Properties

Label 624.2.cn.d.353.3
Level $624$
Weight $2$
Character 624.353
Analytic conductor $4.983$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,2,Mod(305,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 0, 6, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.305");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 624.cn (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.98266508613\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: 16.0.9349208943630483456.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 48 x^{14} - 196 x^{13} + 642 x^{12} - 1668 x^{11} + 3580 x^{10} - 6328 x^{9} + \cdots + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 353.3
Root \(0.500000 - 1.00333i\) of defining polynomial
Character \(\chi\) \(=\) 624.353
Dual form 624.2.cn.d.449.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0795432 + 1.73022i) q^{3} +(2.02097 + 2.02097i) q^{5} +(-3.46723 + 0.929042i) q^{7} +(-2.98735 + 0.275255i) q^{9} +(4.05922 + 1.08766i) q^{11} +(-3.60121 - 0.176977i) q^{13} +(-3.33598 + 3.65748i) q^{15} +(-1.72704 + 2.99132i) q^{17} +(-0.581191 - 2.16903i) q^{19} +(-1.88324 - 5.92518i) q^{21} +(1.51618 + 2.62611i) q^{23} +3.16864i q^{25} +(-0.713876 - 5.14688i) q^{27} +(1.74432 - 1.00708i) q^{29} +(-1.21829 + 1.21829i) q^{31} +(-1.55902 + 7.10987i) q^{33} +(-8.88473 - 5.12960i) q^{35} +(-1.25335 + 4.67758i) q^{37} +(0.0197576 - 6.24497i) q^{39} +(2.05521 - 7.67015i) q^{41} +(1.68905 + 0.975173i) q^{43} +(-6.59362 - 5.48105i) q^{45} +(0.957390 - 0.957390i) q^{47} +(5.09639 - 2.94240i) q^{49} +(-5.31303 - 2.75023i) q^{51} +7.22186i q^{53} +(6.00542 + 10.4017i) q^{55} +(3.70668 - 1.17812i) q^{57} +(2.66284 + 9.93785i) q^{59} +(-0.137104 + 0.237470i) q^{61} +(10.1021 - 3.72974i) q^{63} +(-6.92026 - 7.63559i) q^{65} +(-4.10121 - 1.09891i) q^{67} +(-4.42315 + 2.83223i) q^{69} +(-10.6578 + 2.85575i) q^{71} +(10.0822 + 10.0822i) q^{73} +(-5.48246 + 0.252044i) q^{75} -15.0847 q^{77} -1.58051 q^{79} +(8.84847 - 1.64456i) q^{81} +(2.58938 + 2.58938i) q^{83} +(-9.53567 + 2.55507i) q^{85} +(1.88122 + 2.93795i) q^{87} +(9.50933 + 2.54802i) q^{89} +(12.6506 - 2.73205i) q^{91} +(-2.20483 - 2.01101i) q^{93} +(3.20898 - 5.55812i) q^{95} +(-2.07638 - 7.74915i) q^{97} +(-12.4257 - 2.13191i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{7} - 24 q^{13} + 16 q^{19} - 24 q^{21} - 16 q^{31} - 24 q^{33} + 16 q^{37} - 48 q^{39} + 24 q^{45} + 24 q^{49} + 24 q^{55} - 24 q^{57} - 24 q^{61} + 24 q^{63} - 32 q^{67} - 48 q^{69} + 56 q^{73}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0795432 + 1.73022i 0.0459243 + 0.998945i
\(4\) 0 0
\(5\) 2.02097 + 2.02097i 0.903805 + 0.903805i 0.995763 0.0919576i \(-0.0293124\pi\)
−0.0919576 + 0.995763i \(0.529312\pi\)
\(6\) 0 0
\(7\) −3.46723 + 0.929042i −1.31049 + 0.351145i −0.845407 0.534122i \(-0.820642\pi\)
−0.465083 + 0.885267i \(0.653975\pi\)
\(8\) 0 0
\(9\) −2.98735 + 0.275255i −0.995782 + 0.0917517i
\(10\) 0 0
\(11\) 4.05922 + 1.08766i 1.22390 + 0.327943i 0.812201 0.583377i \(-0.198269\pi\)
0.411699 + 0.911320i \(0.364936\pi\)
\(12\) 0 0
\(13\) −3.60121 0.176977i −0.998795 0.0490845i
\(14\) 0 0
\(15\) −3.33598 + 3.65748i −0.861345 + 0.944358i
\(16\) 0 0
\(17\) −1.72704 + 2.99132i −0.418869 + 0.725502i −0.995826 0.0912724i \(-0.970907\pi\)
0.576957 + 0.816774i \(0.304240\pi\)
\(18\) 0 0
\(19\) −0.581191 2.16903i −0.133334 0.497611i 0.866665 0.498891i \(-0.166259\pi\)
−0.999999 + 0.00128023i \(0.999592\pi\)
\(20\) 0 0
\(21\) −1.88324 5.92518i −0.410958 1.29298i
\(22\) 0 0
\(23\) 1.51618 + 2.62611i 0.316146 + 0.547581i 0.979680 0.200565i \(-0.0642777\pi\)
−0.663534 + 0.748146i \(0.730944\pi\)
\(24\) 0 0
\(25\) 3.16864i 0.633728i
\(26\) 0 0
\(27\) −0.713876 5.14688i −0.137386 0.990518i
\(28\) 0 0
\(29\) 1.74432 1.00708i 0.323911 0.187010i −0.329223 0.944252i \(-0.606787\pi\)
0.653135 + 0.757242i \(0.273454\pi\)
\(30\) 0 0
\(31\) −1.21829 + 1.21829i −0.218812 + 0.218812i −0.807998 0.589186i \(-0.799449\pi\)
0.589186 + 0.807998i \(0.299449\pi\)
\(32\) 0 0
\(33\) −1.55902 + 7.10987i −0.271390 + 1.23767i
\(34\) 0 0
\(35\) −8.88473 5.12960i −1.50179 0.867061i
\(36\) 0 0
\(37\) −1.25335 + 4.67758i −0.206050 + 0.768990i 0.783077 + 0.621925i \(0.213649\pi\)
−0.989127 + 0.147065i \(0.953017\pi\)
\(38\) 0 0
\(39\) 0.0197576 6.24497i 0.00316375 0.999995i
\(40\) 0 0
\(41\) 2.05521 7.67015i 0.320970 1.19788i −0.597332 0.801994i \(-0.703772\pi\)
0.918302 0.395881i \(-0.129561\pi\)
\(42\) 0 0
\(43\) 1.68905 + 0.975173i 0.257578 + 0.148712i 0.623229 0.782039i \(-0.285820\pi\)
−0.365651 + 0.930752i \(0.619154\pi\)
\(44\) 0 0
\(45\) −6.59362 5.48105i −0.982919 0.817067i
\(46\) 0 0
\(47\) 0.957390 0.957390i 0.139650 0.139650i −0.633826 0.773476i \(-0.718516\pi\)
0.773476 + 0.633826i \(0.218516\pi\)
\(48\) 0 0
\(49\) 5.09639 2.94240i 0.728056 0.420343i
\(50\) 0 0
\(51\) −5.31303 2.75023i −0.743973 0.385109i
\(52\) 0 0
\(53\) 7.22186i 0.991999i 0.868323 + 0.495999i \(0.165198\pi\)
−0.868323 + 0.495999i \(0.834802\pi\)
\(54\) 0 0
\(55\) 6.00542 + 10.4017i 0.809771 + 1.40256i
\(56\) 0 0
\(57\) 3.70668 1.17812i 0.490962 0.156046i
\(58\) 0 0
\(59\) 2.66284 + 9.93785i 0.346672 + 1.29380i 0.890647 + 0.454696i \(0.150252\pi\)
−0.543975 + 0.839101i \(0.683081\pi\)
\(60\) 0 0
\(61\) −0.137104 + 0.237470i −0.0175543 + 0.0304050i −0.874669 0.484720i \(-0.838921\pi\)
0.857115 + 0.515125i \(0.172255\pi\)
\(62\) 0 0
\(63\) 10.1021 3.72974i 1.27274 0.469903i
\(64\) 0 0
\(65\) −6.92026 7.63559i −0.858353 0.947079i
\(66\) 0 0
\(67\) −4.10121 1.09891i −0.501042 0.134254i −0.000558430 1.00000i \(-0.500178\pi\)
