Properties

Label 624.2.cn.c
Level $624$
Weight $2$
Character orbit 624.cn
Analytic conductor $4.983$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,2,Mod(305,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 0, 6, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.305");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 624.cn (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.98266508613\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.56070144.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 16x^{6} - 34x^{5} + 63x^{4} - 74x^{3} + 70x^{2} - 38x + 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{6} - 2 \beta_{5} + \cdots + \beta_1) q^{3} + (\beta_{5} - \beta_{4} + \beta_{3} - \beta_1) q^{5} + (\beta_{6} + \beta_{5}) q^{7} + ( - \beta_{7} + \beta_{6} - 3 \beta_{5} + \cdots + 1) q^{9}+ \cdots + ( - 4 \beta_{6} - 3 \beta_{5} + \cdots - 5) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{3} + 4 q^{7} + 4 q^{9} + 8 q^{13} + 14 q^{15} + 16 q^{19} + 4 q^{21} - 4 q^{27} - 8 q^{31} + 16 q^{33} - 28 q^{37} + 14 q^{39} - 36 q^{43} - 20 q^{45} - 4 q^{55} + 16 q^{57} + 28 q^{61} + 8 q^{63}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 4x^{7} + 16x^{6} - 34x^{5} + 63x^{4} - 74x^{3} + 70x^{2} - 38x + 13 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{7} - 15\nu^{6} + 32\nu^{5} - 172\nu^{4} + 221\nu^{3} - 426\nu^{2} + 235\nu - 159 ) / 37 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -3\nu^{7} - 8\nu^{6} + 22\nu^{5} - 146\nu^{4} + 256\nu^{3} - 390\nu^{2} + 298\nu - 70 ) / 37 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -3\nu^{7} - 8\nu^{6} + 22\nu^{5} - 146\nu^{4} + 256\nu^{3} - 427\nu^{2} + 335\nu - 181 ) / 37 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 3\nu^{7} - 29\nu^{6} + 89\nu^{5} - 261\nu^{4} + 373\nu^{3} - 498\nu^{2} + 294\nu - 152 ) / 37 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -8\nu^{7} + 28\nu^{6} - 114\nu^{5} + 215\nu^{4} - 378\nu^{3} + 366\nu^{2} - 266\nu + 97 ) / 37 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 17\nu^{7} - 41\nu^{6} + 159\nu^{5} - 184\nu^{4} + 276\nu^{3} - 84\nu^{2} + 38\nu + 39 ) / 37 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{4} + \beta_{3} + \beta _1 - 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} + \beta_{6} - \beta_{5} + 2\beta_{3} - 2\beta _1 - 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{7} + 3\beta_{6} + 6\beta_{4} - 2\beta_{3} - 2\beta_{2} - 6\beta _1 + 7 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -4\beta_{7} - 3\beta_{6} + 7\beta_{5} + 6\beta_{4} - 12\beta_{3} - 5\beta_{2} + \beta _1 + 26 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -17\beta_{7} - 25\beta_{6} + 3\beta_{5} - 24\beta_{4} - 5\beta_{3} + 7\beta_{2} + 27\beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 4\beta_{7} - 16\beta_{6} - 42\beta_{5} - 54\beta_{4} + 51\beta_{3} + 42\beta_{2} + 26\beta _1 - 122 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(1\) \(\beta_{5}\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
305.1
0.500000 0.564882i
0.500000 + 1.56488i
0.500000 + 2.19293i
0.500000 1.19293i
0.500000 + 0.564882i
0.500000 1.56488i
0.500000 2.19293i
0.500000 + 1.19293i
0 −0.239203 1.71545i 0 1.06488 + 1.06488i 0 −0.366025 + 1.36603i 0 −2.88556 + 0.820682i 0
305.2 0 1.60523 0.650571i 0 −1.06488 1.06488i 0 −0.366025 + 1.36603i 0 2.15351 2.08863i 0
353.1 0 −1.64914 + 0.529480i 0 −1.69293 1.69293i 0 1.36603 0.366025i 0 2.43930 1.74637i 0
353.2 0 1.28311 1.16345i 0 1.69293 + 1.69293i 0 1.36603 0.366025i 0 0.292748 2.98568i 0
401.1 0 −0.239203 + 1.71545i 0 1.06488 1.06488i 0 −0.366025 1.36603i 0 −2.88556 0.820682i 0
401.2 0 1.60523 + 0.650571i 0 −1.06488 + 1.06488i 0 −0.366025 1.36603i 0 2.15351 + 2.08863i 0
449.1 0 −1.64914 0.529480i 0 −1.69293 + 1.69293i 0 1.36603 + 0.366025i 0 2.43930 + 1.74637i 0
449.2 0 1.28311 + 1.16345i 0 1.69293 1.69293i 0 1.36603 + 0.366025i 0 0.292748 + 2.98568i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 305.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
13.f odd 12 1 inner
39.k even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 624.2.cn.c 8
3.b odd 2 1 inner 624.2.cn.c 8
4.b odd 2 1 39.2.k.b 8
