Properties

Label 624.2.cn
Level $624$
Weight $2$
Character orbit 624.cn
Rep. character $\chi_{624}(305,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $104$
Newform subspaces $6$
Sturm bound $224$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 624.cn (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 39 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 6 \)
Sturm bound: \(224\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(624, [\chi])\).

Total New Old
Modular forms 496 120 376
Cusp forms 400 104 296
Eisenstein series 96 16 80

Trace form

\( 104 q + 2 q^{3} + 4 q^{7} - 2 q^{9} - 8 q^{13} + 10 q^{15} + 4 q^{19} + 2 q^{21} + 8 q^{27} + 36 q^{31} - 10 q^{33} + 8 q^{37} - 26 q^{39} + 96 q^{43} - 14 q^{45} + 12 q^{49} + 44 q^{55} - 14 q^{57} - 20 q^{61}+ \cdots - 66 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(624, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
624.2.cn.a 624.cn 39.k $4$ $4.983$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-3}) \) 156.2.u.a \(0\) \(0\) \(0\) \(-2\) $\mathrm{U}(1)[D_{12}]$ \(q+(-\zeta_{12}-\zeta_{12}^{3})q^{3}+(-2-2\zeta_{12}+\cdots)q^{7}+\cdots\)
624.2.cn.b 624.cn 39.k $4$ $4.983$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-3}) \) 39.2.k.a \(0\) \(0\) \(0\) \(10\) $\mathrm{U}(1)[D_{12}]$ \(q+(\zeta_{12}+\zeta_{12}^{3})q^{3}+(2+2\zeta_{12}+\zeta_{12}^{2}+\cdots)q^{7}+\cdots\)
624.2.cn.c 624.cn 39.k $8$ $4.983$ 8.0.56070144.2 None 39.2.k.b \(0\) \(2\) \(0\) \(4\) $\mathrm{SU}(2)[C_{12}]$ \(q+(\beta _{1}+\beta _{2}+\beta _{4}-2\beta _{5}-\beta _{6})q^{3}+(-\beta _{1}+\cdots)q^{5}+\cdots\)
624.2.cn.d 624.cn 39.k $16$ $4.983$ 16.0.\(\cdots\).9 None 78.2.k.a \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-\beta _{10}-\beta _{12})q^{3}+(\beta _{1}-\beta _{3}-\beta _{9}+\cdots)q^{5}+\cdots\)
624.2.cn.e 624.cn 39.k $16$ $4.983$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 156.2.u.b \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{12}]$ \(q+(\beta _{9}+\beta _{13}+\beta _{15})q^{3}+(-\beta _{3}-\beta _{9}+\cdots)q^{5}+\cdots\)
624.2.cn.f 624.cn 39.k $56$ $4.983$ None 312.2.bp.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(624, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(624, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(312, [\chi])\)\(^{\oplus 2}\)