Properties

Label 6223.2.a.k.1.8
Level $6223$
Weight $2$
Character 6223.1
Self dual yes
Analytic conductor $49.691$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6223,2,Mod(1,6223)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6223.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6223 = 7^{2} \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6223.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-2,4,12,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.6909051778\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 20 x^{14} + 38 x^{13} + 155 x^{12} - 275 x^{11} - 593 x^{10} + 957 x^{9} + 1177 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 889)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(0.102239\) of defining polynomial
Character \(\chi\) \(=\) 6223.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.102239 q^{2} +3.12743 q^{3} -1.98955 q^{4} -0.280585 q^{5} -0.319747 q^{6} +0.407889 q^{8} +6.78082 q^{9} +0.0286868 q^{10} +0.974733 q^{11} -6.22217 q^{12} +1.41349 q^{13} -0.877509 q^{15} +3.93739 q^{16} -6.28548 q^{17} -0.693267 q^{18} -1.00698 q^{19} +0.558236 q^{20} -0.0996561 q^{22} +1.39508 q^{23} +1.27564 q^{24} -4.92127 q^{25} -0.144515 q^{26} +11.8242 q^{27} -2.24230 q^{29} +0.0897160 q^{30} +9.08093 q^{31} -1.21833 q^{32} +3.04841 q^{33} +0.642624 q^{34} -13.4908 q^{36} +8.73158 q^{37} +0.102954 q^{38} +4.42059 q^{39} -0.114447 q^{40} +3.37544 q^{41} -4.53376 q^{43} -1.93928 q^{44} -1.90259 q^{45} -0.142632 q^{46} +3.98353 q^{47} +12.3139 q^{48} +0.503148 q^{50} -19.6574 q^{51} -2.81221 q^{52} +12.4108 q^{53} -1.20890 q^{54} -0.273495 q^{55} -3.14927 q^{57} +0.229251 q^{58} +2.70787 q^{59} +1.74584 q^{60} +6.02128 q^{61} -0.928429 q^{62} -7.75022 q^{64} -0.396604 q^{65} -0.311668 q^{66} -1.29868 q^{67} +12.5053 q^{68} +4.36302 q^{69} +1.77583 q^{71} +2.76582 q^{72} +14.2675 q^{73} -0.892711 q^{74} -15.3909 q^{75} +2.00344 q^{76} -0.451959 q^{78} -9.13520 q^{79} -1.10477 q^{80} +16.6370 q^{81} -0.345103 q^{82} -2.94615 q^{83} +1.76361 q^{85} +0.463529 q^{86} -7.01263 q^{87} +0.397583 q^{88} +8.92572 q^{89} +0.194520 q^{90} -2.77558 q^{92} +28.4000 q^{93} -0.407274 q^{94} +0.282544 q^{95} -3.81026 q^{96} +1.25797 q^{97} +6.60948 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} + 4 q^{3} + 12 q^{4} + 9 q^{5} + 12 q^{6} - 6 q^{8} + 14 q^{9} + 2 q^{10} - 22 q^{11} + 10 q^{12} + 4 q^{13} - 14 q^{15} + 12 q^{16} + 18 q^{17} - 5 q^{18} + 15 q^{19} + 40 q^{20} - 11 q^{22}+ \cdots - 73 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.102239 −0.0722942 −0.0361471 0.999346i \(-0.511508\pi\)
−0.0361471 + 0.999346i \(0.511508\pi\)
\(3\) 3.12743 1.80562 0.902811 0.430037i \(-0.141500\pi\)
0.902811 + 0.430037i \(0.141500\pi\)
\(4\) −1.98955 −0.994774
\(5\) −0.280585 −0.125481 −0.0627406 0.998030i \(-0.519984\pi\)
−0.0627406 + 0.998030i \(0.519984\pi\)
\(6\) −0.319747 −0.130536
\(7\) 0 0
\(8\) 0.407889 0.144211
\(9\) 6.78082 2.26027
\(10\) 0.0286868 0.00907157
\(11\) 0.974733 0.293893 0.146947 0.989144i \(-0.453055\pi\)
0.146947 + 0.989144i \(0.453055\pi\)
\(12\) −6.22217 −1.79619
\(13\) 1.41349 0.392032 0.196016 0.980601i \(-0.437200\pi\)
0.196016 + 0.980601i \(0.437200\pi\)
\(14\) 0 0
\(15\) −0.877509 −0.226572
\(16\) 3.93739 0.984348
\(17\) −6.28548 −1.52445 −0.762227 0.647310i \(-0.775894\pi\)
−0.762227 + 0.647310i \(0.775894\pi\)
\(18\) −0.693267 −0.163405
\(19\) −1.00698 −0.231018 −0.115509 0.993306i \(-0.536850\pi\)
−0.115509 + 0.993306i \(0.536850\pi\)
\(20\) 0.558236 0.124825
\(21\) 0 0
\(22\) −0.0996561 −0.0212468
\(23\) 1.39508 0.290895 0.145447 0.989366i \(-0.453538\pi\)
0.145447 + 0.989366i \(0.453538\pi\)
\(24\) 1.27564 0.260390
\(25\) −4.92127 −0.984254
\(26\) −0.144515 −0.0283416
\(27\) 11.8242 2.27557
\(28\) 0 0
\(29\) −2.24230 −0.416384 −0.208192 0.978088i \(-0.566758\pi\)
−0.208192 + 0.978088i \(0.566758\pi\)
\(30\) 0.0897160 0.0163798
\(31\) 9.08093 1.63098 0.815492 0.578769i \(-0.196467\pi\)
0.815492 + 0.578769i \(0.196467\pi\)
\(32\) −1.21833 −0.215373
\(33\) 3.04841 0.530660
\(34\) 0.642624 0.110209
\(35\) 0 0
\(36\) −13.4908 −2.24846
\(37\) 8.73158 1.43546 0.717731 0.696320i \(-0.245181\pi\)
0.717731 + 0.696320i \(0.245181\pi\)
\(38\) 0.102954 0.0167013
\(39\) 4.42059 0.707862
\(40\) −0.114447 −0.0180957
\(41\) 3.37544 0.527155 0.263577 0.964638i \(-0.415098\pi\)
0.263577 + 0.964638i \(0.415098\pi\)
\(42\) 0 0
\(43\) −4.53376 −0.691392 −0.345696 0.938346i \(-0.612357\pi\)
−0.345696 + 0.938346i \(0.612357\pi\)
\(44\) −1.93928 −0.292357
\(45\) −1.90259 −0.283622
\(46\) −0.142632 −0.0210300
\(47\) 3.98353 0.581057 0.290529 0.956866i \(-0.406169\pi\)
0.290529 + 0.956866i \(0.406169\pi\)
\(48\) 12.3139 1.77736
\(49\) 0 0
\(50\) 0.503148 0.0711559
\(51\) −19.6574 −2.75259
\(52\) −2.81221 −0.389983
\(53\) 12.4108 1.70475 0.852375 0.522930i \(-0.175161\pi\)
