.0620473 0.0166255i
\(254\) 0 0
\(255\) 2.24270 + 7.05612i 0.140443 + 0.441871i
\(256\) 0 0
\(257\) −0.178601 0.309345i −0.0111408 0.0192964i 0.860401 0.509617i \(-0.170213\pi\)
−0.871542 + 0.490321i \(0.836880\pi\)
\(258\) 0 0
\(259\) 7.86174i 0.488505i
\(260\) 0 0
\(261\) −14.5091 + 10.2595i −0.898088 + 0.635044i
\(262\) 0 0
\(263\) −1.86002 + 1.07389i −0.114694 + 0.0662186i −0.556250 0.831015i \(-0.687760\pi\)
0.441556 + 0.897234i \(0.354427\pi\)
\(264\) 0 0
\(265\) −8.41133 8.41133i −0.516704 0.516704i
\(266\) 0 0
\(267\) 3.59484 16.3942i 0.220000 1.00331i
\(268\) 0 0
\(269\) 21.2380 + 12.2618i 1.29490 + 0.747612i 0.979519 0.201352i \(-0.0645335\pi\)
0.315384 + 0.948964i \(0.397867\pi\)
\(270\) 0 0
\(271\) 21.1790 + 5.67488i 1.28653 + 0.344725i 0.836341 0.548209i \(-0.184690\pi\)
0.450189 + 0.892934i \(0.351357\pi\)
\(272\) 0 0
\(273\) −15.8546 0.540407i −0.959566 0.0327069i
\(274\) 0 0
\(275\) 5.78083 + 1.54897i 0.348597 + 0.0934063i
\(276\) 0 0
\(277\) −16.1517 9.32517i −0.970460 0.560295i −0.0710833 0.997470i \(-0.522646\pi\)
−0.899376 + 0.437175i \(0.855979\pi\)
\(278\) 0 0
\(279\) −21.2063 17.6281i −1.26959 1.05537i
\(280\) 0 0
\(281\) −11.2782 11.2782i −0.672801 0.672801i 0.285560 0.958361i \(-0.407820\pi\)
−0.958361 + 0.285560i \(0.907820\pi\)
\(282\) 0 0
\(283\) −4.08342 + 2.35756i −0.242734 + 0.140143i −0.616433 0.787408i \(-0.711423\pi\)
0.373699 + 0.927550i \(0.378089\pi\)
\(284\) 0 0
\(285\) −4.27467 + 8.25803i −0.253210 + 0.489164i
\(286\) 0 0
\(287\) 13.4591i 0.794466i
\(288\) 0 0
\(289\) 7.90158 + 13.6859i 0.464799 + 0.805055i
\(290\) 0 0
\(291\) −1.01244 + 0.321793i −0.0593505 + 0.0188638i
\(292\) 0 0
\(293\) 20.6276 5.52716i 1.20508 0.322900i 0.400250 0.916406i \(-0.368923\pi\)
0.804830 + 0.593506i \(0.202257\pi\)
\(294\) 0 0
\(295\) 16.5653 28.6920i 0.964471 1.67051i
\(296\) 0 0
\(297\) −0.374533 + 3.00547i −0.0217326 + 0.174395i
\(298\) 0 0
\(299\) 6.21610 1.14262i 0.359486 0.0660795i
\(300\) 0 0
\(301\) 2.47718 9.24496i 0.142782 0.532870i
\(302\) 0 0
\(303\) −5.45061 8.51234i −0.313130 0.489021i
\(304\) 0 0
\(305\) 9.45097 + 35.2715i 0.541161 + 2.01964i
\(306\) 0 0
\(307\) 16.2259 16.2259i 0.926063 0.926063i −0.0713857 0.997449i \(-0.522742\pi\)
0.997449 + 0.0713857i \(0.0227421\pi\)
\(308\) 0 0
\(309\) 0.164904 + 3.58698i 0.00938104 + 0.204056i
\(310\) 0 0
\(311\) 32.8464 1.86255 0.931275 0.364317i \(-0.118697\pi\)
0.931275 + 0.364317i \(0.118697\pi\)
\(312\) 0 0
\(313\) 11.0629 0.625311 0.312655 0.949867i \(-0.398782\pi\)
0.312655 + 0.949867i \(0.398782\pi\)
\(314\) 0 0
\(315\) 27.0450 + 12.4597i 1.52381 + 0.702024i
\(316\) 0 0
\(317\) 17.5500 17.5500i 0.985704 0.985704i −0.0141948 0.999899i \(-0.504519\pi\)
0.999899 + 0.0141948i \(0.00451851\pi\)
\(318\) 0 0
\(319\) −0.893587 3.33491i −0.0500313 0.186719i
\(320\) 0 0
\(321\) 5.04481 3.23029i 0.281574 0.180297i
\(322\) 0 0
\(323\) 0.389041 1.45192i 0.0216468 0.0807870i
\(324\) 0 0
\(325\) 34.8787 + 12.4090i 1.93472 + 0.688329i
\(326\) 0 0
\(327\) −19.8895 18.1411i −1.09989 1.00321i
\(328\) 0 0
\(329\) 9.89925 17.1460i 0.545763 0.945290i
\(330\) 0 0
\(331\) −4.46639 + 1.19677i −0.245495 + 0.0657803i −0.379468 0.925205i \(-0.623893\pi\)
0.133973 + 0.990985i \(0.457226\pi\)
\(332\) 0 0
\(333\) −9.15090 1.57005i −0.501466 0.0860380i
\(334\) 0 0
\(335\) 12.8970 + 22.3383i 0.704640 + 1.22047i
\(336\) 0 0
\(337\) 7.78436i 0.424041i 0.977265 + 0.212021i \(0.0680044\pi\)
−0.977265 + 0.212021i \(0.931996\pi\)
\(338\) 0 0
\(339\) 16.7618 + 8.67656i 0.910378 + 0.471246i
\(340\) 0 0
\(341\) 4.64007 2.67895i 0.251274 0.145073i
\(342\) 0 0
\(343\) 13.5564 + 13.5564i 0.731976 + 0.731976i
\(344\) 0 0
\(345\) −11.5881 2.54098i −0.623880 0.136802i
\(346\) 0 0
\(347\) 9.39077 + 5.42177i 0.504123 + 0.291056i 0.730415 0.683004i \(-0.239327\pi\)
−0.226292 + 0.974060i \(0.572660\pi\)
\(348\) 0 0
\(349\) 14.8487 + 3.97869i 0.794830 + 0.212974i 0.633313 0.773896i \(-0.281695\pi\)
