Properties

Label 624.2.a.e
Level $624$
Weight $2$
Character orbit 624.a
Self dual yes
Analytic conductor $4.983$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,2,Mod(1,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 624.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.98266508613\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 156)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{3} - 4 q^{5} + 2 q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{3} - 4 q^{5} + 2 q^{7} + q^{9} + 4 q^{11} + q^{13} - 4 q^{15} + 2 q^{17} + 2 q^{19} + 2 q^{21} + 11 q^{25} + q^{27} - 6 q^{29} + 10 q^{31} + 4 q^{33} - 8 q^{35} + 10 q^{37} + q^{39} + 8 q^{41} - 4 q^{43} - 4 q^{45} + 4 q^{47} - 3 q^{49} + 2 q^{51} - 10 q^{53} - 16 q^{55} + 2 q^{57} + 8 q^{59} - 14 q^{61} + 2 q^{63} - 4 q^{65} - 2 q^{67} - 16 q^{71} - 10 q^{73} + 11 q^{75} + 8 q^{77} + 16 q^{79} + q^{81} - 8 q^{85} - 6 q^{87} - 4 q^{89} + 2 q^{91} + 10 q^{93} - 8 q^{95} - 2 q^{97} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 1.00000 0 −4.00000 0 2.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 624.2.a.e 1
3.b odd 2 1 1872.2.a.s 1
4.b odd 2 1 156.2.a.a 1
8.b even 2 1 2496.2.a.o 1
8.d odd 2 1 2496.2.a.bc 1
12.b even 2 1 468.2.a.d 1
13.b even 2 1 8112.2.a.bi 1
20.d odd 2 1 3900.2.a.m 1
20.e even 4 2 3900.2.h.b 2
24.f even 2 1 7488.2.a.c 1
24.h odd 2 1 7488.2.a.d 1
28.d even 2 1 7644.2.a.k 1
36.f odd 6 2 4212.2.i.l 2
36.h even 6 2 4212.2.i.b 2
52.b odd 2 1 2028.2.a.c 1
52.f even 4 2 2028.2.b.a 2
52.i odd 6 2 2028.2.i.g 2
52.j odd 6 2 2028.2.i.e 2
52.l even 12 4 2028.2.q.h 4
156.h even 2 1 6084.2.a.b 1
156.l odd 4 2 6084.2.b.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
156.2.a.a 1 4.b odd 2 1
468.2.a.d 1 12.b even 2 1
624.2.a.e 1 1.a even 1 1 trivial
1872.2.a.s 1 3.b odd 2 1
2028.2.a.c 1 52.b odd 2 1
2028.2.b.a 2 52.f even 4 2
2028.2.i.e 2 52.j odd 6 2
2028.2.i.g 2 52.i odd 6 2
2028.2.q.h 4 52.l even 12 4
2496.2.a.o 1 8.b even 2 1
2496.2.a.bc 1 8.d odd 2 1
3900.2.a.m 1 20.d odd 2 1
3900.2.h.b 2 20.e even 4 2
4212.2.i.b 2 36.h even 6 2
4212.2.i.l 2 36.f odd 6 2
6084.2.a.b 1 156.h even 2 1
6084.2.b.j 2 156.l odd 4 2
7488.2.a.c 1 24.f even 2 1
7488.2.a.d 1 24.h odd 2 1
7644.2.a.k 1 28.d even 2 1
8112.2.a.bi 1 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(624))\):

\( T_{5} + 4 \) Copy content Toggle raw display
\( T_{7} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T + 4 \) Copy content Toggle raw display
$7$ \( T - 2 \) Copy content Toggle raw display
$11$ \( T - 4 \) Copy content Toggle raw display
$13$ \( T - 1 \) Copy content Toggle raw display
$17$ \( T - 2 \) Copy content Toggle raw display
$19$ \( T - 2 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T + 6 \) Copy content Toggle raw display
$31$ \( T - 10 \) Copy content Toggle raw display
$37$ \( T - 10 \) Copy content Toggle raw display
$41$ \( T - 8 \) Copy content Toggle raw display
$43$ \( T + 4 \) Copy content Toggle raw display
$47$ \( T - 4 \) Copy content Toggle raw display
$53$ \( T + 10 \) Copy content Toggle raw display
$59$ \( T - 8 \) Copy content Toggle raw display
$61$ \( T + 14 \) Copy content Toggle raw display
$67$ \( T + 2 \) Copy content Toggle raw display
$71$ \( T + 16 \) Copy content Toggle raw display
$73$ \( T + 10 \) Copy content Toggle raw display
$79$ \( T - 16 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T + 4 \) Copy content Toggle raw display
$97$ \( T + 2 \) Copy content Toggle raw display
show more
show less