12.b even 2 1 39.2.k.b 8
13.f odd 12 1 inner 624.2.cn.c 8
20.d odd 2 1 975.2.bo.d 8
20.e even 4 1 975.2.bp.e 8
20.e even 4 1 975.2.bp.f 8
39.k even 12 1 inner 624.2.cn.c 8
52.b odd 2 1 507.2.k.d 8
52.f even 4 1 507.2.k.e 8
52.f even 4 1 507.2.k.f 8
52.i odd 6 1 507.2.f.e 8
52.i odd 6 1 507.2.k.f 8
52.j odd 6 1 507.2.f.f 8
52.j odd 6 1 507.2.k.e 8
52.l even 12 1 39.2.k.b 8
52.l even 12 1 507.2.f.e 8
52.l even 12 1 507.2.f.f 8
52.l even 12 1 507.2.k.d 8
60.h even 2 1 975.2.bo.d 8
60.l odd 4 1 975.2.bp.e 8
60.l odd 4 1 975.2.bp.f 8
156.h even 2 1 507.2.k.d 8
156.l odd 4 1 507.2.k.e 8
156.l odd 4 1 507.2.k.f 8
156.p even 6 1 507.2.f.f 8
156.p even 6 1 507.2.k.e 8
156.r even 6 1 507.2.f.e 8
156.r even 6 1 507.2.k.f 8
156.v odd 12 1 39.2.k.b 8
156.v odd 12 1 507.2.f.e 8
156.v odd 12 1 507.2.f.f 8
156.v odd 12 1 507.2.k.d 8
260.bc even 12 1 975.2.bo.d 8
260.be odd 12 1 975.2.bp.f 8
260.bl odd 12 1 975.2.bp.e 8
780.cf even 12 1 975.2.bp.f 8
780.cr odd 12 1 975.2.bo.d 8
780.cy even 12 1 975.2.bp.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.2.k.b 8 4.b odd 2 1
39.2.k.b 8 12.b even 2 1
39.2.k.b 8 52.l even 12 1
39.2.k.b 8 156.v odd 12 1
507.2.f.e 8 52.i odd 6 1
507.2.f.e 8 52.l even 12 1
507.2.f.e 8 156.r even 6 1
507.2.f.e 8 156.v odd 12 1
507.2.f.f 8 52.j odd 6 1
507.2.f.f 8 52.l even 12 1
507.2.f.f 8 156.p even 6 1
507.2.f.f 8 156.v odd 12 1
507.2.k.d 8 52.b odd 2 1
507.2.k.d 8 52.l even 12 1
507.2.k.d 8 156.h even 2 1
507.2.k.d 8 156.v odd 12 1
507.2.k.e 8 52.f even 4 1
507.2.k.e 8 52.j odd 6 1
507.2.k.e 8 156.l odd 4 1
507.2.k.e 8 156.p even 6 1
507.2.k.f 8 52.f even 4 1
507.2.k.f 8 52.i odd 6 1
507.2.k.f 8 156.l odd 4 1
507.2.k.f 8 156.r even 6 1
624.2.cn.c 8 1.a even 1 1 trivial
624.2.cn.c 8 3.b odd 2 1 inner
624.2.cn.c 8 13.f odd 12 1 inner
624.2.cn.c 8 39.k even 12 1 inner
975.2.bo.d 8 20.d odd 2 1
975.2.bo.d 8 60.h even 2 1
975.2.bo.d 8 260.bc even 12 1
975.2.bo.d 8 780.cr odd 12 1
975.2.bp.e 8 20.e even 4 1
975.2.bp.e 8 60.l odd 4 1
975.2.bp.e 8 260.bl odd 12 1
975.2.bp.e 8 780.cy even 12 1
975.2.bp.f 8 20.e even 4 1
975.2.bp.f 8 60.l odd 4 1
975.2.bp.f 8 260.be odd 12 1
975.2.bp.f 8 780.cf even 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(624, [\chi])\):

\( T_{5}^{8} + 38T_{5}^{4} + 169 \) Copy content Toggle raw display
\( T_{7}^{4} - 2T_{7}^{3} + 2T_{7}^{2} - 4T_{7} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} - 2 T^{7} + \cdots + 81 \) Copy content Toggle raw display
$5$ \( T^{8} + 38T^{4} + 169 \) Copy content Toggle raw display
$7$ \( (T^{4} - 2 T^{3} + 2 T^{2} + \cdots + 4)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} + 24 T^{6} + \cdots + 2704 \) Copy content Toggle raw display
$13$ \( (T^{4} - 4 T^{3} + \cdots + 169)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} + 30 T^{6} + \cdots + 13689 \) Copy content Toggle raw display
$19$ \( (T^{4} - 8 T^{3} + 20 T^{2} + \cdots + 16)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( T^{8} - 82 T^{6} + \cdots + 2474329 \) Copy content Toggle raw display
$31$ \( (T^{4} + 4 T^{3} + \cdots + 484)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 14 T^{3} + \cdots + 1369)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} - 54 T^{6} + \cdots + 169 \) Copy content Toggle raw display
$43$ \( (T^{4} + 18 T^{3} + \cdots + 324)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + 9728 T^{4} + 11075584 \) Copy content Toggle raw display
$53$ \( (T^{4} + 22 T^{2} + 13)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + 24 T^{6} + \cdots + 43264 \) Copy content Toggle raw display
$61$ \( (T^{2} - 7 T + 49)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} - 20 T^{3} + \cdots + 2704)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} - 24 T^{6} + \cdots + 43264 \) Copy content Toggle raw display
$73$ \( (T^{4} + 14 T^{3} + \cdots + 121)^{2} \) Copy content Toggle raw display
$79$ \( (T + 2)^{8} \) Copy content Toggle raw display
$83$ \( T^{8} + 296T^{4} + 2704 \) Copy content Toggle raw display
$89$ \( T^{8} - 24 T^{6} + \cdots + 77228944 \) Copy content Toggle raw display
$97$ \( (T^{4} - 10 T^{3} + \cdots + 484)^{2} \) Copy content Toggle raw display
show more
show less