0.852375 + 0.522930i \(0.175161\pi\)
\(54\) −1.20890 −0.164511
\(55\) −0.273495 −0.0368781
\(56\) 0 0
\(57\) −3.14927 −0.417132
\(58\) 0.229251 0.0301021
\(59\) 2.70787 0.352534 0.176267 0.984342i \(-0.443598\pi\)
0.176267 + 0.984342i \(0.443598\pi\)
\(60\) 1.74584 0.225388
\(61\) 6.02128 0.770946 0.385473 0.922719i \(-0.374038\pi\)
0.385473 + 0.922719i \(0.374038\pi\)
\(62\) −0.928429 −0.117911
\(63\) 0 0
\(64\) −7.75022 −0.968778
\(65\) −0.396604 −0.0491927
\(66\) −0.311668 −0.0383636
\(67\) −1.29868 −0.158658 −0.0793292 0.996848i \(-0.525278\pi\)
−0.0793292 + 0.996848i \(0.525278\pi\)
\(68\) 12.5053 1.51649
\(69\) 4.36302 0.525246
\(70\) 0 0
\(71\) 1.77583 0.210752 0.105376 0.994432i \(-0.466395\pi\)
0.105376 + 0.994432i \(0.466395\pi\)
\(72\) 2.76582 0.325955
\(73\) 14.2675 1.66989 0.834943 0.550336i \(-0.185500\pi\)
0.834943 + 0.550336i \(0.185500\pi\)
\(74\) −0.892711 −0.103776
\(75\) −15.3909 −1.77719
\(76\) 2.00344 0.229811
\(77\) 0 0
\(78\) −0.451959 −0.0511743
\(79\) −9.13520 −1.02779 −0.513895 0.857853i \(-0.671798\pi\)
−0.513895 + 0.857853i \(0.671798\pi\)
\(80\) −1.10477 −0.123517
\(81\) 16.6370 1.84856
\(82\) −0.345103 −0.0381102
\(83\) −2.94615 −0.323382 −0.161691 0.986841i \(-0.551695\pi\)
−0.161691 + 0.986841i \(0.551695\pi\)
\(84\) 0 0
\(85\) 1.76361 0.191290
\(86\) 0.463529 0.0499837
\(87\) −7.01263 −0.751832
\(88\) 0.397583 0.0423825
\(89\) 8.92572 0.946124 0.473062 0.881029i \(-0.343149\pi\)
0.473062 + 0.881029i \(0.343149\pi\)
\(90\) 0.194520 0.0205042
\(91\) 0 0
\(92\) −2.77558 −0.289374
\(93\) 28.4000 2.94494
\(94\) −0.407274 −0.0420071
\(95\) 0.282544 0.0289884
\(96\) −3.81026 −0.388883
\(97\) 1.25797 0.127727 0.0638636 0.997959i \(-0.479658\pi\)
0.0638636 + 0.997959i \(0.479658\pi\)
\(98\) 0 0
\(99\) 6.60948 0.664278
\(100\) 9.79110 0.979110
\(101\) 9.32514 0.927886 0.463943 0.885865i \(-0.346434\pi\)
0.463943 + 0.885865i \(0.346434\pi\)
\(102\) 2.00976 0.198996
\(103\) −11.5869 −1.14169 −0.570846 0.821057i \(-0.693385\pi\)
−0.570846 + 0.821057i \(0.693385\pi\)
\(104\) 0.576548 0.0565351
\(105\) 0 0
\(106\) −1.26887 −0.123244
\(107\) −0.203921 −0.0197138 −0.00985689 0.999951i \(-0.503138\pi\)
−0.00985689 + 0.999951i \(0.503138\pi\)
\(108\) −23.5249 −2.26368
\(109\) 17.5817 1.68402 0.842012 0.539459i \(-0.181371\pi\)
0.842012 + 0.539459i \(0.181371\pi\)
\(110\) 0.0279620 0.00266607
\(111\) 27.3074 2.59190
\(112\) 0 0
\(113\) −16.0844 −1.51309 −0.756546 0.653941i \(-0.773114\pi\)
−0.756546 + 0.653941i \(0.773114\pi\)
\(114\) 0.321980 0.0301562
\(115\) −0.391438 −0.0365018
\(116\) 4.46116 0.414208
\(117\) 9.58462 0.886099
\(118\) −0.276851 −0.0254862
\(119\) 0 0
\(120\) −0.357926 −0.0326740
\(121\) −10.0499 −0.913627
\(122\) −0.615612 −0.0557349
\(123\) 10.5564 0.951842
\(124\) −18.0669 −1.62246
\(125\) 2.78376 0.248987
\(126\) 0 0
\(127\) −1.00000 −0.0887357
\(128\) 3.22905 0.285410
\(129\) −14.1790 −1.24839
\(130\) 0.0405486 0.00355634
\(131\) 16.7647 1.46474 0.732370 0.680907i \(-0.238414\pi\)
0.732370 + 0.680907i \(0.238414\pi\)
\(132\) −6.06495 −0.527886
\(133\) 0 0
\(134\) 0.132776 0.0114701
\(135\) −3.31770 −0.285542
\(136\) −2.56378 −0.219842
\(137\) 16.3690 1.39849 0.699247 0.714880i \(-0.253519\pi\)
0.699247 + 0.714880i \(0.253519\pi\)
\(138\) −0.446072 −0.0379722
\(139\) −1.38049 −0.117092 −0.0585459 0.998285i \(-0.518646\pi\)
−0.0585459 + 0.998285i \(0.518646\pi\)
\(140\) 0 0
\(141\) 12.4582 1.04917
\(142\) −0.181560 −0.0152362
\(143\) 1.37778 0.115215
\(144\) 26.6987 2.22489
\(145\) 0.629154 0.0522484
\(146\) −1.45870 −0.120723
\(147\) 0 0
\(148\) −17.3719 −1.42796
\(149\) 16.3718 1.34123 0.670616 0.741804i \(-0.266030\pi\)
0.670616 + 0.741804i \(0.266030\pi\)
\(150\) 1.57356 0.128481
\(151\) −22.0724 −1.79623 −0.898113 0.439765i \(-0.855062\pi\)
−0.898113 + 0.439765i \(0.855062\pi\)
\(152\) −0.410738 −0.0333153
\(153\) −42.6207 −3.44568
\(154\) 0 0
\(155\) −2.54797 −0.204658
\(156\) −8.79498 −0.704162
\(157\) −5.31714 −0.424354 −0.212177 0.977231i \(-0.568055\pi\)
−0.212177 + 0.977231i \(0.568055\pi\)
\(158\) 0.933978 0.0743033
\(159\) 38.8138 3.07814
\(160\) 0.341846 0.0270253
\(161\) 0 0
\(162\) −1.70096 −0.133640
\(163\) 14.8072 1.15979 0.579896 0.814690i \(-0.303093\pi\)
0.579896 + 0.814690i \(0.303093\pi\)
\(164\) −6.71559 −0.524399
\(165\) −0.855337 −0.0665879
\(166\) 0.301213 0.0233787
\(167\) −6.35017 −0.491391 −0.245696 0.969347i \(-0.579016\pi\)
−0.245696 + 0.969347i \(0.579016\pi\)
\(168\) 0 0
\(169\) −11.0020 −0.846311
\(170\) −0.180310 −0.0138292
\(171\) −6.82818 −0.522164
\(172\) 9.02014 0.687779
\(173\) −2.22737 −0.169344 −0.0846719 0.996409i \(-0.526984\pi\)
−0.0846719 + 0.996409i \(0.526984\pi\)
\(174\) 0.716967 0.0543531
\(175\) 0 0
\(176\) 3.83791 0.289293
\(177\) 8.46866 0.636543
\(178\) −0.912560 −0.0683993
\(179\) 3.65043 0.272846 0.136423 0.990651i \(-0.456439\pi\)