−0.500484 + 0.865746i \(0.666844\pi\)
\(68\) 0 0
\(69\) −4.42315 + 2.83223i −0.532485 + 0.340960i
\(70\) 0 0
\(71\) −10.6578 + 2.85575i −1.26485 + 0.338915i −0.828055 0.560647i \(-0.810553\pi\)
−0.436793 + 0.899562i \(0.643886\pi\)
\(72\) 0 0
\(73\) 10.0822 + 10.0822i 1.18003 + 1.18003i 0.979735 + 0.200296i \(0.0641903\pi\)
0.200296 + 0.979735i \(0.435810\pi\)
\(74\) 0 0
\(75\) −5.48246 + 0.252044i −0.633059 + 0.0291035i
\(76\) 0 0
\(77\) −15.0847 −1.71906
\(78\) 0 0
\(79\) −1.58051 −0.177821 −0.0889105 0.996040i \(-0.528339\pi\)
−0.0889105 + 0.996040i \(0.528339\pi\)
\(80\) 0 0
\(81\) 8.84847 1.64456i 0.983163 0.182729i
\(82\) 0 0
\(83\) 2.58938 + 2.58938i 0.284221 + 0.284221i 0.834790 0.550569i \(-0.185589\pi\)
−0.550569 + 0.834790i \(0.685589\pi\)
\(84\) 0 0
\(85\) −9.53567 + 2.55507i −1.03429 + 0.277137i
\(86\) 0 0
\(87\) 1.88122 + 2.93795i 0.201688 + 0.314981i
\(88\) 0 0
\(89\) 9.50933 + 2.54802i 1.00799 + 0.270089i 0.724788 0.688972i \(-0.241938\pi\)
0.283199 + 0.959061i \(0.408604\pi\)
\(90\) 0 0
\(91\) 12.6506 2.73205i 1.32615 0.286397i
\(92\) 0 0
\(93\) −2.20483 2.01101i −0.228630 0.208533i
\(94\) 0 0
\(95\) 3.20898 5.55812i 0.329235 0.570251i
\(96\) 0 0
\(97\) −2.07638 7.74915i −0.210824 0.786807i −0.987595 0.157023i \(-0.949810\pi\)
0.776771 0.629784i \(-0.216856\pi\)
\(98\) 0 0
\(99\) −12.4257 2.13191i −1.24883 0.214265i
\(100\) 0 0
\(101\) 1.05342 + 1.82458i 0.104820 + 0.181553i 0.913665 0.406469i \(-0.133240\pi\)
−0.808845 + 0.588022i \(0.799907\pi\)
\(102\) 0 0
\(103\) 14.2629i 1.40537i 0.711503 + 0.702683i \(0.248015\pi\)
−0.711503 + 0.702683i \(0.751985\pi\)
\(104\) 0 0
\(105\) 8.16864 15.7806i 0.797178 1.54003i
\(106\) 0 0
\(107\) 11.9906 6.92275i 1.15917 0.669248i 0.208066 0.978115i \(-0.433283\pi\)
0.951105 + 0.308867i \(0.0999497\pi\)
\(108\) 0 0
\(109\) 5.84220 5.84220i 0.559581 0.559581i −0.369607 0.929188i \(-0.620508\pi\)
0.929188 + 0.369607i \(0.120508\pi\)
\(110\) 0 0
\(111\) −8.19296 1.79651i −0.777641 0.170518i
\(112\) 0 0
\(113\) 15.5920 + 9.00205i 1.46677 + 0.846841i 0.999309 0.0371710i \(-0.0118346\pi\)
0.467463 + 0.884012i \(0.345168\pi\)
\(114\) 0 0
\(115\) −2.24312 + 8.37145i −0.209172 + 0.780641i
\(116\) 0 0
\(117\) 10.8068 0.462560i 0.999085 0.0427637i
\(118\) 0 0
\(119\) 3.20898 11.9761i 0.294167 1.09785i
\(120\) 0 0
\(121\) 5.76795 + 3.33013i 0.524359 + 0.302739i
\(122\) 0 0
\(123\) 13.4345 + 2.94586i 1.21135 + 0.265620i
\(124\) 0 0
\(125\) 3.70112 3.70112i 0.331039 0.331039i
\(126\) 0 0
\(127\) 17.9209 10.3466i 1.59022 0.918114i 0.596952 0.802277i \(-0.296378\pi\)
0.993268 0.115837i \(-0.0369549\pi\)
\(128\) 0 0
\(129\) −1.55291 + 3.00000i −0.136726 + 0.264135i
\(130\) 0 0
\(131\) 4.68295i 0.409151i −0.978851 0.204576i \(-0.934419\pi\)
0.978851 0.204576i \(-0.0655814\pi\)
\(132\) 0 0
\(133\) 4.03025 + 6.98059i 0.349467 + 0.605294i
\(134\) 0 0
\(135\) 8.95897 11.8444i 0.771065 1.01940i
\(136\) 0 0
\(137\) −1.41832 5.29326i −0.121176 0.452234i 0.878499 0.477744i \(-0.158545\pi\)
−0.999675 + 0.0255107i \(0.991879\pi\)
\(138\) 0 0
\(139\) 7.34662 12.7247i 0.623132 1.07930i −0.365767 0.930706i \(-0.619193\pi\)
0.988899 0.148590i \(-0.0474734\pi\)
\(140\) 0 0
\(141\) 1.73265 + 1.58034i 0.145916 + 0.133089i
\(142\) 0 0
\(143\) −14.4256 4.63529i −1.20633 0.387622i
\(144\) 0 0
\(145\) 5.56049 + 1.48993i 0.461774 + 0.123732i
\(146\) 0 0
\(147\) 5.49640 + 8.58385i 0.453335 + 0.707984i
\(148\) 0 0
\(149\) −9.98255 + 2.67482i −0.817803 + 0.219130i −0.643386 0.765542i \(-0.722471\pi\)
−0.174417 + 0.984672i \(0.555804\pi\)
\(150\) 0 0
\(151\) 6.48932 + 6.48932i 0.528094 + 0.528094i 0.920004 0.391910i \(-0.128186\pi\)
−0.391910 + 0.920004i \(0.628186\pi\)
\(152\) 0 0
\(153\) 4.33589 9.41149i 0.350536 0.760874i
\(154\) 0 0
\(155\) −4.92427 −0.395527
\(156\) 0 0
\(157\) −14.1431 −1.12874 −0.564372 0.825520i \(-0.690882\pi\)
−0.564372 + 0.825520i \(0.690882\pi\)
\(158\) 0 0
\(159\) −12.4954 + 0.574450i −0.990952 + 0.0455568i
\(160\) 0 0
\(161\) −7.69672 7.69672i −0.606587 0.606587i
\(162\) 0 0
\(163\) −1.07638 + 0.288415i −0.0843084 + 0.0225904i −0.300727 0.953710i \(-0.597229\pi\)
0.216418 + 0.976301i \(0.430563\pi\)
\(164\) 0 0
\(165\) −17.5196 + 11.2181i −1.36390 + 0.873328i
\(166\) 0 0
\(167\) −5.39478 1.44553i −0.417461 0.111858i 0.0439735 0.999033i \(-0.485998\pi\)
−0.461434 + 0.887174i \(0.652665\pi\)
\(168\) 0 0
\(169\) 12.9374 + 1.27466i 0.995181 + 0.0980507i
\(170\) 0 0
\(171\) 2.33326 + 6.31968i 0.178429 + 0.483278i
\(172\) 0 0
\(173\) 8.74765 15.1514i 0.665072 1.15194i −0.314194 0.949359i \(-0.601734\pi\)
0.979266 0.202579i \(-0.0649324\pi\)
\(174\) 0 0
\(175\) −2.94380 10.9864i −0.222530 0.830494i
\(176\) 0 0
\(177\) −16.9829 + 5.39779i −1.27651 + 0.405723i
\(178\) 0 0
\(179\) 4.60754 + 7.98049i 0.344384 + 0.596490i 0.985242 0.171169i \(-0.0547545\pi\)
−0.640858 + 0.767660i \(0.721421\pi\)
\(180\) 0 0
\(181\) 13.8110i 1.02656i −0.858220 0.513282i \(-0.828429\pi\)
0.858220 0.513282i \(-0.171571\pi\)
\(182\) 0 0
\(183\) −0.421783 0.218331i −0.0311791 0.0161395i
\(184\) 0 0
\(185\) −11.9862 + 6.92026i −0.881246 + 0.508788i
\(186\) 0 0
\(187\) −10.2640 + 10.2640i −0.750577 + 0.750577i
\(188\) 0 0
\(189\) 7.25684 + 17.1822i 0.527857 + 1.24982i
\(190\) 0 0
\(191\) 19.6614 + 11.3515i 1.42265 + 0.821366i 0.996525 0.0832996i \(-0.0265458\pi\)
0.426123 + 0.904665i \(0.359879\pi\)
\(192\) 0 0
\(193\) −5.18821 + 19.3627i −0.373456 + 1.39376i 0.482133 + 0.876098i \(0.339862\pi\)
−0.855588 + 0.517657i \(0.826804\pi\)
\(194\) 0 0
\(195\) 12.6608 12.5810i 0.906660 0.900941i
\(196\) 0 0