0.161517 + 0.986870i \(0.448361\pi\)
\(350\) 0 0
\(351\) −3.79531 + 18.3465i −0.202579 + 0.979266i
\(352\) 0 0
\(353\) 1.80378 + 0.483321i 0.0960054 + 0.0257246i 0.306502 0.951870i \(-0.400841\pi\)
−0.210497 + 0.977595i \(0.567508\pi\)
\(354\) 0 0
\(355\) 2.87795 + 1.66158i 0.152745 + 0.0881876i
\(356\) 0 0
\(357\) −4.70171 1.03097i −0.248841 0.0545647i
\(358\) 0 0
\(359\) −12.1336 12.1336i −0.640387 0.640387i 0.310264 0.950650i \(-0.399583\pi\)
−0.950650 + 0.310264i \(0.899583\pi\)
\(360\) 0 0
\(361\) −14.8196 + 8.55608i −0.779978 + 0.450320i
\(362\) 0 0
\(363\) 16.3975 + 8.48796i 0.860645 + 0.445503i
\(364\) 0 0
\(365\) 28.6283i 1.49847i
\(366\) 0 0
\(367\) −4.53141 7.84863i −0.236538 0.409695i 0.723181 0.690659i \(-0.242679\pi\)
−0.959718 + 0.280964i \(0.909346\pi\)
\(368\) 0 0
\(369\) 15.6661 + 2.68788i 0.815546 + 0.139926i
\(370\) 0 0
\(371\) 7.46988 2.00155i 0.387817 0.103915i
\(372\) 0 0
\(373\) 3.78793 6.56090i 0.196132 0.339710i −0.751139 0.660144i \(-0.770495\pi\)
0.947271 + 0.320434i \(0.103829\pi\)
\(374\) 0 0
\(375\) −26.3394 24.0241i −1.36016 1.24060i
\(376\) 0 0
\(377\) −3.86103 21.0048i −0.198853 1.08180i
\(378\) 0 0
\(379\) −3.12578 + 11.6656i −0.160561 + 0.599221i 0.838004 + 0.545664i \(0.183722\pi\)
−0.998565 + 0.0535568i \(0.982944\pi\)
\(380\) 0 0
\(381\) −13.5847 + 8.69856i −0.695967 + 0.445641i
\(382\) 0 0
\(383\) 9.53291 + 35.5773i 0.487109 + 1.81792i 0.570371 + 0.821387i \(0.306800\pi\)
−0.0832617 + 0.996528i \(0.526534\pi\)
\(384\) 0 0
\(385\) −4.09094 + 4.09094i −0.208494 + 0.208494i
\(386\) 0 0
\(387\) −10.2662 4.72967i −0.521862 0.240423i
\(388\) 0 0
\(389\) −14.1012 −0.714961 −0.357481 0.933921i \(-0.616364\pi\)
−0.357481 + 0.933921i \(0.616364\pi\)
\(390\) 0 0
\(391\) 1.91770 0.0969820
\(392\) 0 0
\(393\) 0.0730070 + 1.58805i 0.00368272 + 0.0801064i
\(394\) 0 0
\(395\) 36.2189 36.2189i 1.82237 1.82237i
\(396\) 0 0
\(397\) −2.03222 7.58436i −0.101994 0.380648i 0.895992 0.444069i \(-0.146466\pi\)
−0.997987 + 0.0634210i \(0.979799\pi\)
\(398\) 0 0
\(399\) −3.25989 5.09105i −0.163199 0.254871i
\(400\) 0 0
\(401\) 5.65677 21.1113i 0.282485 1.05425i −0.668172 0.744007i \(-0.732923\pi\)
0.950657 0.310243i \(-0.100410\pi\)
\(402\) 0 0
\(403\) 29.9351 14.2243i 1.49118 0.708561i
\(404\) 0 0
\(405\) 19.9039 28.9916i 0.989033 1.44060i
\(406\) 0 0
\(407\) 0.901965 1.56225i 0.0447088 0.0774378i
\(408\) 0 0
\(409\) 2.16512 0.580141i 0.107058 0.0286861i −0.204892 0.978785i \(-0.565684\pi\)
0.311950 + 0.950098i \(0.399018\pi\)
\(410\) 0 0
\(411\) −14.2266 + 4.52173i −0.701744 + 0.223041i
\(412\) 0 0
\(413\) 10.7694 + 18.6531i 0.529926 + 0.917860i
\(414\) 0 0
\(415\) 28.4800i 1.39803i
\(416\) 0 0
\(417\) 2.63809 5.09640i 0.129188 0.249572i
\(418\) 0 0
\(419\) −28.9126 + 16.6927i −1.41247 + 0.815491i −0.995621 0.0934844i \(-0.970199\pi\)
−0.416851 + 0.908975i \(0.636866\pi\)
\(420\) 0 0
\(421\) 2.25285 + 2.25285i 0.109797 + 0.109797i 0.759871 0.650074i \(-0.225262\pi\)
−0.650074 + 0.759871i \(0.725262\pi\)
\(422\) 0 0
\(423\) −17.9807 14.9467i −0.874250 0.726734i
\(424\) 0 0
\(425\) 9.72786 + 5.61638i 0.471870 + 0.272435i
\(426\) 0 0
\(427\) −22.9305 6.14422i −1.10969 0.297339i
\(428\) 0 0
\(429\) −3.08856 1.92636i −0.149117 0.0930058i
\(430\) 0 0
\(431\) −20.9452 5.61224i −1.00889 0.270332i −0.283727 0.958905i \(-0.591571\pi\)
−0.725167 + 0.688573i \(0.758238\pi\)
\(432\) 0 0
\(433\) 26.0258 + 15.0260i 1.25072 + 0.722103i 0.971252 0.238053i \(-0.0765091\pi\)
0.279466 + 0.960155i \(0.409842\pi\)
\(434\) 0 0
\(435\) −8.58622 + 39.1573i −0.411678 + 1.87745i
\(436\) 0 0
\(437\) 1.70306 + 1.70306i 0.0814682 + 0.0814682i
\(438\) 0 0
\(439\) 18.0531 10.4229i 0.861626 0.497460i −0.00293019 0.999996i \(-0.500933\pi\)
0.864557 + 0.502535i \(0.167599\pi\)
\(440\) 0 0
\(441\) 1.34024 0.947691i 0.0638209 0.0451282i
\(442\) 0 0
\(443\) 13.0363i 0.619374i 0.950839 + 0.309687i \(0.100224\pi\)