0.136423 + 0.990651i \(0.456439\pi\)
\(180\) 3.78530 0.282139
\(181\) −8.51775 −0.633119 −0.316560 0.948573i \(-0.602528\pi\)
−0.316560 + 0.948573i \(0.602528\pi\)
\(182\) 0 0
\(183\) 18.8311 1.39204
\(184\) 0.569038 0.0419501
\(185\) −2.44995 −0.180124
\(186\) −2.90360 −0.212902
\(187\) −6.12667 −0.448026
\(188\) −7.92542 −0.578021
\(189\) 0 0
\(190\) −0.0288872 −0.00209570
\(191\) −17.7340 −1.28319 −0.641593 0.767045i \(-0.721726\pi\)
−0.641593 + 0.767045i \(0.721726\pi\)
\(192\) −24.2383 −1.74925
\(193\) −2.13995 −0.154037 −0.0770186 0.997030i \(-0.524540\pi\)
−0.0770186 + 0.997030i \(0.524540\pi\)
\(194\) −0.128614 −0.00923394
\(195\) −1.24035 −0.0888234
\(196\) 0 0
\(197\) −17.0094 −1.21187 −0.605936 0.795513i \(-0.707201\pi\)
−0.605936 + 0.795513i \(0.707201\pi\)
\(198\) −0.675750 −0.0480235
\(199\) 7.03395 0.498624 0.249312 0.968423i \(-0.419796\pi\)
0.249312 + 0.968423i \(0.419796\pi\)
\(200\) −2.00733 −0.141940
\(201\) −4.06152 −0.286477
\(202\) −0.953397 −0.0670808
\(203\) 0 0
\(204\) 39.1093 2.73820
\(205\) −0.947095 −0.0661480
\(206\) 1.18464 0.0825378
\(207\) 9.45979 0.657501
\(208\) 5.56547 0.385896
\(209\) −0.981541 −0.0678946
\(210\) 0 0
\(211\) 2.25672 0.155359 0.0776797 0.996978i \(-0.475249\pi\)
0.0776797 + 0.996978i \(0.475249\pi\)
\(212\) −24.6918 −1.69584
\(213\) 5.55378 0.380539
\(214\) 0.0208488 0.00142519
\(215\) 1.27210 0.0867568
\(216\) 4.82298 0.328162
\(217\) 0 0
\(218\) −1.79754 −0.121745
\(219\) 44.6206 3.01518
\(220\) 0.544131 0.0366853
\(221\) −8.88447 −0.597634
\(222\) −2.79189 −0.187379
\(223\) 16.8223 1.12650 0.563252 0.826285i \(-0.309550\pi\)
0.563252 + 0.826285i \(0.309550\pi\)
\(224\) 0 0
\(225\) −33.3702 −2.22468
\(226\) 1.64446 0.109388
\(227\) 26.9785 1.79063 0.895314 0.445435i \(-0.146951\pi\)
0.895314 + 0.445435i \(0.146951\pi\)
\(228\) 6.26563 0.414951
\(229\) 11.5853 0.765576 0.382788 0.923836i \(-0.374964\pi\)
0.382788 + 0.923836i \(0.374964\pi\)
\(230\) 0.0400204 0.00263887
\(231\) 0 0
\(232\) −0.914608 −0.0600470
\(233\) −10.3197 −0.676064 −0.338032 0.941135i \(-0.609761\pi\)
−0.338032 + 0.941135i \(0.609761\pi\)
\(234\) −0.979926 −0.0640598
\(235\) −1.11772 −0.0729118
\(236\) −5.38743 −0.350692
\(237\) −28.5697 −1.85580
\(238\) 0 0
\(239\) −15.1850 −0.982233 −0.491116 0.871094i \(-0.663411\pi\)
−0.491116 + 0.871094i \(0.663411\pi\)
\(240\) −3.45510 −0.223025
\(241\) −5.19032 −0.334338 −0.167169 0.985928i \(-0.553463\pi\)
−0.167169 + 0.985928i \(0.553463\pi\)
\(242\) 1.02750 0.0660499
\(243\) 16.5584 1.06222
\(244\) −11.9796 −0.766917
\(245\) 0 0
\(246\) −1.07928 −0.0688126
\(247\) −1.42336 −0.0905665
\(248\) 3.70401 0.235205
\(249\) −9.21389 −0.583907
\(250\) −0.284610 −0.0180003
\(251\) 21.6309 1.36533 0.682664 0.730732i \(-0.260821\pi\)
0.682664 + 0.730732i \(0.260821\pi\)
\(252\) 0 0
\(253\) 1.35983 0.0854919
\(254\) 0.102239 0.00641507
\(255\) 5.51557 0.345398
\(256\) 15.1703 0.948144
\(257\) −10.2922 −0.642010 −0.321005 0.947077i \(-0.604021\pi\)
−0.321005 + 0.947077i \(0.604021\pi\)
\(258\) 1.44966 0.0902516
\(259\) 0 0
\(260\) 0.789062 0.0489356
\(261\) −15.2046 −0.941141
\(262\) −1.71401 −0.105892
\(263\) −14.2342 −0.877719 −0.438859 0.898556i \(-0.644617\pi\)
−0.438859 + 0.898556i \(0.644617\pi\)
\(264\) 1.24341 0.0765267
\(265\) −3.48227 −0.213914
\(266\) 0 0
\(267\) 27.9145 1.70834
\(268\) 2.58378 0.157829
\(269\) 24.6333 1.50192 0.750958 0.660350i \(-0.229592\pi\)
0.750958 + 0.660350i \(0.229592\pi\)
\(270\) 0.339200 0.0206430
\(271\) 4.57306 0.277794 0.138897 0.990307i \(-0.455644\pi\)
0.138897 + 0.990307i \(0.455644\pi\)
\(272\) −24.7484 −1.50059
\(273\) 0 0
\(274\) −1.67355 −0.101103
\(275\) −4.79693 −0.289266
\(276\) −8.68043 −0.522500
\(277\) −24.5754 −1.47659 −0.738296 0.674477i \(-0.764369\pi\)
−0.738296 + 0.674477i \(0.764369\pi\)
\(278\) 0.141141 0.00846505
\(279\) 61.5761 3.68647
\(280\) 0 0
\(281\) 13.4450 0.802061 0.401030 0.916065i \(-0.368652\pi\)
0.401030 + 0.916065i \(0.368652\pi\)
\(282\) −1.27372 −0.0758489
\(283\) 25.9931 1.54513 0.772564 0.634937i \(-0.218974\pi\)
0.772564 + 0.634937i \(0.218974\pi\)
\(284\) −3.53310 −0.209651
\(285\) 0.883638 0.0523422
\(286\) −0.140863 −0.00832941
\(287\) 0 0
\(288\) −8.26130 −0.486802
\(289\) 22.5073 1.32396
\(290\) −0.0643243 −0.00377726
\(291\) 3.93420 0.230627
\(292\) −28.3859 −1.66116
\(293\) 15.0055 0.876628 0.438314 0.898822i \(-0.355576\pi\)
0.438314 + 0.898822i \(0.355576\pi\)
\(294\) 0 0
\(295\) −0.759786 −0.0442364
\(296\) 3.56151 0.207009
\(297\) 11.5255 0.668776
\(298\) −1.67385 −0.0969634
\(299\) 1.97193 0.114040
\(300\) 30.6210 1.76790
\(301\) 0 0
\(302\) 2.25667 0.129857
\(303\) 29.1637 1.67541
\(304\) −3.96489 −0.227402
\(305\) −1.68948 −0.0967393
\(306\) 4.35752 0.249103
\(307\) −15.2999 −0.873209 −0.436605 0.899653i \(-0.643819\pi\)
−0.436605 + 0.899653i \(0.643819\pi\)