\(197\) −4.82369 + 18.0023i −0.343674 + 1.28261i 0.550480 + 0.834849i \(0.314445\pi\)
−0.894154 + 0.447760i \(0.852222\pi\)
\(198\) 0 0
\(199\) 3.90611 + 2.25519i 0.276897 + 0.159866i 0.632018 0.774954i \(-0.282227\pi\)
−0.355121 + 0.934820i \(0.615560\pi\)
\(200\) 0 0
\(201\) 1.57514 7.18341i 0.111102 0.506679i
\(202\) 0 0
\(203\) −5.11233 + 5.11233i −0.358815 + 0.358815i
\(204\) 0 0
\(205\) 19.6547 11.3476i 1.37274 0.792552i
\(206\) 0 0
\(207\) −5.25221 7.42775i −0.365054 0.516264i
\(208\) 0 0
\(209\) 9.43672i 0.652752i
\(210\) 0 0
\(211\) −4.28841 7.42775i −0.295227 0.511348i 0.679811 0.733387i \(-0.262062\pi\)
−0.975038 + 0.222040i \(0.928728\pi\)
\(212\) 0 0
\(213\) −5.78884 18.2132i −0.396645 1.24795i
\(214\) 0 0
\(215\) 1.44272 + 5.38431i 0.0983928 + 0.367207i
\(216\) 0 0
\(217\) 3.09226 5.35596i 0.209916 0.363586i
\(218\) 0 0
\(219\) −16.6425 + 18.2464i −1.12459 + 1.23298i
\(220\) 0 0
\(221\) 6.74882 10.4667i 0.453975 0.704067i
\(222\) 0 0
\(223\) −20.3575 5.45476i −1.36324 0.365278i −0.498232 0.867043i \(-0.666017\pi\)
−0.865004 + 0.501765i \(0.832684\pi\)
\(224\) 0 0
\(225\) −0.872184 9.46582i −0.0581456 0.631055i
\(226\) 0 0
\(227\) −4.85544 + 1.30101i −0.322267 + 0.0863512i −0.416326 0.909215i \(-0.636682\pi\)
0.0940589 + 0.995567i \(0.470016\pi\)
\(228\) 0 0
\(229\) −9.92484 9.92484i −0.655852 0.655852i 0.298544 0.954396i \(-0.403499\pi\)
−0.954396 + 0.298544i \(0.903499\pi\)
\(230\) 0 0
\(231\) −1.19989 26.0999i −0.0789468 1.71725i
\(232\) 0 0
\(233\) 18.7944 1.23126 0.615630 0.788035i \(-0.288902\pi\)
0.615630 + 0.788035i \(0.288902\pi\)
\(234\) 0 0
\(235\) 3.86971 0.252432
\(236\) 0 0
\(237\) −0.125719 2.73463i −0.00816631 0.177633i
\(238\) 0 0
\(239\) −6.82142 6.82142i −0.441241 0.441241i 0.451188 0.892429i \(-0.351000\pi\)
−0.892429 + 0.451188i \(0.851000\pi\)
\(240\) 0 0
\(241\) 8.18821 2.19402i 0.527449 0.141330i 0.0147390 0.999891i \(-0.495308\pi\)
0.512710 + 0.858562i \(0.328642\pi\)
\(242\) 0 0
\(243\) 3.54930 + 15.1790i 0.227688 + 0.973734i
\(244\) 0 0
\(245\) 16.2462 + 4.35315i 1.03793 + 0.278112i
\(246\) 0 0
\(247\) 1.70912 + 7.91400i 0.108749 + 0.503555i
\(248\) 0 0
\(249\) −4.27423 + 4.68617i −0.270868 + 0.296974i
\(250\) 0 0
\(251\) 3.51988 6.09661i 0.222173 0.384814i −0.733295 0.679911i \(-0.762018\pi\)
0.955467 + 0.295096i \(0.0953518\pi\)
\(252\) 0 0
\(253\) 3.29820 + 12.3090i 0.207356 + 0.773862i
\(254\) 0 0
\(255\) −5.17935 16.2956i −0.324343 1.02047i
\(256\) 0 0
\(257\) −0.815993 1.41334i −0.0509003 0.0881618i 0.839453 0.543433i \(-0.182876\pi\)
−0.890353 + 0.455271i \(0.849542\pi\)
\(258\) 0 0
\(259\) 17.3827i 1.08011i
\(260\) 0 0
\(261\) −4.93367 + 3.48863i −0.305387 + 0.215941i
\(262\) 0 0
\(263\) 9.15209 5.28396i 0.564342 0.325823i −0.190544 0.981679i \(-0.561025\pi\)
0.754886 + 0.655856i \(0.227692\pi\)
\(264\) 0 0
\(265\) −14.5952 + 14.5952i −0.896574 + 0.896574i
\(266\) 0 0
\(267\) −3.65223 + 16.6559i −0.223513 + 1.01933i
\(268\) 0 0
\(269\) −7.46392 4.30930i −0.455083 0.262742i 0.254891 0.966970i \(-0.417960\pi\)
−0.709975 + 0.704227i \(0.751294\pi\)
\(270\) 0 0
\(271\) −5.13290 + 19.1563i −0.311802 + 1.16366i 0.615129 + 0.788427i \(0.289104\pi\)
−0.926930 + 0.375233i \(0.877563\pi\)
\(272\) 0 0
\(273\) 5.73333 + 21.6711i 0.346997 + 1.31159i
\(274\) 0 0
\(275\) −3.44642 + 12.8622i −0.207827 + 0.775620i
\(276\) 0 0
\(277\) −13.4255 7.75123i −0.806661 0.465726i 0.0391339 0.999234i \(-0.487540\pi\)
−0.845795 + 0.533508i \(0.820873\pi\)
\(278\) 0 0
\(279\) 3.30413 3.97481i 0.197813 0.237966i
\(280\) 0 0
\(281\) −11.9452 + 11.9452i −0.712591 + 0.712591i −0.967077 0.254486i \(-0.918094\pi\)
0.254486 + 0.967077i \(0.418094\pi\)
\(282\) 0 0
\(283\) 1.36808 0.789860i 0.0813237 0.0469523i −0.458787 0.888546i \(-0.651716\pi\)
0.540110 + 0.841594i \(0.318382\pi\)
\(284\) 0 0
\(285\) 9.87205 + 5.11015i 0.584770 + 0.302699i
\(286\) 0 0
\(287\) 28.5035i 1.68251i
\(288\) 0 0
\(289\) 2.53467 + 4.39017i 0.149098 + 0.258245i
\(290\) 0 0
\(291\) 13.2426 4.20899i 0.776295 0.246735i
\(292\) 0 0
\(293\) −1.01073 3.77209i −0.0590474 0.220368i 0.930097 0.367314i \(-0.119722\pi\)
−0.989145 + 0.146946i \(0.953056\pi\)
\(294\) 0 0
\(295\) −14.7026 + 25.4656i −0.856017 + 1.48266i
\(296\) 0 0
\(297\) 2.70030 21.6688i 0.156687 1.25735i
\(298\) 0 0
\(299\) −4.99533 9.72548i −0.288887 0.562439i
\(300\) 0 0
\(301\) −6.76230 1.81195i −0.389772 0.104439i
\(302\) 0 0
\(303\) −3.07315 + 1.96779i −0.176548 + 0.113047i
\(304\) 0 0
\(305\) −0.757003 + 0.202838i −0.0433459 + 0.0116145i
\(306\) 0 0
\(307\) −21.7994 21.7994i −1.24416 1.24416i −0.958260 0.285899i \(-0.907708\pi\)
−0.285899 0.958260i \(-0.592292\pi\)
\(308\) 0 0
\(309\) −24.6780 + 1.13452i −1.40388 + 0.0645404i
\(310\) 0 0
\(311\) 20.9295 1.18681 0.593403 0.804906i \(-0.297784\pi\)
0.593403 + 0.804906i \(0.297784\pi\)
\(312\) 0 0
\(313\) −32.6685 −1.84653 −0.923267 0.384159i \(-0.874491\pi\)
−0.923267 + 0.384159i \(0.874491\pi\)
\(314\) 0 0
\(315\) 27.9537 + 12.8783i 1.57501 + 0.725612i
\(316\) 0 0
\(317\) 5.21085 + 5.21085i 0.292671 + 0.292671i 0.838134 0.545464i \(-0.183646\pi\)
−0.545464 + 0.838134i \(0.683646\pi\)
\(318\) 0 0
\(319\) 8.17593 2.19073i 0.457764 0.122657i
\(320\) 0 0
\(321\) 12.9317 + 20.1957i 0.721776 + 1.12721i
\(322\) 0 0
\(323\) 7.49202 + 2.00748i 0.416867 + 0.111699i
\(324\) 0 0
\(325\) 0.560775 11.4109i 0.0311062 0.632964i
\(326\) 0 0
\(327\) 10.5730 + 9.64360i 0.584689 + 0.533292i
\(328\) 0 0
\(329\) −2.43004 + 4.20895i −0.133972 + 0.232047i
\(330\) 0 0
\(331\) −4.72013 17.6158i −0.259442 0.968251i −0.965565 0.260162i \(-0.916224\pi\)
0.706123 0.708089i \(-0.250443\pi\)