−0.950839 + 0.309687i \(0.899776\pi\)
\(444\) 0 0
\(445\) −18.9314 32.7901i −0.897433 1.55440i
\(446\) 0 0
\(447\) −4.12114 12.9662i −0.194923 0.613281i
\(448\) 0 0
\(449\) −18.3916 + 4.92801i −0.867953 + 0.232567i −0.665202 0.746663i \(-0.731655\pi\)
−0.202750 + 0.979230i \(0.564988\pi\)
\(450\) 0 0
\(451\) −1.54414 + 2.67453i −0.0727109 + 0.125939i
\(452\) 0 0
\(453\) −16.9360 + 18.5682i −0.795720 + 0.872409i
\(454\) 0 0
\(455\) −27.2473 + 23.2021i −1.27737 + 1.08773i
\(456\) 0 0
\(457\) −5.50257 + 20.5359i −0.257399 + 0.960627i 0.709341 + 0.704866i \(0.248993\pi\)
−0.966740 + 0.255761i \(0.917674\pi\)
\(458\) 0 0
\(459\) −2.13900 + 5.26681i −0.0998398 + 0.245834i
\(460\) 0 0
\(461\) 0.395195 + 1.47489i 0.0184061 + 0.0686924i 0.974518 0.224309i \(-0.0720125\pi\)
−0.956112 + 0.293002i \(0.905346\pi\)
\(462\) 0 0
\(463\) 21.3272 21.3272i 0.991159 0.991159i −0.00880240 0.999961i \(-0.502802\pi\)
0.999961 + 0.00880240i \(0.00280193\pi\)
\(464\) 0 0
\(465\) −62.1448 + 2.85697i −2.88189 + 0.132489i
\(466\) 0 0
\(467\) −11.2935 −0.522601 −0.261300 0.965258i \(-0.584151\pi\)
−0.261300 + 0.965258i \(0.584151\pi\)
\(468\) 0 0
\(469\) −16.7691 −0.774326
\(470\) 0 0
\(471\) −11.6193 + 0.534170i −0.535387 + 0.0246133i
\(472\) 0 0
\(473\) 1.55291 1.55291i 0.0714031 0.0714031i
\(474\) 0 0
\(475\) 3.65130 + 13.6268i 0.167533 + 0.625241i
\(476\) 0 0
\(477\) −0.837972 9.09451i −0.0383681 0.416409i
\(478\) 0 0
\(479\) 7.52517 28.0843i 0.343834 1.28320i −0.550135 0.835076i \(-0.685424\pi\)
0.893969 0.448129i \(-0.147910\pi\)
\(480\) 0 0
\(481\) 6.33390 9.18688i 0.288801 0.418885i
\(482\) 0 0
\(483\) 5.19740 5.69830i 0.236490 0.259282i
\(484\) 0 0
\(485\) −1.19829 + 2.07551i −0.0544118 + 0.0942440i
\(486\) 0 0
\(487\) −2.44743 + 0.655786i −0.110903 + 0.0297165i −0.313844 0.949475i \(-0.601617\pi\)
0.202940 + 0.979191i \(0.434950\pi\)
\(488\) 0 0
\(489\) 0.826137 + 2.59924i 0.0373592 + 0.117542i
\(490\) 0 0
\(491\) −18.4575 31.9694i −0.832978 1.44276i −0.895667 0.444726i \(-0.853301\pi\)
0.0626890 0.998033i \(-0.480032\pi\)
\(492\) 0 0
\(493\) 6.48009i 0.291849i
\(494\) 0 0
\(495\) 3.94478 + 5.57877i 0.177305 + 0.250747i
\(496\) 0 0
\(497\) −1.87100 + 1.08022i −0.0839256 + 0.0484545i
\(498\) 0 0
\(499\) −22.3461 22.3461i −1.00035 1.00035i −1.00000 0.000347536i \(-0.999889\pi\)
−0.000347536 1.00000i \(-0.500111\pi\)
\(500\) 0 0
\(501\) 9.06851 41.3567i 0.405151 1.84768i
\(502\) 0 0
\(503\) −20.2177 11.6727i −0.901464 0.520460i −0.0237889 0.999717i \(-0.507573\pi\)
−0.877675 + 0.479257i \(0.840906\pi\)
\(504\) 0 0
\(505\) −22.0256 5.90175i −0.980128 0.262625i
\(506\) 0 0
\(507\) −18.0916 13.4050i −0.803477 0.595335i
\(508\) 0 0
\(509\) −18.0113 4.82612i −0.798338 0.213914i −0.163484 0.986546i \(-0.552273\pi\)
−0.634854 + 0.772632i \(0.718940\pi\)
\(510\) 0 0
\(511\) −16.1182 9.30585i −0.713028 0.411667i
\(512\) 0 0
\(513\) −6.57690 + 2.77773i −0.290377 + 0.122640i
\(514\) 0 0
\(515\) 5.72793 + 5.72793i 0.252403 + 0.252403i
\(516\) 0 0
\(517\) 3.93427 2.27145i 0.173029 0.0998984i
\(518\) 0 0
\(519\) −16.5355 + 31.9441i −0.725827 + 1.40219i
\(520\) 0 0
\(521\) 20.1922i 0.884637i 0.896858 + 0.442318i \(0.145844\pi\)
−0.896858 + 0.442318i \(0.854156\pi\)
\(522\) 0 0
\(523\) 14.1118 + 24.4424i 0.617066 + 1.06879i 0.990018 + 0.140939i \(0.0450121\pi\)
−0.372952 + 0.927850i \(0.621655\pi\)
\(524\) 0 0
\(525\) 43.0534 13.6840i 1.87901 0.597218i
\(526\) 0 0
\(527\) 9.71355 2.60274i 0.423129 0.113377i
\(528\) 0 0
\(529\) 9.96363 17.2575i 0.433201 0.750327i
\(530\) 0 0
\(531\) 23.8626 8.81018i 1.03555 0.382329i
\(532\) 0 0
\(533\) −10.8435 + 15.7277i −0.469684 + 0.681243i
\(534\) 0 0
\(535\) 3.49765 13.0534i 0.151217 0.564349i
\(536\) 0 0
\(537\) 13.0763 + 20.4216i 0.564285 + 0.881256i
\(538\) 0 0
\(539\) 0.0825429 + 0.308054i 0.00355537 + 0.0132688i
\(540\) 0 0
\(541\) −13.2334 + 13.2334i −0.568947 + 0.568947i −0.931833 0.362887i \(-0.881791\pi\)