\(308\) 0 0
\(309\) −36.2373 −2.06147
\(310\) 0.260503 0.0147956
\(311\) 7.23014 0.409984 0.204992 0.978764i \(-0.434283\pi\)
0.204992 + 0.978764i \(0.434283\pi\)
\(312\) 1.80311 0.102081
\(313\) −1.04458 −0.0590433 −0.0295217 0.999564i \(-0.509398\pi\)
−0.0295217 + 0.999564i \(0.509398\pi\)
\(314\) 0.543622 0.0306784
\(315\) 0 0
\(316\) 18.1749 1.02242
\(317\) 4.47560 0.251375 0.125687 0.992070i \(-0.459886\pi\)
0.125687 + 0.992070i \(0.459886\pi\)
\(318\) −3.96830 −0.222531
\(319\) −2.18564 −0.122372
\(320\) 2.17459 0.121563
\(321\) −0.637748 −0.0355956
\(322\) 0 0
\(323\) 6.32938 0.352176
\(324\) −33.1001 −1.83890
\(325\) −6.95617 −0.385859
\(326\) −1.51388 −0.0838463
\(327\) 54.9856 3.04071
\(328\) 1.37680 0.0760212
\(329\) 0 0
\(330\) 0.0874491 0.00481392
\(331\) 17.2234 0.946683 0.473342 0.880879i \(-0.343048\pi\)
0.473342 + 0.880879i \(0.343048\pi\)
\(332\) 5.86151 0.321692
\(333\) 59.2072 3.24453
\(334\) 0.649238 0.0355247
\(335\) 0.364388 0.0199087
\(336\) 0 0
\(337\) 6.92934 0.377465 0.188733 0.982029i \(-0.439562\pi\)
0.188733 + 0.982029i \(0.439562\pi\)
\(338\) 1.12484 0.0611834
\(339\) −50.3028 −2.73207
\(340\) −3.50878 −0.190291
\(341\) 8.85148 0.479335
\(342\) 0.698109 0.0377494
\(343\) 0 0
\(344\) −1.84927 −0.0997061
\(345\) −1.22420 −0.0659085
\(346\) 0.227725 0.0122426
\(347\) −10.8206 −0.580881 −0.290441 0.956893i \(-0.593802\pi\)
−0.290441 + 0.956893i \(0.593802\pi\)
\(348\) 13.9519 0.747903
\(349\) −17.2151 −0.921502 −0.460751 0.887529i \(-0.652420\pi\)
−0.460751 + 0.887529i \(0.652420\pi\)
\(350\) 0 0
\(351\) 16.7135 0.892098
\(352\) −1.18755 −0.0632967
\(353\) 35.8111 1.90603 0.953016 0.302921i \(-0.0979619\pi\)
0.953016 + 0.302921i \(0.0979619\pi\)
\(354\) −0.865831 −0.0460184
\(355\) −0.498270 −0.0264454
\(356\) −17.7581 −0.941179
\(357\) 0 0
\(358\) −0.373218 −0.0197252
\(359\) 12.5791 0.663899 0.331950 0.943297i \(-0.392294\pi\)
0.331950 + 0.943297i \(0.392294\pi\)
\(360\) −0.776047 −0.0409012
\(361\) −17.9860 −0.946631
\(362\) 0.870850 0.0457709
\(363\) −31.4303 −1.64967
\(364\) 0 0
\(365\) −4.00325 −0.209539
\(366\) −1.92528 −0.100636
\(367\) 3.95956 0.206688 0.103344 0.994646i \(-0.467046\pi\)
0.103344 + 0.994646i \(0.467046\pi\)
\(368\) 5.49298 0.286341
\(369\) 22.8882 1.19151
\(370\) 0.250481 0.0130219
\(371\) 0 0
\(372\) −56.5031 −2.92955
\(373\) 30.1501 1.56112 0.780558 0.625084i \(-0.214935\pi\)
0.780558 + 0.625084i \(0.214935\pi\)
\(374\) 0.626387 0.0323897
\(375\) 8.70600 0.449576
\(376\) 1.62484 0.0837946
\(377\) −3.16947 −0.163236
\(378\) 0 0
\(379\) 22.0540 1.13284 0.566419 0.824117i \(-0.308328\pi\)
0.566419 + 0.824117i \(0.308328\pi\)
\(380\) −0.562135 −0.0288369
\(381\) −3.12743 −0.160223
\(382\) 1.81311 0.0927669
\(383\) −9.13278 −0.466663 −0.233332 0.972397i \(-0.574963\pi\)
−0.233332 + 0.972397i \(0.574963\pi\)
\(384\) 10.0986 0.515343
\(385\) 0 0
\(386\) 0.218788 0.0111360
\(387\) −30.7426 −1.56273
\(388\) −2.50279 −0.127060
\(389\) −18.5278 −0.939397 −0.469699 0.882827i \(-0.655637\pi\)
−0.469699 + 0.882827i \(0.655637\pi\)
\(390\) 0.126813 0.00642141
\(391\) −8.76876 −0.443455
\(392\) 0 0
\(393\) 52.4305 2.64477
\(394\) 1.73904 0.0876114
\(395\) 2.56320 0.128968
\(396\) −13.1499 −0.660806
\(397\) 17.2658 0.866545 0.433272 0.901263i \(-0.357359\pi\)
0.433272 + 0.901263i \(0.357359\pi\)
\(398\) −0.719147 −0.0360476
\(399\) 0 0
\(400\) −19.3770 −0.968849
\(401\) 29.4145 1.46889 0.734445 0.678668i \(-0.237442\pi\)
0.734445 + 0.678668i \(0.237442\pi\)
\(402\) 0.415247 0.0207106
\(403\) 12.8358 0.639397
\(404\) −18.5528 −0.923037
\(405\) −4.66809 −0.231959
\(406\) 0 0
\(407\) 8.51095 0.421872
\(408\) −8.01804 −0.396952
\(409\) −36.8255 −1.82090 −0.910452 0.413615i \(-0.864266\pi\)
−0.910452 + 0.413615i \(0.864266\pi\)
\(410\) 0.0968305 0.00478212
\(411\) 51.1928 2.52515
\(412\) 23.0527 1.13573
\(413\) 0 0
\(414\) −0.967163 −0.0475335
\(415\) 0.826646 0.0405784
\(416\) −1.72211 −0.0844332
\(417\) −4.31739 −0.211423
\(418\) 0.100352 0.00490839
\(419\) −29.4840 −1.44039 −0.720193 0.693774i \(-0.755947\pi\)
−0.720193 + 0.693774i \(0.755947\pi\)
\(420\) 0 0
\(421\) −4.30802 −0.209960 −0.104980 0.994474i \(-0.533478\pi\)
−0.104980 + 0.994474i \(0.533478\pi\)
\(422\) −0.230726 −0.0112316
\(423\) 27.0116 1.31335
\(424\) 5.06222 0.245843
\(425\) 30.9326 1.50045
\(426\) −0.567815 −0.0275107
\(427\) 0 0
\(428\) 0.405710 0.0196108
\(429\) 4.30890 0.208036
\(430\) −0.130059 −0.00627201
\(431\) −22.0058 −1.05998 −0.529992 0.848003i \(-0.677805\pi\)
−0.529992 + 0.848003i \(0.677805\pi\)
\(432\) 46.5566 2.23996
\(433\) −15.7052 −0.754744 −0.377372 0.926062i \(-0.623172\pi\)
−0.377372 + 0.926062i \(0.623172\pi\)
\(434\) 0 0
\(435\) 1.96763 0.0943409
\(436\) −34.9797 −1.67522
\(437\) −1.40483 −0.0672019
\(438\) −4.56199 −0.217980
\(439\) −25.5991 −1.22178 −0.610889 0.791716i \(-0.709188\pi\)