\(332\) 0 0
\(333\) 2.45667 14.3186i 0.134625 0.784652i
\(334\) 0 0
\(335\) −6.06754 10.5093i −0.331505 0.574184i
\(336\) 0 0
\(337\) 4.92484i 0.268273i 0.990963 + 0.134136i \(0.0428260\pi\)
−0.990963 + 0.134136i \(0.957174\pi\)
\(338\) 0 0
\(339\) −14.3353 + 27.6937i −0.778587 + 1.50412i
\(340\) 0 0
\(341\) −6.27042 + 3.62023i −0.339562 + 0.196046i
\(342\) 0 0
\(343\) 2.83057 2.83057i 0.152836 0.152836i
\(344\) 0 0
\(345\) −14.6629 3.21521i −0.789424 0.173101i
\(346\) 0 0
\(347\) −12.9403 7.47108i −0.694671 0.401069i 0.110688 0.993855i \(-0.464694\pi\)
−0.805360 + 0.592787i \(0.798028\pi\)
\(348\) 0 0
\(349\) −8.08448 + 30.1717i −0.432752 + 1.61505i 0.313636 + 0.949543i \(0.398453\pi\)
−0.746388 + 0.665511i \(0.768214\pi\)
\(350\) 0 0
\(351\) 1.65994 + 18.6613i 0.0886008 + 0.996067i
\(352\) 0 0
\(353\) −2.67762 + 9.99302i −0.142515 + 0.531875i 0.857338 + 0.514754i \(0.172117\pi\)
−0.999853 + 0.0171211i \(0.994550\pi\)
\(354\) 0 0
\(355\) −27.3105 15.7677i −1.44949 0.836864i
\(356\) 0 0
\(357\) 20.9766 + 4.59964i 1.11020 + 0.243439i
\(358\) 0 0
\(359\) 9.08944 9.08944i 0.479722 0.479722i −0.425321 0.905043i \(-0.639839\pi\)
0.905043 + 0.425321i \(0.139839\pi\)
\(360\) 0 0
\(361\) 12.0876 6.97875i 0.636187 0.367303i
\(362\) 0 0
\(363\) −5.30306 + 10.2447i −0.278339 + 0.537709i
\(364\) 0 0
\(365\) 40.7516i 2.13304i
\(366\) 0 0
\(367\) 0.823475 + 1.42630i 0.0429850 + 0.0744522i 0.886717 0.462312i \(-0.152980\pi\)
−0.843732 + 0.536764i \(0.819647\pi\)
\(368\) 0 0
\(369\) −4.02837 + 23.4791i −0.209709 + 1.22227i
\(370\) 0 0
\(371\) −6.70941 25.0398i −0.348335 1.30000i
\(372\) 0 0
\(373\) 9.97578 17.2786i 0.516526 0.894650i −0.483290 0.875461i \(-0.660558\pi\)
0.999816 0.0191892i \(-0.00610849\pi\)
\(374\) 0 0
\(375\) 6.69817 + 6.10937i 0.345892 + 0.315487i
\(376\) 0 0
\(377\) −6.45987 + 3.31800i −0.332700 + 0.170886i
\(378\) 0 0
\(379\) 11.8923 + 3.18653i 0.610865 + 0.163681i 0.550972 0.834524i \(-0.314257\pi\)
0.0598936 + 0.998205i \(0.480924\pi\)
\(380\) 0 0
\(381\) 19.3274 + 30.1841i 0.990175 + 1.54638i
\(382\) 0 0
\(383\) −27.3800 + 7.33645i −1.39905 + 0.374875i −0.878005 0.478652i \(-0.841125\pi\)
−0.521048 + 0.853527i \(0.674459\pi\)
\(384\) 0 0
\(385\) −30.4858 30.4858i −1.55370 1.55370i
\(386\) 0 0
\(387\) −5.31419 2.44826i −0.270136 0.124452i
\(388\) 0 0
\(389\) 15.9504 0.808717 0.404359 0.914601i \(-0.367495\pi\)
0.404359 + 0.914601i \(0.367495\pi\)
\(390\) 0 0
\(391\) −10.4740 −0.529695
\(392\) 0 0
\(393\) 8.10255 0.372497i 0.408720 0.0187900i
\(394\) 0 0
\(395\) −3.19416 3.19416i −0.160716 0.160716i
\(396\) 0 0
\(397\) −12.2594 + 3.28489i −0.615281 + 0.164864i −0.552981 0.833194i \(-0.686510\pi\)
−0.0622992 + 0.998058i \(0.519843\pi\)
\(398\) 0 0
\(399\) −11.7574 + 7.52849i −0.588606 + 0.376896i
\(400\) 0 0
\(401\) −15.8603 4.24976i −0.792027 0.212223i −0.159946 0.987126i \(-0.551132\pi\)
−0.632080 + 0.774903i \(0.717799\pi\)
\(402\) 0 0
\(403\) 4.60294 4.17172i 0.229289 0.207808i
\(404\) 0 0
\(405\) 21.2061 + 14.5589i 1.05374 + 0.723436i
\(406\) 0 0
\(407\) −10.1753 + 17.6241i −0.504370 + 0.873594i
\(408\) 0 0
\(409\) −8.82005 32.9169i −0.436123 1.62763i −0.738364 0.674403i \(-0.764401\pi\)
0.302240 0.953232i \(-0.402266\pi\)
\(410\) 0 0
\(411\) 9.04570 2.87506i 0.446192 0.141816i
\(412\) 0 0
\(413\) −18.4653 31.9829i −0.908620 1.57378i
\(414\) 0 0
\(415\) 10.4661i 0.513761i
\(416\) 0 0
\(417\) 22.6010 + 11.6991i 1.10677 + 0.572909i
\(418\) 0 0
\(419\) −28.4943 + 16.4512i −1.39204 + 0.803693i −0.993541 0.113477i \(-0.963801\pi\)
−0.398496 + 0.917170i \(0.630468\pi\)
\(420\) 0 0
\(421\) 17.0945 17.0945i 0.833137 0.833137i −0.154808 0.987945i \(-0.549476\pi\)
0.987945 + 0.154808i \(0.0494759\pi\)
\(422\) 0 0
\(423\) −2.59653 + 3.12358i −0.126247 + 0.151874i
\(424\) 0 0
\(425\) −9.47842 5.47237i −0.459771 0.265449i
\(426\) 0 0
\(427\) 0.254750 0.950740i 0.0123282 0.0460095i
\(428\) 0 0
\(429\) 6.87263 25.3282i 0.331813 1.22286i
\(430\) 0 0
\(431\) 0.454427 1.69594i 0.0218890 0.0816908i −0.954117 0.299433i \(-0.903203\pi\)
0.976006 + 0.217742i \(0.0698692\pi\)
\(432\) 0 0
\(433\) −8.87140 5.12190i −0.426332 0.246143i 0.271451 0.962452i \(-0.412497\pi\)
−0.697783 + 0.716309i \(0.745830\pi\)
\(434\) 0 0
\(435\) −2.13561 + 9.73941i −0.102395 + 0.466969i
\(436\) 0 0
\(437\) 4.81492 4.81492i 0.230329 0.230329i
\(438\) 0 0
\(439\) 4.67848 2.70112i 0.223292 0.128917i −0.384182 0.923257i \(-0.625516\pi\)
0.607473 + 0.794340i \(0.292183\pi\)
\(440\) 0 0
\(441\) −14.4148 + 10.1928i −0.686418 + 0.485371i
\(442\) 0 0
\(443\) 13.5731i 0.644876i −0.946591 0.322438i \(-0.895498\pi\)
0.946591 0.322438i \(-0.104502\pi\)
\(444\) 0 0
\(445\) 14.0686 + 24.3675i 0.666916 + 1.15513i
\(446\) 0 0
\(447\) −5.42208 17.0593i −0.256455 0.806877i
\(448\) 0 0
\(449\) −0.525222 1.96016i −0.0247868 0.0925055i 0.952424 0.304775i \(-0.0985812\pi\)
−0.977211 + 0.212269i \(0.931915\pi\)
\(450\) 0 0
\(451\) 16.6851 28.8994i 0.785670 1.36082i
\(452\) 0 0
\(453\) −10.7118 + 11.7442i −0.503284 + 0.551789i
\(454\) 0 0
\(455\) 31.0879 + 20.0451i 1.45742 + 0.939731i
\(456\) 0 0
\(457\) −28.9328 7.75251i −1.35342 0.362647i −0.492022 0.870583i \(-0.663742\pi\)
−0.861395 + 0.507936i \(0.830409\pi\)
\(458\) 0 0
\(459\) 16.6289 + 6.75344i 0.776169 + 0.315223i
\(460\) 0 0
\(461\) −15.5621 + 4.16985i −0.724798 + 0.194209i −0.602312 0.798261i \(-0.705754\pi\)
−0.122487 + 0.992470i \(0.539087\pi\)
\(462\) 0 0
\(463\) 4.07041 + 4.07041i 0.189168 + 0.189168i 0.795336 0.606168i \(-0.207294\pi\)
−0.606168 + 0.795336i \(0.707294\pi\)
\(464\) 0 0
\(465\) −0.391693 8.52009i −0.0181643 0.395110i