0.362887 + 0.931833i \(0.381791\pi\)
\(542\) 0 0
\(543\) 2.03158 + 44.1908i 0.0871833 + 1.89641i
\(544\) 0 0
\(545\) −60.7298 −2.60138
\(546\) 0 0
\(547\) 14.7212 0.629433 0.314717 0.949186i \(-0.398091\pi\)
0.314717 + 0.949186i \(0.398091\pi\)
\(548\) 0 0
\(549\) −11.7311 + 25.4636i −0.500673 + 1.08676i
\(550\) 0 0
\(551\) 5.75480 5.75480i 0.245163 0.245163i
\(552\) 0 0
\(553\) 8.61860 + 32.1651i 0.366500 + 1.36780i
\(554\) 0 0
\(555\) −17.6392 + 11.2947i −0.748741 + 0.479433i
\(556\) 0 0
\(557\) −3.19111 + 11.9094i −0.135212 + 0.504616i 0.864785 + 0.502142i \(0.167454\pi\)
−0.999997 + 0.00247467i \(0.999212\pi\)
\(558\) 0 0
\(559\) 10.3430 8.80748i 0.437464 0.372517i
\(560\) 0 0
\(561\) −0.816022 0.744291i −0.0344525 0.0314240i
\(562\) 0 0
\(563\) −9.86628 + 17.0889i −0.415814 + 0.720211i −0.995514 0.0946194i \(-0.969837\pi\)
0.579700 + 0.814830i \(0.303170\pi\)
\(564\) 0 0
\(565\) 41.1283 11.0203i 1.73028 0.463628i
\(566\) 0 0
\(567\) 9.85280 + 20.6302i 0.413779 + 0.866385i
\(568\) 0 0
\(569\) −17.4503 30.2248i −0.731555 1.26709i −0.956218 0.292654i \(-0.905462\pi\)
0.224663 0.974436i \(-0.427872\pi\)
\(570\) 0 0
\(571\) 2.37582i 0.0994248i −0.998764 0.0497124i \(-0.984170\pi\)
0.998764 0.0497124i \(-0.0158305\pi\)
\(572\) 0 0
\(573\) 36.3725 + 18.8278i 1.51948 + 0.786542i
\(574\) 0 0
\(575\) −15.5870 + 8.99915i −0.650022 + 0.375291i
\(576\) 0 0
\(577\) 3.78848 + 3.78848i 0.157716 + 0.157716i 0.781554 0.623838i \(-0.214427\pi\)
−0.623838 + 0.781554i \(0.714427\pi\)
\(578\) 0 0
\(579\) 17.9314 + 3.93191i 0.745202 + 0.163404i
\(580\) 0 0
\(581\) −16.0347 9.25764i −0.665232 0.384072i
\(582\) 0 0
\(583\) 1.71402 + 0.459269i 0.0709873 + 0.0190210i
\(584\) 0 0
\(585\) 21.5653 + 36.3490i 0.891615 + 1.50285i
\(586\) 0 0
\(587\) −9.81579 2.63013i −0.405141 0.108557i 0.0504929 0.998724i \(-0.483921\pi\)
−0.455634 + 0.890167i \(0.650587\pi\)
\(588\) 0 0
\(589\) 10.9378 + 6.31493i 0.450683 + 0.260202i
\(590\) 0 0
\(591\) −5.86693 1.28647i −0.241333 0.0529184i
\(592\) 0 0
\(593\) −9.76893 9.76893i −0.401162 0.401162i 0.477481 0.878642i \(-0.341550\pi\)
−0.878642 + 0.477481i \(0.841550\pi\)
\(594\) 0 0
\(595\) −9.40393 + 5.42936i −0.385523 + 0.222582i
\(596\) 0 0
\(597\) 4.74998 + 2.45877i 0.194404 + 0.100631i
\(598\) 0 0
\(599\) 35.2538i 1.44043i −0.693750 0.720216i \(-0.744043\pi\)
0.693750 0.720216i \(-0.255957\pi\)
\(600\) 0 0
\(601\) −4.57192 7.91880i −0.186493 0.323015i 0.757586 0.652736i \(-0.226379\pi\)
−0.944078 + 0.329721i \(0.893045\pi\)
\(602\) 0 0
\(603\) −3.34892 + 19.5189i −0.136378 + 0.794872i
\(604\) 0 0
\(605\) 40.2343 10.7808i 1.63576 0.438300i
\(606\) 0 0
\(607\) −9.96393 + 17.2580i −0.404423 + 0.700482i −0.994254 0.107045i \(-0.965861\pi\)
0.589831 + 0.807527i \(0.299194\pi\)
\(608\) 0 0
\(609\) −19.2552 17.5625i −0.780258 0.711670i
\(610\) 0 0
\(611\) 25.3817 12.0606i 1.02683 0.487920i
\(612\) 0 0
\(613\) −3.88890 + 14.5136i −0.157071 + 0.586198i 0.841848 + 0.539715i \(0.181468\pi\)
−0.998919 + 0.0464829i \(0.985199\pi\)
\(614\) 0 0
\(615\) 30.1978 19.3362i 1.21769 0.779712i
\(616\) 0 0
\(617\) −2.63629 9.83876i −0.106133 0.396094i 0.892338 0.451367i \(-0.149064\pi\)
−0.998471 + 0.0552736i \(0.982397\pi\)
\(618\) 0 0
\(619\) −18.1131 + 18.1131i −0.728027 + 0.728027i −0.970226 0.242199i \(-0.922131\pi\)
0.242199 + 0.970226i \(0.422131\pi\)
\(620\) 0 0
\(621\) −5.59475 7.18766i −0.224510 0.288431i
\(622\) 0 0
\(623\) 24.6151 0.986185
\(624\) 0 0
\(625\) −29.0857 −1.16343
\(626\) 0 0
\(627\) −0.0637033 1.38567i −0.00254406 0.0553385i
\(628\) 0 0
\(629\) 2.39412 2.39412i 0.0954596 0.0954596i
\(630\) 0 0
\(631\) 5.19785 + 19.3987i 0.206923 + 0.772248i 0.988855 + 0.148884i \(0.0475680\pi\)
−0.781931 + 0.623364i \(0.785765\pi\)
\(632\) 0 0
\(633\) −4.63077 7.23198i −0.184057 0.287445i
\(634\) 0 0
\(635\) −9.41853 + 35.1504i −0.373763 + 1.39490i
\(636\) 0 0