−0.610889 + 0.791716i \(0.709188\pi\)
\(440\) −0.111556 −0.00531821
\(441\) 0 0
\(442\) 0.908344 0.0432055
\(443\) 17.3757 0.825545 0.412772 0.910834i \(-0.364561\pi\)
0.412772 + 0.910834i \(0.364561\pi\)
\(444\) −54.3293 −2.57836
\(445\) −2.50442 −0.118721
\(446\) −1.71990 −0.0814397
\(447\) 51.2018 2.42176
\(448\) 0 0
\(449\) −26.0563 −1.22967 −0.614836 0.788655i \(-0.710778\pi\)
−0.614836 + 0.788655i \(0.710778\pi\)
\(450\) 3.41175 0.160832
\(451\) 3.29015 0.154927
\(452\) 32.0006 1.50518
\(453\) −69.0298 −3.24330
\(454\) −2.75827 −0.129452
\(455\) 0 0
\(456\) −1.28455 −0.0601548
\(457\) 4.60151 0.215250 0.107625 0.994192i \(-0.465675\pi\)
0.107625 + 0.994192i \(0.465675\pi\)
\(458\) −1.18447 −0.0553467
\(459\) −74.3210 −3.46901
\(460\) 0.778785 0.0363110
\(461\) 24.8341 1.15664 0.578320 0.815810i \(-0.303708\pi\)
0.578320 + 0.815810i \(0.303708\pi\)
\(462\) 0 0
\(463\) 25.8050 1.19926 0.599630 0.800277i \(-0.295314\pi\)
0.599630 + 0.800277i \(0.295314\pi\)
\(464\) −8.82880 −0.409867
\(465\) −7.96859 −0.369535
\(466\) 1.05508 0.0488755
\(467\) −13.0335 −0.603119 −0.301559 0.953447i \(-0.597507\pi\)
−0.301559 + 0.953447i \(0.597507\pi\)
\(468\) −19.0691 −0.881468
\(469\) 0 0
\(470\) 0.114275 0.00527110
\(471\) −16.6290 −0.766224
\(472\) 1.10451 0.0508391
\(473\) −4.41921 −0.203195
\(474\) 2.92095 0.134164
\(475\) 4.95565 0.227381
\(476\) 0 0
\(477\) 84.1552 3.85320
\(478\) 1.55250 0.0710097
\(479\) 2.00396 0.0915634 0.0457817 0.998951i \(-0.485422\pi\)
0.0457817 + 0.998951i \(0.485422\pi\)
\(480\) 1.06910 0.0487975
\(481\) 12.3420 0.562747
\(482\) 0.530656 0.0241707
\(483\) 0 0
\(484\) 19.9947 0.908852
\(485\) −0.352966 −0.0160274
\(486\) −1.69292 −0.0767924
\(487\) −16.6173 −0.753003 −0.376502 0.926416i \(-0.622873\pi\)
−0.376502 + 0.926416i \(0.622873\pi\)
\(488\) 2.45601 0.111179
\(489\) 46.3086 2.09415
\(490\) 0 0
\(491\) −20.9773 −0.946692 −0.473346 0.880876i \(-0.656954\pi\)
−0.473346 + 0.880876i \(0.656954\pi\)
\(492\) −21.0025 −0.946867
\(493\) 14.0939 0.634758
\(494\) 0.145524 0.00654743
\(495\) −1.85452 −0.0833545
\(496\) 35.7552 1.60545
\(497\) 0 0
\(498\) 0.942023 0.0422131
\(499\) 18.9857 0.849916 0.424958 0.905213i \(-0.360289\pi\)
0.424958 + 0.905213i \(0.360289\pi\)
\(500\) −5.53841 −0.247685
\(501\) −19.8597 −0.887267
\(502\) −2.21153 −0.0987053
\(503\) 3.24409 0.144647 0.0723234 0.997381i \(-0.476959\pi\)
0.0723234 + 0.997381i \(0.476959\pi\)
\(504\) 0 0
\(505\) −2.61649 −0.116432
\(506\) −0.139028 −0.00618057
\(507\) −34.4081 −1.52812
\(508\) 1.98955 0.0882719
\(509\) 31.1652 1.38137 0.690686 0.723155i \(-0.257309\pi\)
0.690686 + 0.723155i \(0.257309\pi\)
\(510\) −0.563908 −0.0249703
\(511\) 0 0
\(512\) −8.00910 −0.353956
\(513\) −11.9068 −0.525699
\(514\) 1.05227 0.0464136
\(515\) 3.25111 0.143261
\(516\) 28.2098 1.24187
\(517\) 3.88288 0.170769
\(518\) 0 0
\(519\) −6.96594 −0.305771
\(520\) −0.161770 −0.00709410
\(521\) −37.3656 −1.63701 −0.818507 0.574496i \(-0.805198\pi\)
−0.818507 + 0.574496i \(0.805198\pi\)
\(522\) 1.55451 0.0680390
\(523\) −8.19492 −0.358339 −0.179170 0.983818i \(-0.557341\pi\)
−0.179170 + 0.983818i \(0.557341\pi\)
\(524\) −33.3542 −1.45708
\(525\) 0 0
\(526\) 1.45530 0.0634540
\(527\) −57.0780 −2.48636
\(528\) 12.0028 0.522354
\(529\) −21.0537 −0.915380
\(530\) 0.356025 0.0154648
\(531\) 18.3615 0.796823
\(532\) 0 0
\(533\) 4.77115 0.206661
\(534\) −2.85397 −0.123503
\(535\) 0.0572171 0.00247371
\(536\) −0.529715 −0.0228802
\(537\) 11.4165 0.492657
\(538\) −2.51849 −0.108580
\(539\) 0 0
\(540\) 6.60072 0.284050
\(541\) −39.2494 −1.68747 −0.843733 0.536764i \(-0.819647\pi\)
−0.843733 + 0.536764i \(0.819647\pi\)
\(542\) −0.467547 −0.0200829
\(543\) −26.6387 −1.14317
\(544\) 7.65782 0.328326
\(545\) −4.93316 −0.211313
\(546\) 0 0
\(547\) 4.58146 0.195889 0.0979446 0.995192i \(-0.468773\pi\)
0.0979446 + 0.995192i \(0.468773\pi\)
\(548\) −32.5668 −1.39119
\(549\) 40.8292 1.74255
\(550\) 0.490435 0.0209122
\(551\) 2.25796 0.0961923
\(552\) 1.77963 0.0757460
\(553\) 0 0
\(554\) 2.51257 0.106749
\(555\) −7.66203 −0.325235
\(556\) 2.74655 0.116480
\(557\) −15.9166 −0.674410 −0.337205 0.941431i \(-0.609482\pi\)
−0.337205 + 0.941431i \(0.609482\pi\)
\(558\) −6.29551 −0.266510
\(559\) −6.40843 −0.271048
\(560\) 0 0
\(561\) −19.1607 −0.808966
\(562\) −1.37461 −0.0579843
\(563\) −7.61666 −0.321004 −0.160502 0.987036i \(-0.551311\pi\)
−0.160502 + 0.987036i \(0.551311\pi\)
\(564\) −24.7862 −1.04369
\(565\) 4.51303 0.189865
\(566\) −2.65752 −0.111704
\(567\) 0 0
\(568\) 0.724341 0.0303927
\(569\) 3.85842 0.161754 0.0808768 0.996724i \(-0.474228\pi\)
0.0808768 + 0.996724i \(0.474228\pi\)
\(570\) −0.0903426 −0.00378404
\(571\) 32.1197 1.34417 0.672085 0.740474i \(-0.265399\pi\)
0.672085 + 0.740474i \(0.265399\pi\)
\(572\) −2.74115 −0.114613
\(573\) −55.4618 −2.31695