\(466\) 0 0
\(467\) 36.8536 1.70538 0.852690 0.522417i \(-0.174970\pi\)
0.852690 + 0.522417i \(0.174970\pi\)
\(468\) 0 0
\(469\) 15.2408 0.703753
\(470\) 0 0
\(471\) −1.12499 24.4708i −0.0518368 1.12755i
\(472\) 0 0
\(473\) 5.79555 + 5.79555i 0.266480 + 0.266480i
\(474\) 0 0
\(475\) 6.87289 1.84159i 0.315350 0.0844977i
\(476\) 0 0
\(477\) −1.98785 21.5742i −0.0910176 0.987814i
\(478\) 0 0
\(479\) 14.5305 + 3.89342i 0.663913 + 0.177895i 0.575011 0.818145i \(-0.304998\pi\)
0.0889019 + 0.996040i \(0.471664\pi\)
\(480\) 0 0
\(481\) 5.34141 16.6231i 0.243547 0.757949i
\(482\) 0 0
\(483\) 12.7048 13.9293i 0.578090 0.633804i
\(484\) 0 0
\(485\) 11.4645 19.8571i 0.520576 0.901664i
\(486\) 0 0
\(487\) −4.33018 16.1605i −0.196219 0.732301i −0.991948 0.126647i \(-0.959578\pi\)
0.795728 0.605654i \(-0.207088\pi\)
\(488\) 0 0
\(489\) −0.584640 1.83943i −0.0264383 0.0831820i
\(490\) 0 0
\(491\) −12.6333 21.8815i −0.570132 0.987498i −0.996552 0.0829727i \(-0.973559\pi\)
0.426419 0.904526i \(-0.359775\pi\)
\(492\) 0 0
\(493\) 6.95708i 0.313331i
\(494\) 0 0
\(495\) −20.8034 29.4204i −0.935043 1.32235i
\(496\) 0 0
\(497\) 34.3000 19.8031i 1.53856 0.888290i
\(498\) 0 0
\(499\) −1.37946 + 1.37946i −0.0617533 + 0.0617533i −0.737309 0.675556i \(-0.763904\pi\)
0.675556 + 0.737309i \(0.263904\pi\)
\(500\) 0 0
\(501\) 2.07197 9.44916i 0.0925687 0.422157i
\(502\) 0 0
\(503\) 9.77777 + 5.64520i 0.435969 + 0.251707i 0.701886 0.712289i \(-0.252341\pi\)
−0.265917 + 0.963996i \(0.585675\pi\)
\(504\) 0 0
\(505\) −1.55849 + 5.81637i −0.0693520 + 0.258825i
\(506\) 0 0
\(507\) −1.17636 + 22.4859i −0.0522442 + 0.998634i
\(508\) 0 0
\(509\) 9.73260 36.3226i 0.431390 1.60997i −0.318171 0.948033i \(-0.603069\pi\)
0.749561 0.661936i \(-0.230265\pi\)
\(510\) 0 0
\(511\) −44.3241 25.5905i −1.96078 1.13206i
\(512\) 0 0
\(513\) −10.7489 + 4.53974i −0.474574 + 0.200435i
\(514\) 0 0
\(515\) −28.8249 + 28.8249i −1.27018 + 1.27018i
\(516\) 0 0
\(517\) 4.92757 2.84493i 0.216714 0.125120i
\(518\) 0 0
\(519\) 26.9111 + 13.9302i 1.18127 + 0.611468i
\(520\) 0 0
\(521\) 18.2111i 0.797843i −0.916985 0.398922i \(-0.869385\pi\)
0.916985 0.398922i \(-0.130615\pi\)
\(522\) 0 0
\(523\) 16.9049 + 29.2801i 0.739199 + 1.28033i 0.952857 + 0.303421i \(0.0981289\pi\)
−0.213658 + 0.976909i \(0.568538\pi\)
\(524\) 0 0
\(525\) 18.7748 5.96732i 0.819398 0.260435i
\(526\) 0 0
\(527\) −1.54027 5.74835i −0.0670951 0.250402i
\(528\) 0 0
\(529\) 6.90238 11.9553i 0.300103 0.519794i
\(530\) 0 0
\(531\) −10.6903 28.9548i −0.463918 1.25653i
\(532\) 0 0
\(533\) −8.75867 + 27.2580i −0.379380 + 1.18068i
\(534\) 0 0
\(535\) 38.2233 + 10.2419i 1.65254 + 0.442795i
\(536\) 0 0
\(537\) −13.4415 + 8.60687i −0.580045 + 0.371414i
\(538\) 0 0
\(539\) 23.8877 6.40069i 1.02892 0.275697i
\(540\) 0 0
\(541\) −4.97355 4.97355i −0.213829 0.213829i 0.592063 0.805892i \(-0.298314\pi\)
−0.805892 + 0.592063i \(0.798314\pi\)
\(542\) 0 0
\(543\) 23.8961 1.09857i 1.02548 0.0471442i
\(544\) 0 0
\(545\) 23.6138 1.01150
\(546\) 0 0
\(547\) 2.15870 0.0922995 0.0461497 0.998935i \(-0.485305\pi\)
0.0461497 + 0.998935i \(0.485305\pi\)
\(548\) 0 0
\(549\) 0.344211 0.747145i 0.0146906 0.0318874i
\(550\) 0 0
\(551\) −3.19818 3.19818i −0.136247 0.136247i
\(552\) 0 0
\(553\) 5.47999 1.46836i 0.233033 0.0624409i
\(554\) 0 0
\(555\) −12.9270 20.1884i −0.548722 0.856951i
\(556\) 0 0
\(557\) −2.17782 0.583545i −0.0922772 0.0247256i 0.212385 0.977186i \(-0.431877\pi\)
−0.304662 + 0.952460i \(0.598544\pi\)
\(558\) 0 0
\(559\) −5.91003 3.81072i −0.249968 0.161176i
\(560\) 0 0
\(561\) −18.5754 16.9426i −0.784254 0.715315i
\(562\) 0 0
\(563\) 18.1490 31.4349i 0.764888 1.32482i −0.175418 0.984494i \(-0.556128\pi\)
0.940306 0.340330i \(-0.110539\pi\)
\(564\) 0 0
\(565\) 13.3181 + 49.7038i 0.560297 + 2.09106i
\(566\) 0 0
\(567\) −29.1518 + 13.9227i −1.22426 + 0.584698i
\(568\) 0 0
\(569\) 19.5376 + 33.8400i 0.819057 + 1.41865i 0.906378 + 0.422468i \(0.138836\pi\)
−0.0873209 + 0.996180i \(0.527831\pi\)
\(570\) 0 0
\(571\) 31.9061i 1.33523i 0.744508 + 0.667614i \(0.232684\pi\)
−0.744508 + 0.667614i \(0.767316\pi\)
\(572\) 0 0
\(573\) −18.0767 + 34.9215i −0.755165 + 1.45887i
\(574\) 0 0
\(575\) −8.32119 + 4.80424i −0.347018 + 0.200351i
\(576\) 0 0
\(577\) 9.31011 9.31011i 0.387585 0.387585i −0.486240 0.873825i \(-0.661632\pi\)
0.873825 + 0.486240i \(0.161632\pi\)
\(578\) 0 0
\(579\) −33.9144 7.43659i −1.40944 0.309054i
\(580\) 0 0
\(581\) −11.3836 6.57233i −0.472271 0.272666i
\(582\) 0 0
\(583\) −7.85495 + 29.3151i −0.325319 + 1.21411i
\(584\) 0 0
\(585\) 22.7750 + 20.9053i 0.941629 + 0.864328i
\(586\) 0 0
\(587\) −7.58008 + 28.2892i −0.312863 + 1.16762i 0.613099 + 0.790006i \(0.289923\pi\)
−0.925962 + 0.377615i \(0.876744\pi\)
\(588\) 0 0
\(589\) 3.35059 + 1.93446i 0.138058 + 0.0797081i
\(590\) 0 0
\(591\) −31.5316 6.91411i −1.29704 0.284408i
\(592\) 0 0
\(593\) −12.7368 + 12.7368i −0.523037 + 0.523037i −0.918487 0.395450i \(-0.870589\pi\)
0.395450 + 0.918487i \(0.370589\pi\)
\(594\) 0 0
\(595\) 30.6886 17.7181i 1.25811 0.726370i
\(596\) 0 0
\(597\) −3.59128 + 6.93783i −0.146981 + 0.283946i
\(598\) 0 0
\(599\) 15.6579i 0.639764i −0.947457 0.319882i \(-0.896357\pi\)
0.947457 0.319882i \(-0.103643\pi\)
\(600\) 0 0
\(601\) −3.99832 6.92529i −0.163095 0.282488i 0.772882 0.634549i \(-0.218814\pi\)
−0.935977 + 0.352061i \(0.885481\pi\)
\(602\) 0 0
\(603\) 12.5542 + 2.15396i 0.511247 + 0.0877160i
\(604\) 0 0
\(605\) 4.92677 + 18.3869i 0.200302 + 0.747535i
\(606\) 0 0
\(607\) 2.24581 3.88985i 0.0911545 0.157884i −0.816843 0.576860i \(-0.804278\pi\)