\(637\) 0.356653 + 1.94027i 0.0141311 + 0.0768763i
\(638\) 0 0
\(639\) 0.883703 + 2.39353i 0.0349587 + 0.0946866i
\(640\) 0 0
\(641\) 22.3417 38.6969i 0.882443 1.52844i 0.0338257 0.999428i \(-0.489231\pi\)
0.848617 0.529008i \(-0.177436\pi\)
\(642\) 0 0
\(643\) −8.68244 + 2.32645i −0.342402 + 0.0917463i −0.425922 0.904760i \(-0.640050\pi\)
0.0835204 + 0.996506i \(0.473384\pi\)
\(644\) 0 0
\(645\) −24.3015 + 7.72393i −0.956872 + 0.304130i
\(646\) 0 0
\(647\) −18.9869 32.8862i −0.746451 1.29289i −0.949514 0.313725i \(-0.898423\pi\)
0.203063 0.979166i \(-0.434910\pi\)
\(648\) 0 0
\(649\) 4.94222i 0.193999i
\(650\) 0 0
\(651\) 18.5921 35.9172i 0.728682 1.40771i
\(652\) 0 0
\(653\) −16.0116 + 9.24428i −0.626581 + 0.361757i −0.779427 0.626493i \(-0.784490\pi\)
0.152846 + 0.988250i \(0.451156\pi\)
\(654\) 0 0
\(655\) 2.53590 + 2.53590i 0.0990857 + 0.0990857i
\(656\) 0 0
\(657\) −14.0508 + 16.9028i −0.548172 + 0.659442i
\(658\) 0 0
\(659\) 0.644195 + 0.371926i 0.0250943 + 0.0144882i 0.512495 0.858690i \(-0.328721\pi\)
−0.487400 + 0.873179i \(0.662055\pi\)
\(660\) 0 0
\(661\) 27.0849 + 7.25737i 1.05348 + 0.282279i 0.743689 0.668526i \(-0.233075\pi\)
0.309790 + 0.950805i \(0.399741\pi\)
\(662\) 0 0
\(663\) −4.66360 4.99274i −0.181119 0.193902i
\(664\) 0 0
\(665\) −13.1731 3.52971i −0.510829 0.136876i
\(666\) 0 0
\(667\) 8.99201 + 5.19154i 0.348172 + 0.201017i
\(668\) 0 0
\(669\) −7.07243 + 32.2537i −0.273436 + 1.24700i
\(670\) 0 0
\(671\) −3.85174 3.85174i −0.148695 0.148695i
\(672\) 0 0
\(673\) 23.9347 13.8187i 0.922615 0.532672i 0.0381465 0.999272i \(-0.487855\pi\)
0.884468 + 0.466600i \(0.154521\pi\)
\(674\) 0 0
\(675\) −7.32980 52.8461i −0.282124 2.03405i
\(676\) 0 0
\(677\) 34.0927i 1.31029i −0.755504 0.655145i \(-0.772608\pi\)
0.755504 0.655145i \(-0.227392\pi\)
\(678\) 0 0
\(679\) −0.779030 1.34932i −0.0298964 0.0517821i
\(680\) 0 0
\(681\) −2.81223 8.84802i −0.107765 0.339057i
\(682\) 0 0
\(683\) −22.5100 + 6.03154i −0.861322 + 0.230790i −0.662331 0.749211i \(-0.730433\pi\)
−0.198990 + 0.980001i \(0.563766\pi\)
\(684\) 0 0
\(685\) −16.8381 + 29.1644i −0.643350 + 1.11431i
\(686\) 0 0
\(687\) 4.59609 5.03904i 0.175352 0.192251i
\(688\) 0 0
\(689\) 10.3415 + 3.67928i 0.393981 + 0.140169i
\(690\) 0 0
\(691\) −2.64500 + 9.87128i −0.100621 + 0.375521i −0.997812 0.0661216i \(-0.978937\pi\)
0.897191 + 0.441643i \(0.145604\pi\)
\(692\) 0 0
\(693\) −4.42322 + 0.407557i −0.168024 + 0.0154818i
\(694\) 0 0
\(695\) −3.35070 12.5050i −0.127099 0.474341i
\(696\) 0 0
\(697\) −4.09867 + 4.09867i −0.155248 + 0.155248i
\(698\) 0 0
\(699\) 6.63822 0.305178i 0.251081 0.0115429i
\(700\) 0 0
\(701\) 31.9420 1.20643 0.603217 0.797577i \(-0.293885\pi\)
0.603217 + 0.797577i \(0.293885\pi\)
\(702\) 0 0
\(703\) 4.25230 0.160379
\(704\) 0 0
\(705\) −52.6920 + 2.42240i −1.98449 + 0.0912328i
\(706\) 0 0
\(707\) 10.4824 10.4824i 0.394231 0.394231i
\(708\) 0 0
\(709\) 1.92196 + 7.17283i 0.0721805 + 0.269381i 0.992579 0.121600i \(-0.0388024\pi\)
−0.920399 + 0.390981i \(0.872136\pi\)
\(710\) 0 0
\(711\) 39.1607 3.60828i 1.46864 0.135321i
\(712\) 0 0
\(713\) −4.17038 + 15.5641i −0.156182 + 0.582879i
\(714\) 0 0
\(715\) −8.07641 + 1.48458i −0.302041 + 0.0555200i
\(716\) 0 0
\(717\) −1.24053 + 1.36008i −0.0463283 + 0.0507933i
\(718\) 0 0
\(719\) −14.4593 + 25.0442i −0.539240 + 0.933992i 0.459705 + 0.888072i \(0.347955\pi\)
−0.998945 + 0.0459198i \(0.985378\pi\)
\(720\) 0 0
\(721\) −5.08682 + 1.36301i −0.189443 + 0.0507612i
\(722\) 0 0
\(723\) −14.6710 46.1589i −0.545621 1.71667i
\(724\) 0 0
\(725\) 30.4091 + 52.6700i 1.12936 + 1.95612i
\(726\) 0 0
\(727\) 13.5518i 0.502608i −0.967908 0.251304i \(-0.919141\pi\)
0.967908 0.251304i \(-0.0808594\pi\)
\(728\) 0 0
\(729\) 25.9808 7.34847i 0.962250 0.272166i
\(730\) 0 0
\(731\) 3.56971 2.06098i 0.132031 0.0762279i
\(732\) 0 0
\(733\) −13.9665 13.9665i −0.515864 0.515864i 0.400453 0.916317i \(-0.368853\pi\)