\(574\) 0 0
\(575\) −6.86557 −0.286314
\(576\) −52.5528 −2.18970
\(577\) −17.3278 −0.721364 −0.360682 0.932689i \(-0.617456\pi\)
−0.360682 + 0.932689i \(0.617456\pi\)
\(578\) −2.30113 −0.0957145
\(579\) −6.69255 −0.278133
\(580\) −1.25173 −0.0519753
\(581\) 0 0
\(582\) −0.402231 −0.0166730
\(583\) 12.0972 0.501014
\(584\) 5.81956 0.240815
\(585\) −2.68930 −0.111189
\(586\) −1.53415 −0.0633751
\(587\) −43.2794 −1.78633 −0.893166 0.449728i \(-0.851521\pi\)
−0.893166 + 0.449728i \(0.851521\pi\)
\(588\) 0 0
\(589\) −9.14436 −0.376787
\(590\) 0.0776800 0.00319804
\(591\) −53.1958 −2.18818
\(592\) 34.3796 1.41299
\(593\) 17.9037 0.735216 0.367608 0.929981i \(-0.380177\pi\)
0.367608 + 0.929981i \(0.380177\pi\)
\(594\) −1.17836 −0.0483486
\(595\) 0 0
\(596\) −32.5725 −1.33422
\(597\) 21.9982 0.900326
\(598\) −0.201609 −0.00824442
\(599\) 28.8831 1.18013 0.590066 0.807355i \(-0.299102\pi\)
0.590066 + 0.807355i \(0.299102\pi\)
\(600\) −6.27779 −0.256290
\(601\) −12.3997 −0.505795 −0.252898 0.967493i \(-0.581384\pi\)
−0.252898 + 0.967493i \(0.581384\pi\)
\(602\) 0 0
\(603\) −8.80608 −0.358611
\(604\) 43.9141 1.78684
\(605\) 2.81985 0.114643
\(606\) −2.98168 −0.121123
\(607\) 12.6815 0.514726 0.257363 0.966315i \(-0.417146\pi\)
0.257363 + 0.966315i \(0.417146\pi\)
\(608\) 1.22684 0.0497551
\(609\) 0 0
\(610\) 0.172731 0.00699369
\(611\) 5.63068 0.227793
\(612\) 84.7959 3.42767
\(613\) 4.45146 0.179793 0.0898965 0.995951i \(-0.471346\pi\)
0.0898965 + 0.995951i \(0.471346\pi\)
\(614\) 1.56425 0.0631280
\(615\) −2.96197 −0.119438
\(616\) 0 0
\(617\) −24.0389 −0.967769 −0.483885 0.875132i \(-0.660775\pi\)
−0.483885 + 0.875132i \(0.660775\pi\)
\(618\) 3.70488 0.149032
\(619\) −17.6987 −0.711371 −0.355686 0.934606i \(-0.615753\pi\)
−0.355686 + 0.934606i \(0.615753\pi\)
\(620\) 5.06930 0.203588
\(621\) 16.4958 0.661952
\(622\) −0.739205 −0.0296394
\(623\) 0 0
\(624\) 17.4056 0.696782
\(625\) 23.8253 0.953011
\(626\) 0.106798 0.00426849
\(627\) −3.06970 −0.122592
\(628\) 10.5787 0.422136
\(629\) −54.8822 −2.18830
\(630\) 0 0
\(631\) 4.02635 0.160286 0.0801432 0.996783i \(-0.474462\pi\)
0.0801432 + 0.996783i \(0.474462\pi\)
\(632\) −3.72615 −0.148218
\(633\) 7.05775 0.280520
\(634\) −0.457583 −0.0181729
\(635\) 0.280585 0.0111347
\(636\) −77.2219 −3.06205
\(637\) 0 0
\(638\) 0.223459 0.00884681
\(639\) 12.0416 0.476357
\(640\) −0.906021 −0.0358136
\(641\) −28.9089 −1.14183 −0.570917 0.821008i \(-0.693412\pi\)
−0.570917 + 0.821008i \(0.693412\pi\)
\(642\) 0.0652030 0.00257336
\(643\) 4.68023 0.184570 0.0922851 0.995733i \(-0.470583\pi\)
0.0922851 + 0.995733i \(0.470583\pi\)
\(644\) 0 0
\(645\) 3.97842 0.156650
\(646\) −0.647113 −0.0254603
\(647\) −11.1375 −0.437860 −0.218930 0.975741i \(-0.570257\pi\)
−0.218930 + 0.975741i \(0.570257\pi\)
\(648\) 6.78605 0.266581
\(649\) 2.63945 0.103607
\(650\) 0.711195 0.0278954
\(651\) 0 0
\(652\) −29.4597 −1.15373
\(653\) 36.8949 1.44381 0.721904 0.691993i \(-0.243267\pi\)
0.721904 + 0.691993i \(0.243267\pi\)
\(654\) −5.62169 −0.219826
\(655\) −4.70392 −0.183797
\(656\) 13.2904 0.518903
\(657\) 96.7454 3.77440
\(658\) 0 0
\(659\) −22.7628 −0.886713 −0.443357 0.896345i \(-0.646212\pi\)
−0.443357 + 0.896345i \(0.646212\pi\)
\(660\) 1.70173 0.0662398
\(661\) −33.3559 −1.29740 −0.648698 0.761046i \(-0.724686\pi\)
−0.648698 + 0.761046i \(0.724686\pi\)
\(662\) −1.76091 −0.0684397
\(663\) −27.7856 −1.07910
\(664\) −1.20170 −0.0466352
\(665\) 0 0
\(666\) −6.05331 −0.234561
\(667\) −3.12819 −0.121124
\(668\) 12.6340 0.488823
\(669\) 52.6105 2.03404
\(670\) −0.0372548 −0.00143928
\(671\) 5.86914 0.226576
\(672\) 0 0
\(673\) −5.38199 −0.207461 −0.103730 0.994605i \(-0.533078\pi\)
−0.103730 + 0.994605i \(0.533078\pi\)
\(674\) −0.708452 −0.0272885
\(675\) −58.1903 −2.23974
\(676\) 21.8891 0.841888
\(677\) −35.4290 −1.36165 −0.680823 0.732448i \(-0.738378\pi\)
−0.680823 + 0.732448i \(0.738378\pi\)
\(678\) 5.14293 0.197513
\(679\) 0 0
\(680\) 0.719357 0.0275861
\(681\) 84.3735 3.23320
\(682\) −0.904970 −0.0346531
\(683\) −8.04397 −0.307794 −0.153897 0.988087i \(-0.549182\pi\)
−0.153897 + 0.988087i \(0.549182\pi\)
\(684\) 13.5850 0.519435
\(685\) −4.59288 −0.175485
\(686\) 0 0
\(687\) 36.2321 1.38234
\(688\) −17.8512 −0.680571
\(689\) 17.5425 0.668317
\(690\) 0.125161 0.00476480
\(691\) 16.1470 0.614261 0.307131 0.951667i \(-0.400631\pi\)
0.307131 + 0.951667i \(0.400631\pi\)
\(692\) 4.43146 0.168459
\(693\) 0 0
\(694\) 1.10629 0.0419943
\(695\) 0.387345 0.0146928
\(696\) −2.86037 −0.108422
\(697\) −21.2162 −0.803622
\(698\) 1.76006 0.0666192
\(699\) −32.2741 −1.22072
\(700\) 0 0
\(701\) −31.0098 −1.17122 −0.585611 0.810592i \(-0.699145\pi\)
−0.585611 + 0.810592i \(0.699145\pi\)
\(702\) −1.70877 −0.0644935
\(703\) −8.79256 −0.331618
\(704\) −7.55440 −0.284717
\(705\) −3.49558 −0.131651
\(706\) −3.66130 −0.137795
