Defining parameters
Level: | \( N \) | \(=\) | \( 624 = 2^{4} \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 624.cn (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 39 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(224\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(624, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 496 | 120 | 376 |
Cusp forms | 400 | 104 | 296 |
Eisenstein series | 96 | 16 | 80 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(624, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
624.2.cn.a | $4$ | $4.983$ | \(\Q(\zeta_{12})\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(-2\) | \(q+(-\zeta_{12}-\zeta_{12}^{3})q^{3}+(-2-2\zeta_{12}+\cdots)q^{7}+\cdots\) |
624.2.cn.b | $4$ | $4.983$ | \(\Q(\zeta_{12})\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(10\) | \(q+(\zeta_{12}+\zeta_{12}^{3})q^{3}+(2+2\zeta_{12}+\zeta_{12}^{2}+\cdots)q^{7}+\cdots\) |
624.2.cn.c | $8$ | $4.983$ | 8.0.56070144.2 | None | \(0\) | \(2\) | \(0\) | \(4\) | \(q+(\beta _{1}+\beta _{2}+\beta _{4}-2\beta _{5}-\beta _{6})q^{3}+(-\beta _{1}+\cdots)q^{5}+\cdots\) |
624.2.cn.d | $16$ | $4.983$ | 16.0.\(\cdots\).9 | None | \(0\) | \(0\) | \(0\) | \(-8\) | \(q+(-\beta _{10}-\beta _{12})q^{3}+(\beta _{1}-\beta _{3}-\beta _{9}+\cdots)q^{5}+\cdots\) |
624.2.cn.e | $16$ | $4.983$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(4\) | \(q+(\beta _{9}+\beta _{13}+\beta _{15})q^{3}+(-\beta _{3}-\beta _{9}+\cdots)q^{5}+\cdots\) |
624.2.cn.f | $56$ | $4.983$ | None | \(0\) | \(0\) | \(0\) | \(-4\) |
Decomposition of \(S_{2}^{\mathrm{old}}(624, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(624, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(312, [\chi])\)\(^{\oplus 2}\)