−0.916317 + 0.400453i \(0.868853\pi\)
\(734\) 0 0
\(735\) 0.793130 3.61705i 0.0292551 0.133417i
\(736\) 0 0
\(737\) −3.33228 1.92390i −0.122746 0.0708676i
\(738\) 0 0
\(739\) 1.90239 + 0.509744i 0.0699806 + 0.0187512i 0.293639 0.955916i \(-0.405133\pi\)
−0.223659 + 0.974667i \(0.571800\pi\)
\(740\) 0 0
\(741\) 0.292298 8.57554i 0.0107378 0.315030i
\(742\) 0 0
\(743\) −5.78030 1.54883i −0.212059 0.0568210i 0.151226 0.988499i \(-0.451678\pi\)
−0.363284 + 0.931678i \(0.618345\pi\)
\(744\) 0 0
\(745\) −26.5807 15.3464i −0.973841 0.562247i
\(746\) 0 0
\(747\) −13.9780 + 16.8153i −0.511427 + 0.615238i
\(748\) 0 0
\(749\) 6.21235 + 6.21235i 0.226994 + 0.226994i
\(750\) 0 0
\(751\) 15.1590 8.75204i 0.553159 0.319366i −0.197236 0.980356i \(-0.563197\pi\)
0.750395 + 0.660990i \(0.229863\pi\)
\(752\) 0 0
\(753\) 12.0440 23.2673i 0.438909 0.847906i
\(754\) 0 0
\(755\) 56.6953i 2.06335i
\(756\) 0 0
\(757\) −4.00168 6.93111i −0.145443 0.251915i 0.784095 0.620641i \(-0.213128\pi\)
−0.929538 + 0.368726i \(0.879794\pi\)
\(758\) 0 0
\(759\) 1.68656 0.536052i 0.0612183 0.0194575i
\(760\) 0 0
\(761\) −18.9310 + 5.07254i −0.686247 + 0.183879i −0.585062 0.810988i \(-0.698930\pi\)
−0.101185 + 0.994868i \(0.532263\pi\)
\(762\) 0 0
\(763\) 19.7407 34.1918i 0.714660 1.23783i
\(764\) 0 0
\(765\) 4.44163 + 12.0303i 0.160588 + 0.434955i
\(766\) 0 0
\(767\) −2.44349 + 30.4737i −0.0882293 + 1.10034i
\(768\) 0 0
\(769\) 11.1131 41.4747i 0.400749 1.49561i −0.411015 0.911629i \(-0.634826\pi\)
0.811764 0.583986i \(-0.198508\pi\)
\(770\) 0 0
\(771\) −0.333625 0.521030i −0.0120152 0.0187644i
\(772\) 0 0
\(773\) 2.39809 + 8.94981i 0.0862535 + 0.321902i 0.995549 0.0942495i \(-0.0300451\pi\)
−0.909295 + 0.416152i \(0.863378\pi\)
\(774\) 0 0
\(775\) −66.7377 + 66.7377i −2.39729 + 2.39729i
\(776\) 0 0
\(777\) −0.625348 13.6026i −0.0224342 0.487989i
\(778\) 0 0
\(779\) −7.27984 −0.260827
\(780\) 0 0
\(781\) −0.495728 −0.0177385
\(782\) 0 0
\(783\) −24.2878 + 18.9052i −0.867977 + 0.675618i
\(784\) 0 0
\(785\) −18.5544 + 18.5544i −0.662235 + 0.662235i
\(786\) 0 0
\(787\) 11.0255 + 41.1479i 0.393018 + 1.46676i 0.825130 + 0.564943i \(0.191102\pi\)
−0.432112 + 0.901820i \(0.642231\pi\)
\(788\) 0 0
\(789\) −3.13284 + 2.00601i −0.111532 + 0.0714160i
\(790\) 0 0
\(791\) −7.16447 + 26.7382i −0.254739 + 0.950699i
\(792\) 0 0
\(793\) −21.8454 25.6541i −0.775754 0.911004i
\(794\) 0 0
\(795\) −15.2225 13.8844i −0.539888 0.492429i
\(796\) 0 0
\(797\) 10.5161 18.2144i 0.372499 0.645187i −0.617450 0.786610i \(-0.711834\pi\)
0.989949 + 0.141423i \(0.0451677\pi\)
\(798\) 0 0
\(799\) 8.23603 2.20684i 0.291370 0.0780723i
\(800\) 0 0
\(801\) 4.91582 28.6515i 0.173692 1.01235i
\(802\) 0 0
\(803\) −2.13529 3.69844i −0.0753529 0.130515i
\(804\) 0 0
\(805\) 17.3990i 0.613233i
\(806\) 0 0
\(807\) 37.7218 + 19.5262i 1.32787 + 0.687356i
\(808\) 0 0
\(809\) 23.4871 13.5603i 0.825762 0.476754i −0.0266373 0.999645i \(-0.508480\pi\)
0.852399 + 0.522891i \(0.175147\pi\)
\(810\) 0 0
\(811\) −39.1597 39.1597i −1.37508 1.37508i −0.852726 0.522359i \(-0.825052\pi\)
−0.522359 0.852726i \(-0.674948\pi\)
\(812\) 0 0
\(813\) 37.0957 + 8.13417i 1.30100 + 0.285278i
\(814\) 0 0
\(815\) 5.32844 + 3.07638i 0.186647 + 0.107761i
\(816\) 0 0
\(817\) 5.00047 + 1.33987i 0.174944 + 0.0468762i
\(818\) 0 0
\(819\) −27.4750 + 0.326104i −0.960055 + 0.0113950i
\(820\) 0 0
\(821\) 8.30053 + 2.22412i 0.289690 + 0.0776223i 0.400738 0.916193i \(-0.368754\pi\)
−0.111047 + 0.993815i \(0.535421\pi\)
\(822\) 0 0
\(823\) 7.37175 + 4.25608i 0.256963 + 0.148358i 0.622948 0.782263i \(-0.285935\pi\)
−0.365985 + 0.930621i \(0.619268\pi\)
\(824\) 0 0
\(825\) 10.1253 + 2.22024i 0.352519 + 0.0772987i
\(826\) 0 0
\(827\) 18.9976 + 18.9976i 0.660613 + 0.660613i 0.955524 0.294912i \(-0.0952903\pi\)
−0.294912 + 0.955524i \(0.595290\pi\)
\(828\) 0 0
\(829\) 14.3179 8.26645i 0.497282 0.287106i −0.230309 0.973118i \(-0.573974\pi\)