\(707\) 0 0
\(708\) −16.8488 −0.633217
\(709\) −13.3540 −0.501520 −0.250760 0.968049i \(-0.580681\pi\)
−0.250760 + 0.968049i \(0.580681\pi\)
\(710\) 0.0509429 0.00191185
\(711\) −61.9441 −2.32309
\(712\) 3.64070 0.136441
\(713\) 12.6686 0.474444
\(714\) 0 0
\(715\) −0.386583 −0.0144574
\(716\) −7.26270 −0.271420
\(717\) −47.4899 −1.77354
\(718\) −1.28608 −0.0479961
\(719\) −6.07809 −0.226674 −0.113337 0.993557i \(-0.536154\pi\)
−0.113337 + 0.993557i \(0.536154\pi\)
\(720\) −7.49125 −0.279182
\(721\) 0 0
\(722\) 1.83888 0.0684359
\(723\) −16.2324 −0.603688
\(724\) 16.9465 0.629811
\(725\) 11.0350 0.409828
\(726\) 3.21342 0.119261
\(727\) 18.5668 0.688605 0.344302 0.938859i \(-0.388115\pi\)
0.344302 + 0.938859i \(0.388115\pi\)
\(728\) 0 0
\(729\) 1.87414 0.0694126
\(730\) 0.409289 0.0151485
\(731\) 28.4969 1.05400
\(732\) −37.4654 −1.38476
\(733\) −31.9202 −1.17900 −0.589499 0.807769i \(-0.700675\pi\)
−0.589499 + 0.807769i \(0.700675\pi\)
\(734\) −0.404823 −0.0149423
\(735\) 0 0
\(736\) −1.69968 −0.0626509
\(737\) −1.26586 −0.0466286
\(738\) −2.34008 −0.0861394
\(739\) −47.3446 −1.74160 −0.870799 0.491639i \(-0.836398\pi\)
−0.870799 + 0.491639i \(0.836398\pi\)
\(740\) 4.87428 0.179182
\(741\) −4.45147 −0.163529
\(742\) 0 0
\(743\) −1.56541 −0.0574293 −0.0287147 0.999588i \(-0.509141\pi\)
−0.0287147 + 0.999588i \(0.509141\pi\)
\(744\) 11.5840 0.424691
\(745\) −4.59369 −0.168300
\(746\) −3.08253 −0.112860
\(747\) −19.9773 −0.730932
\(748\) 12.1893 0.445685
\(749\) 0 0
\(750\) −0.890097 −0.0325017
\(751\) −54.4033 −1.98520 −0.992601 0.121418i \(-0.961256\pi\)
−0.992601 + 0.121418i \(0.961256\pi\)
\(752\) 15.6847 0.571963
\(753\) 67.6490 2.46527
\(754\) 0.324044 0.0118010
\(755\) 6.19317 0.225393
\(756\) 0 0
\(757\) −18.1815 −0.660817 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(758\) −2.25479 −0.0818976
\(759\) 4.25278 0.154366
\(760\) 0.115247 0.00418044
\(761\) −26.0404 −0.943962 −0.471981 0.881609i \(-0.656461\pi\)
−0.471981 + 0.881609i \(0.656461\pi\)
\(762\) 0.319747 0.0115832
\(763\) 0 0
\(764\) 35.2826 1.27648
\(765\) 11.9587 0.432368
\(766\) 0.933730 0.0337370
\(767\) 3.82754 0.138205
\(768\) 47.4441 1.71199
\(769\) 34.5026 1.24419 0.622097 0.782940i \(-0.286281\pi\)
0.622097 + 0.782940i \(0.286281\pi\)
\(770\) 0 0
\(771\) −32.1881 −1.15923
\(772\) 4.25754 0.153232
\(773\) 23.2583 0.836542 0.418271 0.908322i \(-0.362636\pi\)
0.418271 + 0.908322i \(0.362636\pi\)
\(774\) 3.14311 0.112977
\(775\) −44.6897 −1.60530
\(776\) 0.513111 0.0184196
\(777\) 0 0
\(778\) 1.89427 0.0679130
\(779\) −3.39901 −0.121782
\(780\) 2.46774 0.0883591
\(781\) 1.73096 0.0619386
\(782\) 0.896513 0.0320592
\(783\) −26.5134 −0.947513
\(784\) 0 0
\(785\) 1.49191 0.0532485
\(786\) −5.36046 −0.191201
\(787\) 26.2539 0.935850 0.467925 0.883768i \(-0.345002\pi\)
0.467925 + 0.883768i \(0.345002\pi\)
\(788\) 33.8411 1.20554
\(789\) −44.5165 −1.58483
\(790\) −0.262060 −0.00932367
\(791\) 0 0
\(792\) 2.69594 0.0957959
\(793\) 8.51103 0.302235
\(794\) −1.76524 −0.0626462
\(795\) −10.8906 −0.386248
\(796\) −13.9944 −0.496018
\(797\) −34.9004 −1.23623 −0.618117 0.786086i \(-0.712104\pi\)
−0.618117 + 0.786086i \(0.712104\pi\)
\(798\) 0 0
\(799\) −25.0384 −0.885795
\(800\) 5.99576 0.211982
\(801\) 60.5236 2.13850
\(802\) −3.00732 −0.106192
\(803\) 13.9070 0.490768
\(804\) 8.08058 0.284980
\(805\) 0 0
\(806\) −1.31233 −0.0462247
\(807\) 77.0388 2.71189
\(808\) 3.80362 0.133811
\(809\) 29.4086 1.03395 0.516975 0.856001i \(-0.327058\pi\)
0.516975 + 0.856001i \(0.327058\pi\)
\(810\) 0.477263 0.0167693
\(811\) −41.8547 −1.46972 −0.734859 0.678220i \(-0.762751\pi\)
−0.734859 + 0.678220i \(0.762751\pi\)
\(812\) 0 0
\(813\) 14.3019 0.501591
\(814\) −0.870155 −0.0304989
\(815\) −4.15468 −0.145532
\(816\) −77.3989 −2.70950
\(817\) 4.56543 0.159724
\(818\) 3.76502 0.131641
\(819\) 0 0
\(820\) 1.88429 0.0658023
\(821\) −46.6870 −1.62939 −0.814694 0.579891i \(-0.803095\pi\)
−0.814694 + 0.579891i \(0.803095\pi\)
\(822\) −5.23392 −0.182554
\(823\) 15.4362 0.538071 0.269035 0.963130i \(-0.413295\pi\)
0.269035 + 0.963130i \(0.413295\pi\)
\(824\) −4.72618 −0.164644
\(825\) −15.0020 −0.522304
\(826\) 0 0
\(827\) −22.0580 −0.767030 −0.383515 0.923535i \(-0.625287\pi\)
−0.383515 + 0.923535i \(0.625287\pi\)
\(828\) −18.8207 −0.654064
\(829\) −47.3457 −1.64438 −0.822191 0.569211i \(-0.807249\pi\)
−0.822191 + 0.569211i \(0.807249\pi\)
\(830\) −0.0845158 −0.00293359
\(831\) −76.8578 −2.66617
\(832\) −10.9549 −0.379792
\(833\) 0 0
\(834\) 0.441407 0.0152847
\(835\) 1.78176 0.0616604
\(836\) 1.95282 0.0675398
\(837\) 107.375 3.71142
\(838\) 3.01442 0.104132
\(839\) −33.7490 −1.16514 −0.582572 0.812779i \(-0.697954\pi\)
−0.582572 + 0.812779i \(0.697954\pi\)
\(840\) 0 0
\(841\) −23.9721 −0.826624
\(842\) 0.440450 0.0151789
\(843\) 42.0482 1.44822
\(844\) −4.48986 −0.154547