0.907997 + 0.418976i \(0.137611\pi\)
\(608\) 0 0
\(609\) −9.25212 8.43882i −0.374915 0.341958i
\(610\) 0 0
\(611\) −3.61719 + 3.27832i −0.146336 + 0.132627i
\(612\) 0 0
\(613\) 30.5112 + 8.17546i 1.23234 + 0.330204i 0.815489 0.578773i \(-0.196468\pi\)
0.416848 + 0.908976i \(0.363135\pi\)
\(614\) 0 0
\(615\) 21.1973 + 33.1043i 0.854758 + 1.33489i
\(616\) 0 0
\(617\) −5.23513 + 1.40275i −0.210758 + 0.0564725i −0.362653 0.931924i \(-0.618129\pi\)
0.151895 + 0.988397i \(0.451462\pi\)
\(618\) 0 0
\(619\) −7.22455 7.22455i −0.290379 0.290379i 0.546851 0.837230i \(-0.315826\pi\)
−0.837230 + 0.546851i \(0.815826\pi\)
\(620\) 0 0
\(621\) 12.4339 9.67833i 0.498955 0.388378i
\(622\) 0 0
\(623\) −35.3382 −1.41580
\(624\) 0 0
\(625\) 30.8029 1.23212
\(626\) 0 0
\(627\) 16.3276 0.750627i 0.652063 0.0299772i
\(628\) 0 0
\(629\) −11.8276 11.8276i −0.471596 0.471596i
\(630\) 0 0
\(631\) 20.2844 5.43520i 0.807511 0.216372i 0.168632 0.985679i \(-0.446065\pi\)
0.638879 + 0.769307i \(0.279398\pi\)
\(632\) 0 0
\(633\) 12.5106 8.01074i 0.497250 0.318398i
\(634\) 0 0
\(635\) 57.1277 + 15.3073i 2.26705 + 0.607453i
\(636\) 0 0
\(637\) −18.8739 + 9.69426i −0.747811 + 0.384100i
\(638\) 0 0
\(639\) 31.0525 11.4647i 1.22842 0.453538i
\(640\) 0 0
\(641\) −21.3437 + 36.9683i −0.843024 + 1.46016i 0.0443019 + 0.999018i \(0.485894\pi\)
−0.887326 + 0.461143i \(0.847440\pi\)
\(642\) 0 0
\(643\) 0.813185 + 3.03485i 0.0320689 + 0.119683i 0.980105 0.198481i \(-0.0636007\pi\)
−0.948036 + 0.318163i \(0.896934\pi\)
\(644\) 0 0
\(645\) −9.20130 + 2.92452i −0.362301 + 0.115153i
\(646\) 0 0
\(647\) −18.2351 31.5841i −0.716895 1.24170i −0.962224 0.272258i \(-0.912229\pi\)
0.245329 0.969440i \(-0.421104\pi\)
\(648\) 0 0
\(649\) 43.2361i 1.69717i
\(650\) 0 0
\(651\) 9.51297 + 4.92427i 0.372843 + 0.192998i
\(652\) 0 0
\(653\) 39.3421 22.7142i 1.53957 0.888874i 0.540711 0.841208i \(-0.318155\pi\)
0.998863 0.0476658i \(-0.0151782\pi\)
\(654\) 0 0
\(655\) 9.46410 9.46410i 0.369793 0.369793i
\(656\) 0 0
\(657\) −32.8942 27.3438i −1.28332 1.06678i
\(658\) 0 0
\(659\) −11.4858 6.63132i −0.447422 0.258319i 0.259319 0.965792i \(-0.416502\pi\)
−0.706741 + 0.707472i \(0.749835\pi\)
\(660\) 0 0
\(661\) 2.40763 8.98541i 0.0936460 0.349492i −0.903165 0.429294i \(-0.858762\pi\)
0.996811 + 0.0798025i \(0.0254290\pi\)
\(662\) 0 0
\(663\) 18.6466 + 10.8444i 0.724173 + 0.421162i
\(664\) 0 0
\(665\) −5.96256 + 22.2526i −0.231218 + 0.862918i
\(666\) 0 0
\(667\) 5.28941 + 3.05384i 0.204807 + 0.118245i
\(668\) 0 0
\(669\) 7.81866 35.6568i 0.302287 1.37857i
\(670\) 0 0
\(671\) −0.814821 + 0.814821i −0.0314558 + 0.0314558i
\(672\) 0 0
\(673\) −22.9273 + 13.2371i −0.883782 + 0.510252i −0.871904 0.489678i \(-0.837114\pi\)
−0.0118785 + 0.999929i \(0.503781\pi\)
\(674\) 0 0
\(675\) 16.3086 2.26202i 0.627719 0.0870650i
\(676\) 0 0
\(677\) 41.0789i 1.57879i −0.613885 0.789396i \(-0.710394\pi\)
0.613885 0.789396i \(-0.289606\pi\)
\(678\) 0 0
\(679\) 14.3986 + 24.9390i 0.552566 + 0.957073i
\(680\) 0 0
\(681\) −2.63726 8.29751i −0.101060 0.317961i
\(682\) 0 0
\(683\) −1.54160 5.75334i −0.0589878 0.220145i 0.930140 0.367206i \(-0.119685\pi\)
−0.989128 + 0.147060i \(0.953019\pi\)
\(684\) 0 0
\(685\) 7.83113 13.5639i 0.299212 0.518250i
\(686\) 0 0
\(687\) 16.3827 17.9616i 0.625040 0.685279i
\(688\) 0 0
\(689\) 1.27810 26.0074i 0.0486917 0.990803i
\(690\) 0 0
\(691\) −27.6429 7.40689i −1.05159 0.281771i −0.308679 0.951166i \(-0.599887\pi\)
−0.742907 + 0.669395i \(0.766553\pi\)
\(692\) 0 0
\(693\) 45.0633 4.15215i 1.71181 0.157727i
\(694\) 0 0
\(695\) 40.5636 10.8690i 1.53866 0.412284i
\(696\) 0 0
\(697\) 19.3944 + 19.3944i 0.734617 + 0.734617i
\(698\) 0 0
\(699\) 1.49497 + 32.5185i 0.0565448 + 1.22996i
\(700\) 0 0
\(701\) −0.672924 −0.0254160 −0.0127080 0.999919i \(-0.504045\pi\)
−0.0127080 + 0.999919i \(0.504045\pi\)
\(702\) 0 0
\(703\) 10.8743 0.410131
\(704\) 0 0
\(705\) 0.307809 + 6.69546i 0.0115928 + 0.252166i
\(706\) 0 0
\(707\) −5.34758 5.34758i −0.201116 0.201116i
\(708\) 0 0
\(709\) 29.5534 7.91881i 1.10990 0.297397i 0.343111 0.939295i \(-0.388519\pi\)
0.766790 + 0.641898i \(0.221853\pi\)
\(710\) 0 0
\(711\) 4.72152 0.435043i 0.177071 0.0163154i
\(712\) 0 0
\(713\) −5.04653 1.35221i −0.188994 0.0506408i
\(714\) 0 0
\(715\) −19.7859 38.5214i −0.739950 1.44062i
\(716\) 0 0
\(717\) 11.2600 12.3452i 0.420512 0.461039i
\(718\) 0 0
\(719\) −11.5566 + 20.0165i −0.430987 + 0.746491i −0.996959 0.0779336i \(-0.975168\pi\)
0.565972 + 0.824425i \(0.308501\pi\)
\(720\) 0 0
\(721\) −13.2508 49.4528i −0.493487 1.84172i
\(722\) 0 0
\(723\) 4.44747 + 13.9929i 0.165403 + 0.520402i
\(724\) 0 0
\(725\) 3.19108 + 5.52711i 0.118514 + 0.205272i
\(726\) 0 0
\(727\) 11.5379i 0.427917i −0.976843 0.213959i \(-0.931364\pi\)
0.976843 0.213959i \(-0.0686357\pi\)
\(728\) 0 0
\(729\) −25.9808 + 7.34847i −0.962250 + 0.272166i
\(730\) 0 0
\(731\) −5.83411 + 3.36832i −0.215782 + 0.124582i
\(732\) 0 0
\(733\) −0.910162 + 0.910162i −0.0336176 + 0.0336176i −0.723716 0.690098i \(-0.757567\pi\)
0.690098 + 0.723716i \(0.257567\pi\)
\(734\) 0 0
\(735\) −6.23964 + 28.4558i −0.230153 + 1.04961i
\(736\) 0 0
\(737\) −15.4524 8.92147i −0.569198 0.328626i
\(738\) 0 0
\(739\) 3.23160 12.0605i 0.118876 0.443652i −0.880671 0.473728i \(-0.842908\pi\)
0.999548 + 0.0300754i \(0.00957473\pi\)
\(740\) 0 0
\(741\) −13.5570 + 3.58666i −0.498030 + 0.131759i
\(742\) 0 0
\(743\) 11.8573 44.2519i 0.435001 1.62345i −0.306063 0.952011i \(-0.599012\pi\)
0.741064 0.671435i \(-0.234322\pi\)
\(744\) 0 0
\(745\) −25.5802 14.7687i −0.937185 0.541084i
\(746\) 0 0