0.727590 + 0.686012i \(0.240640\pi\)
\(830\) 0 0
\(831\) −28.6877 14.8499i −0.995167 0.515136i
\(832\) 0 0
\(833\) 0.598582i 0.0207396i
\(834\) 0 0
\(835\) −47.7572 82.7179i −1.65271 2.86257i
\(836\) 0 0
\(837\) −38.0939 28.8138i −1.31672 0.995950i
\(838\) 0 0
\(839\) 40.0647 10.7353i 1.38319 0.370623i 0.510908 0.859635i \(-0.329309\pi\)
0.872277 + 0.489012i \(0.162643\pi\)
\(840\) 0 0
\(841\) 3.04274 5.27017i 0.104922 0.181730i
\(842\) 0 0
\(843\) −20.4109 18.6167i −0.702989 0.641193i
\(844\) 0 0
\(845\) −50.5331 + 5.16081i −1.73839 + 0.177537i
\(846\) 0 0
\(847\) −7.00873 + 26.1570i −0.240823 + 0.898763i
\(848\) 0 0
\(849\) −6.87770 + 4.40392i −0.236042 + 0.151142i
\(850\) 0 0
\(851\) 1.40411 + 5.24021i 0.0481323 + 0.179632i
\(852\) 0 0
\(853\) −13.7858 + 13.7858i −0.472018 + 0.472018i −0.902567 0.430549i \(-0.858320\pi\)
0.430549 + 0.902567i \(0.358320\pi\)
\(854\) 0 0
\(855\) −6.73927 + 14.6283i −0.230478 + 0.500276i
\(856\) 0 0
\(857\) 41.5499 1.41932 0.709659 0.704545i \(-0.248849\pi\)
0.709659 + 0.704545i \(0.248849\pi\)
\(858\) 0 0
\(859\) −44.2270 −1.50900 −0.754502 0.656298i \(-0.772122\pi\)
−0.754502 + 0.656298i \(0.772122\pi\)
\(860\) 0 0
\(861\) 1.07058 + 23.2873i 0.0364853 + 0.793628i
\(862\) 0 0
\(863\) 14.7459 14.7459i 0.501956 0.501956i −0.410089 0.912045i \(-0.634502\pi\)
0.912045 + 0.410089i \(0.134502\pi\)
\(864\) 0 0
\(865\) 21.0021 + 78.3809i 0.714093 + 2.66503i
\(866\) 0 0
\(867\) 14.7601 + 23.0512i 0.501280 + 0.782860i
\(868\) 0 0
\(869\) −1.97760 + 7.38050i −0.0670855 + 0.250366i
\(870\) 0 0
\(871\) −19.5956 13.5102i −0.663973 0.457777i
\(872\) 0 0
\(873\) −1.72616 + 0.637306i −0.0584216 + 0.0215695i
\(874\) 0 0
\(875\) 26.1424 45.2799i 0.883773 1.53074i
\(876\) 0 0
\(877\) −43.6140 + 11.6863i −1.47274 + 0.394620i −0.903870 0.427808i \(-0.859286\pi\)
−0.568870 + 0.822427i \(0.692619\pi\)
\(878\) 0 0
\(879\) 35.2508 11.2040i 1.18898 0.377902i
\(880\) 0 0
\(881\) −15.5665 26.9620i −0.524448 0.908371i −0.999595 0.0284646i \(-0.990938\pi\)
0.475146 0.879907i \(-0.342395\pi\)
\(882\) 0 0
\(883\) 45.7983i 1.54123i 0.637298 + 0.770617i \(0.280052\pi\)
−0.637298 + 0.770617i \(0.719948\pi\)
\(884\) 0 0
\(885\) 26.3795 50.9612i 0.886737 1.71304i
\(886\) 0 0
\(887\) 25.6110 14.7865i 0.859933 0.496482i −0.00405708 0.999992i \(-0.501291\pi\)
0.863990 + 0.503509i \(0.167958\pi\)
\(888\) 0 0
\(889\) −16.7287 16.7287i −0.561062 0.561062i
\(890\) 0 0
\(891\) −0.408961 + 5.22993i −0.0137007 + 0.175209i
\(892\) 0 0
\(893\) 9.27404 + 5.35437i 0.310344 + 0.179177i
\(894\) 0 0
\(895\) 52.8407 + 14.1586i 1.76627 + 0.473271i
\(896\) 0 0
\(897\) 10.6644 2.47144i 0.356073 0.0825189i
\(898\) 0 0
\(899\) 52.5926 + 14.0921i 1.75406 + 0.469999i
\(900\) 0 0
\(901\) 2.88431 + 1.66526i 0.0960903 + 0.0554778i
\(902\) 0 0
\(903\) 3.55070 16.1929i 0.118160 0.538865i
\(904\) 0 0
\(905\) 70.5668 + 70.5668i 2.34572 + 2.34572i
\(906\) 0 0
\(907\) 50.3199 29.0522i 1.67085 0.964663i 0.703679 0.710518i \(-0.251539\pi\)
0.967166 0.254145i \(-0.0817942\pi\)
\(908\) 0 0
\(909\) −10.1079 14.2947i −0.335257 0.474125i
\(910\) 0 0
\(911\) 52.8673i 1.75157i −0.482701 0.875785i \(-0.660344\pi\)
0.482701 0.875785i \(-0.339656\pi\)
\(912\) 0 0
\(913\) −2.12423 3.67928i −0.0703018 0.121766i
\(914\) 0 0
\(915\) 19.1579 + 60.2758i 0.633340 + 1.99266i
\(916\) 0 0
\(917\) −2.25207 + 0.603439i −0.0743697 + 0.0199273i
\(918\) 0 0
\(919\) −3.07508 + 5.32620i −0.101438 + 0.175695i −0.912277 0.409573i \(-0.865678\pi\)
0.810840 + 0.585269i \(0.199011\pi\)
\(920\) 0 0
\(921\) 26.7838 29.3652i 0.882557 0.967615i
\(922\) 0 0
\(923\) −3.05665 0.245094i −0.100611 0.00806735i
\(924\) 0 0
\(925\) −8.22447 + 30.6942i −0.270419 + 1.00922i
\(926\) 0 0
\(927\) 0.570641 + 6.19317i 0.0187423 + 0.203410i
\(928\) 0 0
\(929\) 9.26432 + 34.5749i 0.303952 + 1.13437i 0.933843 + 0.357682i \(0.116433\pi\)
−0.629891 + 0.776684i \(0.716900\pi\)
\(930\) 0 0
\(931\) −0.531585 + 0.531585i −0.0174220 + 0.0174220i
\(932\) 0 0
\(933\) 56.8317 2.61271i 1.86059 0.0855363i
\(934\) 0 0
\(935\) −2.49161 −0.0814844
\(936\) 0 0
\(937\) −13.8585 −0.452737 −0.226369 0.974042i \(-0.572685\pi\)
−0.226369 + 0.974042i \(0.572685\pi\)
\(938\) 0 0
\(939\) 19.1412 0.879977i 0.624651 0.0287170i
\(940\) 0 0
\(941\) 10.8257 10.8257i 0.352908 0.352908i −0.508283 0.861190i \(-0.669719\pi\)
0.861190 + 0.508283i \(0.169719\pi\)
\(942\) 0 0
\(943\) −2.40380 8.97112i −0.0782786 0.292140i
\(944\) 0 0
\(945\) 47.7850 + 19.4068i 1.55445 + 0.631303i
\(946\) 0 0
\(947\) −5.50870 + 20.5588i −0.179009 + 0.668070i 0.816825 + 0.576885i \(0.195732\pi\)
−0.995834 + 0.0911846i \(0.970935\pi\)
\(948\) 0 0
\(949\) −11.3376 23.8602i −0.368036 0.774536i
\(950\) 0 0
\(951\) 28.9694 31.7613i 0.939397 1.02993i
\(952\) 0 0
\(953\) −10.3217 + 17.8776i −0.334351 + 0.579114i −0.983360 0.181667i \(-0.941851\pi\)
0.649009 + 0.760781i \(0.275184\pi\)
\(954\) 0 0
\(955\) 89.2468 23.9136i 2.88796 0.773826i
\(956\) 0 0
\(957\) −1.81138 5.69907i −0.0585535 0.184225i
\(958\) 0 0
\(959\) −10.9467 18.9602i −0.353487 0.612257i
\(960\) 0 0
\(961\) 53.4956i 1.72566i
\(962\) 0 0
\(963\) 8.47170 5.99040i 0.272997 0.193038i
\(964\) 0 0
\(965\) 35.8646 20.7065i 1.15452 0.666565i
\(966\) 0 0
\(967\) 3.56933 + 3.56933i 0.114782 + 0.114782i 0.762165 0.647383i \(-0.224137\pi\)
−0.647383 + 0.762165i \(0.724137\pi\)
\(968\) 0 0
\(969\) 0.557637 2.54309i 0.0179139 0.0816959i
\(970\) 0 0
\(971\) −32.0913 18.5279i −1.02986 0.594590i −0.112916 0.993605i \(-0.536019\pi\)
−0.916945 + 0.399014i \(0.869352\pi\)
\(972\) 0 0
\(973\) 8.12969 + 2.17834i 0.260626 + 0.0698345i
\(974\) 0 0
\(975\) 61.3350 + 18.6960i 1.96429 + 0.598752i
\(976\) 0 0
\(977\) −47.1501 12.6338i −1.50847 0.404192i −0.592540 0.805541i \(-0.701875\pi\)
−0.915925 + 0.401349i \(0.868542\pi\)
\(978\) 0 0
\(979\) 4.89141 + 2.82406i 0.156330 + 0.0902573i
\(980\) 0 0
\(981\) −35.8563 29.8061i −1.14480 0.951636i
\(982\) 0 0
\(983\) 33.9032 + 33.9032i 1.08134 + 1.08134i 0.996384 + 0.0849587i \(0.0270758\pi\)
0.0849587 + 0.996384i \(0.472924\pi\)
\(984\) 0 0
\(985\) −11.7345 + 6.77491i −0.373892 + 0.215867i
\(986\) 0 0
\(987\) 15.7641 30.4538i 0.501776 0.969357i
\(988\) 0 0
\(989\) 6.60462i 0.210015i
\(990\) 0 0
\(991\) −24.3508 42.1768i −0.773529 1.33979i −0.935618 0.353015i \(-0.885156\pi\)
0.162089 0.986776i \(-0.448177\pi\)
\(992\) 0 0
\(993\) −7.63267 + 2.42595i −0.242215 + 0.0769850i
\(994\) 0 0
\(995\) 11.6550 3.12294i 0.369488 0.0990039i
\(996\) 0 0
\(997\) 2.76696 4.79252i 0.0876306 0.151781i −0.818879 0.573967i \(-0.805404\pi\)
0.906509 + 0.422186i \(0.138737\pi\)
\(998\) 0 0
\(999\) −15.9580 1.98864i −0.504889 0.0629178i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.2.cn.d.401.4 16
3.2 odd 2 inner 624.2.cn.d.401.2 16
4.3 odd 2 78.2.k.a.11.1 16
12.11 even 2 78.2.k.a.11.4 yes 16
13.6 odd 12 inner 624.2.cn.d.305.2 16
39.32 even 12 inner 624.2.cn.d.305.4 16
52.3 odd 6 1014.2.g.c.437.7 16
52.11 even 12 1014.2.g.d.239.7 16
52.15 even 12 1014.2.g.c.239.3 16
52.19 even 12 78.2.k.a.71.4 yes 16
52.23 odd 6 1014.2.g.d.437.3 16
156.11 odd 12 1014.2.g.d.239.3 16
156.23 even 6 1014.2.g.d.437.7 16
156.71 odd 12 78.2.k.a.71.1 yes 16
156.107 even 6 1014.2.g.c.437.3 16
156.119 odd 12 1014.2.g.c.239.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.2.k.a.11.1 16 4.3 odd 2
78.2.k.a.11.4 yes 16 12.11 even 2
78.2.k.a.71.1 yes 16 156.71 odd 12
78.2.k.a.71.4 yes 16 52.19 even 12
624.2.cn.d.305.2 16 13.6 odd 12 inner
624.2.cn.d.305.4 16 39.32 even 12 inner
624.2.cn.d.401.2 16 3.2 odd 2 inner
624.2.cn.d.401.4 16 1.1 even 1 trivial
1014.2.g.c.239.3 16 52.15 even 12
1014.2.g.c.239.7 16 156.119 odd 12
1014.2.g.c.437.3 16 156.107 even 6
1014.2.g.c.437.7 16 52.3 odd 6
1014.2.g.d.239.3 16 156.11 odd 12
1014.2.g.d.239.7 16 52.11 even 12
1014.2.g.d.437.3 16 52.23 odd 6
1014.2.g.d.437.7 16 156.23 even 6