\(747\) −8.44810 7.02262i −0.309100 0.256944i
\(748\) 0 0
\(749\) −35.1425 + 35.1425i −1.28408 + 1.28408i
\(750\) 0 0
\(751\) −13.8766 + 8.01168i −0.506366 + 0.292350i −0.731338 0.682015i \(-0.761104\pi\)
0.224973 + 0.974365i \(0.427771\pi\)
\(752\) 0 0
\(753\) 10.8285 + 5.60523i 0.394611 + 0.204266i
\(754\) 0 0
\(755\) 26.2295i 0.954588i
\(756\) 0 0
\(757\) 15.6277 + 27.0680i 0.567998 + 0.983802i 0.996764 + 0.0803861i \(0.0256153\pi\)
−0.428765 + 0.903416i \(0.641051\pi\)
\(758\) 0 0
\(759\) −21.0350 + 6.68572i −0.763523 + 0.242676i
\(760\) 0 0
\(761\) 4.45283 + 16.6182i 0.161415 + 0.602409i 0.998470 + 0.0552906i \(0.0176085\pi\)
−0.837055 + 0.547118i \(0.815725\pi\)
\(762\) 0 0
\(763\) −14.8286 + 25.6839i −0.536832 + 0.929820i
\(764\) 0 0
\(765\) 27.7830 10.2576i 1.00450 0.370865i
\(766\) 0 0
\(767\) −7.83066 36.2595i −0.282749 1.30925i
\(768\) 0 0
\(769\) 0.224553 + 0.0601687i 0.00809758 + 0.00216974i 0.262866 0.964832i \(-0.415332\pi\)
−0.254768 + 0.967002i \(0.581999\pi\)
\(770\) 0 0
\(771\) 2.38049 1.52427i 0.0857313 0.0548953i
\(772\) 0 0
\(773\) 42.7466 11.4539i 1.53749 0.411968i 0.612034 0.790831i \(-0.290352\pi\)
0.925453 + 0.378863i \(0.123685\pi\)
\(774\) 0 0
\(775\) −3.86034 3.86034i −0.138667 0.138667i
\(776\) 0 0
\(777\) 30.0759 1.38267i 1.07897 0.0496032i
\(778\) 0 0
\(779\) −17.8313 −0.638872
\(780\) 0 0
\(781\) −46.3684 −1.65919
\(782\) 0 0
\(783\) −6.42856 8.25886i −0.229738 0.295148i
\(784\) 0 0
\(785\) −28.5828 28.5828i −1.02017 1.02017i
\(786\) 0 0
\(787\) −20.4083 + 5.46839i −0.727478 + 0.194927i −0.603506 0.797358i \(-0.706230\pi\)
−0.123972 + 0.992286i \(0.539563\pi\)
\(788\) 0 0
\(789\) 9.87042 + 15.4149i 0.351396 + 0.548783i
\(790\) 0 0
\(791\) −62.4244 16.7266i −2.21955 0.594728i
\(792\) 0 0
\(793\) 0.535765 0.830916i 0.0190256 0.0295067i
\(794\) 0 0
\(795\) −26.4138 24.0919i −0.936802 0.854453i
\(796\) 0 0
\(797\) −12.0370 + 20.8487i −0.426373 + 0.738501i −0.996548 0.0830233i \(-0.973542\pi\)
0.570174 + 0.821524i \(0.306876\pi\)
\(798\) 0 0
\(799\) 1.21041 + 4.51731i 0.0428212 + 0.159811i
\(800\) 0 0
\(801\) −29.1090 4.99431i −1.02852 0.176465i
\(802\) 0 0
\(803\) 29.9598 + 51.8918i 1.05726 + 1.83122i
\(804\) 0 0
\(805\) 31.1097i 1.09647i
\(806\) 0 0
\(807\) 6.86234 13.2570i 0.241566 0.466669i
\(808\) 0 0
\(809\) −22.2703 + 12.8578i −0.782982 + 0.452055i −0.837486 0.546459i \(-0.815975\pi\)
0.0545042 + 0.998514i \(0.482642\pi\)
\(810\) 0 0
\(811\) −5.99463 + 5.99463i −0.210500 + 0.210500i −0.804480 0.593980i \(-0.797556\pi\)
0.593980 + 0.804480i \(0.297556\pi\)
\(812\) 0 0
\(813\) −33.5529 7.35732i −1.17675 0.258032i
\(814\) 0 0
\(815\) −2.75821 1.59245i −0.0966157 0.0557811i
\(816\) 0 0
\(817\) 1.13352 4.23037i 0.0396570 0.148002i
\(818\) 0 0
\(819\) −37.0398 + 11.6437i −1.29427 + 0.406865i
\(820\) 0 0
\(821\) 13.7528 51.3262i 0.479977 1.79130i −0.121710 0.992566i \(-0.538838\pi\)
0.601687 0.798732i \(-0.294496\pi\)
\(822\) 0 0
\(823\) 9.92634 + 5.73097i 0.346010 + 0.199769i 0.662927 0.748684i \(-0.269314\pi\)
−0.316916 + 0.948454i \(0.602647\pi\)
\(824\) 0 0
\(825\) −22.5286 4.93997i −0.784346 0.171988i
\(826\) 0 0
\(827\) 4.57665 4.57665i 0.159146 0.159146i −0.623042 0.782188i \(-0.714104\pi\)
0.782188 + 0.623042i \(0.214104\pi\)
\(828\) 0 0
\(829\) 43.2625 24.9776i 1.50257 0.867509i 0.502574 0.864534i \(-0.332387\pi\)
0.999996 0.00297446i \(-0.000946803\pi\)
\(830\) 0 0
\(831\) 12.3434 23.8457i 0.428189 0.827198i
\(832\) 0 0
\(833\) 20.3266i 0.704275i
\(834\) 0 0
\(835\) −7.98133 13.8241i −0.276205 0.478401i
\(836\) 0 0
\(837\) 7.14013 + 5.40071i 0.246799 + 0.186676i
\(838\) 0 0
\(839\) 3.00183 + 11.2030i 0.103635 + 0.386770i 0.998187 0.0601939i \(-0.0191719\pi\)
−0.894552 + 0.446964i \(0.852505\pi\)
\(840\) 0 0
\(841\) −12.4716 + 21.6014i −0.430054 + 0.744876i
\(842\) 0 0
\(843\) −21.6180 19.7177i −0.744564 0.679114i
\(844\) 0 0
\(845\) 23.5700 + 28.7221i 0.810832 + 0.988069i
\(846\) 0 0
\(847\) −23.0926 6.18765i −0.793472 0.212610i
\(848\) 0 0
\(849\) 1.47545 + 2.30425i 0.0506375 + 0.0790817i
\(850\) 0 0
\(851\) −14.1841 + 3.80063i −0.486226 + 0.130284i
\(852\) 0 0
\(853\) −1.56247 1.56247i −0.0534978 0.0534978i 0.679852 0.733350i \(-0.262044\pi\)
−0.733350 + 0.679852i \(0.762044\pi\)
\(854\) 0 0
\(855\) −8.05644 + 17.4873i −0.275525 + 0.598054i
\(856\) 0 0
\(857\) −21.5804 −0.737174 −0.368587 0.929593i \(-0.620158\pi\)
−0.368587 + 0.929593i \(0.620158\pi\)
\(858\) 0 0
\(859\) −10.5544 −0.360110 −0.180055 0.983657i \(-0.557628\pi\)
−0.180055 + 0.983657i \(0.557628\pi\)
\(860\) 0 0
\(861\) −49.3175 + 2.26726i −1.68074 + 0.0772681i
\(862\) 0 0
\(863\) 21.4177 + 21.4177i 0.729066 + 0.729066i 0.970434 0.241368i \(-0.0775960\pi\)
−0.241368 + 0.970434i \(0.577596\pi\)
\(864\) 0 0
\(865\) 48.2992 12.9417i 1.64222 0.440032i
\(866\) 0 0
\(867\) −7.39436 + 4.73475i −0.251126 + 0.160800i
\(868\) 0 0
\(869\) −6.41562 1.71906i −0.217635 0.0583152i
\(870\) 0 0
\(871\) 14.5748 + 4.68323i 0.493848 + 0.158685i
\(872\) 0 0
\(873\) 8.33585 + 22.5779i 0.282126 + 0.764144i
\(874\) 0 0
\(875\) −9.39415 + 16.2711i −0.317580 + 0.550065i
\(876\) 0 0
\(877\) 10.1109 + 37.7342i 0.341420 + 1.27419i 0.896740 + 0.442558i \(0.145929\pi\)
−0.555320 + 0.831637i \(0.687404\pi\)
\(878\) 0 0
\(879\) 6.44617 2.04883i 0.217424 0.0691054i
\(880\) 0 0
\(881\) −3.39708 5.88391i −0.114450 0.198234i 0.803110 0.595831i \(-0.203177\pi\)
−0.917560 + 0.397598i \(0.869844\pi\)
\(882\) 0 0
\(883\) 40.6560i 1.36818i 0.729397 + 0.684091i \(0.239801\pi\)
−0.729397 + 0.684091i \(0.760199\pi\)
\(884\) 0 0
\(885\) −45.2307 23.4131i −1.52041 0.787023i
\(886\) 0 0
\(887\) 9.04299 5.22097i 0.303634 0.175303i −0.340440 0.940266i \(-0.610576\pi\)
0.644074 + 0.764963i \(0.277243\pi\)
\(888\) 0 0
\(889\) −52.5233 + 52.5233i −1.76158 + 1.76158i
\(890\) 0 0
\(891\) 37.7066 + 2.94852i 1.26322 + 0.0987790i
\(892\) 0 0
\(893\) −2.63304 1.52018i −0.0881112 0.0508710i
\(894\) 0 0
\(895\) −6.81664 + 25.4400i −0.227855 + 0.850367i
\(896\) 0 0
\(897\) 16.4299 9.41663i 0.548579 0.314412i
\(898\) 0 0
\(899\) −0.898169 + 3.35201i −0.0299556 + 0.111796i
\(900\) 0 0
\(901\) −21.6029 12.4724i −0.719697 0.415517i
\(902\) 0 0
\(903\) 2.59719 11.8444i 0.0864290 0.394157i
\(904\) 0 0
\(905\) 27.9116 27.9116i 0.927814 0.927814i
\(906\) 0 0
\(907\) 33.9759 19.6160i 1.12815 0.651338i 0.184681 0.982799i \(-0.440875\pi\)
0.943469 + 0.331461i \(0.107542\pi\)
\(908\) 0 0
\(909\) −3.64917 5.16071i −0.121035 0.171170i
\(910\) 0 0
\(911\) 32.0923i 1.06326i 0.846975 + 0.531632i \(0.178421\pi\)
−0.846975 + 0.531632i \(0.821579\pi\)
\(912\) 0 0
\(913\) 7.69447 + 13.3272i 0.254650 + 0.441066i
\(914\) 0 0
\(915\) −0.411170 1.29365i −0.0135929 0.0427667i
\(916\) 0 0
\(917\) 4.35066 + 16.2369i 0.143671 + 0.536189i
\(918\) 0 0
\(919\) 16.6421 28.8249i 0.548972 0.950847i −0.449374 0.893344i \(-0.648353\pi\)
0.998345 0.0575028i \(-0.0183138\pi\)
\(920\) 0 0
\(921\) 35.9839 39.4519i 1.18571 1.29998i
\(922\) 0 0
\(923\) 38.8863 8.39796i 1.27996 0.276422i
\(924\) 0 0
\(925\) −14.8216 3.97143i −0.487330 0.130580i
\(926\) 0 0
\(927\) −3.92594 42.6082i −0.128945 1.39944i
\(928\) 0 0
\(929\) −21.2156 + 5.68470i −0.696060 + 0.186509i −0.589465 0.807794i \(-0.700662\pi\)
−0.106595 + 0.994303i \(0.533995\pi\)
\(930\) 0 0
\(931\) −9.34415 9.34415i −0.306242 0.306242i
\(932\) 0 0
\(933\) 1.66480 + 36.2128i 0.0545032 + 1.18555i
\(934\) 0 0
\(935\) −41.4864 −1.35675
\(936\) 0 0
\(937\) 55.9423 1.82755 0.913777 0.406216i \(-0.133152\pi\)
0.913777 + 0.406216i \(0.133152\pi\)
\(938\) 0 0
\(939\) −2.59856 56.5238i −0.0848008 1.84459i
\(940\) 0 0
\(941\) 17.1600 + 17.1600i 0.559401 + 0.559401i 0.929137 0.369736i \(-0.120552\pi\)
−0.369736 + 0.929137i \(0.620552\pi\)
\(942\) 0 0
\(943\) 23.2587 6.23215i 0.757407 0.202947i
\(944\) 0 0
\(945\) −20.0589 + 49.3906i −0.652515 + 1.60668i
\(946\) 0 0
\(947\) −46.0604 12.3419i −1.49676 0.401056i −0.584748 0.811215i \(-0.698807\pi\)
−0.912014 + 0.410159i \(0.865473\pi\)
\(948\) 0 0
\(949\) −34.5237 38.0924i −1.12069 1.23653i
\(950\) 0 0
\(951\) −8.60145 + 9.43043i −0.278921 + 0.305803i
\(952\) 0 0
\(953\) 21.5278 37.2872i 0.697353 1.20785i −0.272029 0.962289i \(-0.587695\pi\)
0.969381 0.245561i \(-0.0789721\pi\)
\(954\) 0 0
\(955\) 16.7940 + 62.6761i 0.543441 + 2.02815i
\(956\) 0 0
\(957\) 4.44080 + 13.9719i 0.143551 + 0.451648i
\(958\) 0 0
\(959\) 9.83532 + 17.0353i 0.317599 + 0.550098i
\(960\) 0 0
\(961\) 28.0315i 0.904242i
\(962\) 0 0
\(963\) −33.9144 + 23.9811i −1.09288 + 0.772781i
\(964\) 0 0
\(965\) −49.6166 + 28.6461i −1.59721 + 0.922152i
\(966\) 0 0
\(967\) 4.96226 4.96226i 0.159576 0.159576i −0.622803 0.782379i \(-0.714006\pi\)
0.782379 + 0.622803i \(0.214006\pi\)
\(968\) 0 0
\(969\) −2.87745 + 13.1225i −0.0924370 + 0.421557i
\(970\) 0 0
\(971\) 27.5285 + 15.8936i 0.883432 + 0.510050i 0.871789 0.489882i \(-0.162960\pi\)
0.0116437 + 0.999932i \(0.496294\pi\)
\(972\) 0 0
\(973\) −13.6506 + 50.9448i −0.437619 + 1.63322i
\(974\) 0 0
\(975\) 19.7881 + 0.0626048i 0.633725 + 0.00200496i
\(976\) 0 0
\(977\) 1.80392 6.73232i 0.0577125 0.215386i −0.931047 0.364898i \(-0.881104\pi\)
0.988760 + 0.149512i \(0.0477704\pi\)
\(978\) 0 0
\(979\) 35.8290 + 20.6859i 1.14510 + 0.661124i
\(980\) 0 0
\(981\) −15.8446 + 19.0608i −0.505878 + 0.608563i
\(982\) 0 0
\(983\) −10.5636 + 10.5636i −0.336926 + 0.336926i −0.855209 0.518283i \(-0.826571\pi\)
0.518283 + 0.855209i \(0.326571\pi\)
\(984\) 0 0
\(985\) −46.1306 + 26.6335i −1.46984 + 0.848614i
\(986\) 0 0
\(987\) −7.47571 3.86971i −0.237954 0.123174i
\(988\) 0 0
\(989\) 5.91416i 0.188059i
\(990\) 0 0
\(991\) 13.1927 + 22.8505i 0.419081 + 0.725870i 0.995847 0.0910396i \(-0.0290190\pi\)
−0.576766 + 0.816909i \(0.695686\pi\)
\(992\) 0 0
\(993\) 30.1038 9.56810i 0.955315 0.303635i
\(994\) 0 0
\(995\) 3.33645 + 12.4518i 0.105773 + 0.394749i
\(996\) 0 0
\(997\) −14.6325 + 25.3443i −0.463416 + 0.802660i −0.999129 0.0417401i \(-0.986710\pi\)
0.535712 + 0.844401i \(0.320043\pi\)
\(998\) 0 0
\(999\) 24.9697 + 3.11165i 0.790006 + 0.0984483i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.2.cn.d.353.3 16
3.2 odd 2 inner 624.2.cn.d.353.4 16
4.3 odd 2 78.2.k.a.41.1 16
12.11 even 2 78.2.k.a.41.3 yes 16
13.7 odd 12 inner 624.2.cn.d.449.4 16
39.20 even 12 inner 624.2.cn.d.449.3 16
52.3 odd 6 1014.2.g.c.239.4 16
52.7 even 12 78.2.k.a.59.3 yes 16
52.11 even 12 1014.2.g.c.437.8 16
52.15 even 12 1014.2.g.d.437.4 16
52.23 odd 6 1014.2.g.d.239.8 16
156.11 odd 12 1014.2.g.c.437.4 16
156.23 even 6 1014.2.g.d.239.4 16
156.59 odd 12 78.2.k.a.59.1 yes 16
156.107 even 6 1014.2.g.c.239.8 16
156.119 odd 12 1014.2.g.d.437.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.2.k.a.41.1 16 4.3 odd 2
78.2.k.a.41.3 yes 16 12.11 even 2
78.2.k.a.59.1 yes 16 156.59 odd 12
78.2.k.a.59.3 yes 16 52.7 even 12
624.2.cn.d.353.3 16 1.1 even 1 trivial
624.2.cn.d.353.4 16 3.2 odd 2 inner
624.2.cn.d.449.3 16 39.20 even 12 inner
624.2.cn.d.449.4 16 13.7 odd 12 inner
1014.2.g.c.239.4 16 52.3 odd 6
1014.2.g.c.239.8 16 156.107 even 6
1014.2.g.c.437.4 16 156.11 odd 12
1014.2.g.c.437.8 16 52.11 even 12
1014.2.g.d.239.4 16 156.23 even 6
1014.2.g.d.239.8 16 52.23 odd 6
1014.2.g.d.437.4 16 52.15 even 12
1014.2.g.d.437.8 16 156.119 odd 12