\(845\) 3.08700 0.106196
\(846\) −2.76165 −0.0949474
\(847\) 0 0
\(848\) 48.8661 1.67807
\(849\) 81.2915 2.78992
\(850\) −3.16253 −0.108474
\(851\) 12.1813 0.417568
\(852\) −11.0495 −0.378550
\(853\) −6.51623 −0.223111 −0.111556 0.993758i \(-0.535583\pi\)
−0.111556 + 0.993758i \(0.535583\pi\)
\(854\) 0 0
\(855\) 1.91588 0.0655218
\(856\) −0.0831771 −0.00284294
\(857\) −18.3967 −0.628419 −0.314209 0.949354i \(-0.601739\pi\)
−0.314209 + 0.949354i \(0.601739\pi\)
\(858\) −0.440539 −0.0150398
\(859\) −43.9167 −1.49842 −0.749209 0.662333i \(-0.769566\pi\)
−0.749209 + 0.662333i \(0.769566\pi\)
\(860\) −2.53091 −0.0863034
\(861\) 0 0
\(862\) 2.24986 0.0766307
\(863\) −46.1967 −1.57255 −0.786277 0.617875i \(-0.787994\pi\)
−0.786277 + 0.617875i \(0.787994\pi\)
\(864\) −14.4059 −0.490098
\(865\) 0.624966 0.0212495
\(866\) 1.60569 0.0545636
\(867\) 70.3900 2.39057
\(868\) 0 0
\(869\) −8.90438 −0.302060
\(870\) −0.201170 −0.00682030
\(871\) −1.83567 −0.0621992
\(872\) 7.17139 0.242854
\(873\) 8.53005 0.288698
\(874\) 0.143629 0.00485831
\(875\) 0 0
\(876\) −88.7749 −2.99943
\(877\) −41.8033 −1.41160 −0.705799 0.708412i \(-0.749412\pi\)
−0.705799 + 0.708412i \(0.749412\pi\)
\(878\) 2.61724 0.0883275
\(879\) 46.9285 1.58286
\(880\) −1.07686 −0.0363009
\(881\) 17.9451 0.604587 0.302293 0.953215i \(-0.402248\pi\)
0.302293 + 0.953215i \(0.402248\pi\)
\(882\) 0 0
\(883\) 46.4060 1.56169 0.780843 0.624728i \(-0.214790\pi\)
0.780843 + 0.624728i \(0.214790\pi\)
\(884\) 17.6761 0.594511
\(885\) −2.37618 −0.0798743
\(886\) −1.77648 −0.0596821
\(887\) −34.5487 −1.16003 −0.580016 0.814605i \(-0.696954\pi\)
−0.580016 + 0.814605i \(0.696954\pi\)
\(888\) 11.1384 0.373780
\(889\) 0 0
\(890\) 0.256050 0.00858283
\(891\) 16.2166 0.543278
\(892\) −33.4687 −1.12062
\(893\) −4.01135 −0.134235
\(894\) −5.23484 −0.175079
\(895\) −1.02425 −0.0342370
\(896\) 0 0
\(897\) 6.16709 0.205913
\(898\) 2.66398 0.0888982
\(899\) −20.3621 −0.679115
\(900\) 66.3917 2.21306
\(901\) −78.0077 −2.59881
\(902\) −0.336383 −0.0112003
\(903\) 0 0
\(904\) −6.56064 −0.218204
\(905\) 2.38995 0.0794446
\(906\) 7.05757 0.234472
\(907\) −15.3750 −0.510518 −0.255259 0.966873i \(-0.582161\pi\)
−0.255259 + 0.966873i \(0.582161\pi\)
\(908\) −53.6751 −1.78127
\(909\) 63.2321 2.09728
\(910\) 0 0
\(911\) 25.2602 0.836908 0.418454 0.908238i \(-0.362572\pi\)
0.418454 + 0.908238i \(0.362572\pi\)
\(912\) −12.3999 −0.410603
\(913\) −2.87171 −0.0950399
\(914\) −0.470456 −0.0155613
\(915\) −5.28373 −0.174675
\(916\) −23.0494 −0.761575
\(917\) 0 0
\(918\) 7.59854 0.250789
\(919\) 25.4760 0.840376 0.420188 0.907437i \(-0.361964\pi\)
0.420188 + 0.907437i \(0.361964\pi\)
\(920\) −0.159663 −0.00526395
\(921\) −47.8492 −1.57669
\(922\) −2.53903 −0.0836184
\(923\) 2.51012 0.0826216
\(924\) 0 0
\(925\) −42.9705 −1.41286
\(926\) −2.63829 −0.0866996
\(927\) −78.5687 −2.58054
\(928\) 2.73187 0.0896780
\(929\) −23.7913 −0.780566 −0.390283 0.920695i \(-0.627623\pi\)
−0.390283 + 0.920695i \(0.627623\pi\)
\(930\) 0.814704 0.0267152
\(931\) 0 0
\(932\) 20.5315 0.672531
\(933\) 22.6118 0.740276
\(934\) 1.33254 0.0436020
\(935\) 1.71905 0.0562189
\(936\) 3.90946 0.127785
\(937\) 29.6899 0.969927 0.484964 0.874534i \(-0.338833\pi\)
0.484964 + 0.874534i \(0.338833\pi\)
\(938\) 0 0
\(939\) −3.26686 −0.106610
\(940\) 2.22375 0.0725308
\(941\) 40.2348 1.31162 0.655809 0.754927i \(-0.272328\pi\)
0.655809 + 0.754927i \(0.272328\pi\)
\(942\) 1.70014 0.0553935
\(943\) 4.70901 0.153346
\(944\) 10.6619 0.347016
\(945\) 0 0
\(946\) 0.451817 0.0146899
\(947\) 48.3106 1.56988 0.784942 0.619569i \(-0.212693\pi\)
0.784942 + 0.619569i \(0.212693\pi\)
\(948\) 56.8408 1.84610
\(949\) 20.1670 0.654649
\(950\) −0.506662 −0.0164383
\(951\) 13.9971 0.453888
\(952\) 0 0
\(953\) 46.8476 1.51754 0.758772 0.651357i \(-0.225800\pi\)
0.758772 + 0.651357i \(0.225800\pi\)
\(954\) −8.60398 −0.278564
\(955\) 4.97588 0.161016
\(956\) 30.2112 0.977099
\(957\) −6.83544 −0.220958
\(958\) −0.204884 −0.00661950
\(959\) 0 0
\(960\) 6.80089 0.219498
\(961\) 51.4633 1.66011
\(962\) −1.26184 −0.0406833
\(963\) −1.38275 −0.0445585
\(964\) 10.3264 0.332591
\(965\) 0.600438 0.0193288
\(966\) 0 0
\(967\) −11.3136 −0.363822 −0.181911 0.983315i \(-0.558228\pi\)
−0.181911 + 0.983315i \(0.558228\pi\)
\(968\) −4.09924 −0.131755
\(969\) 19.7947 0.635898
\(970\) 0.0360871 0.00115869
\(971\) 48.0486 1.54195 0.770976 0.636864i \(-0.219769\pi\)
0.770976 + 0.636864i \(0.219769\pi\)
\(972\) −32.9437 −1.05667
\(973\) 0 0
\(974\) 1.69895 0.0544378
\(975\) −21.7549 −0.696716
\(976\) 23.7081 0.758879
\(977\) −1.06017 −0.0339177 −0.0169588 0.999856i \(-0.505398\pi\)
−0.0169588 + 0.999856i \(0.505398\pi\)
\(978\) −4.73456 −0.151395
\(979\) 8.70019 0.278059
\(980\) 0 0
\(981\) 119.218 3.80635
\(982\) 2.14471 0.0684404
\(983\) −2.35200 −0.0750172 −0.0375086 0.999296i \(-0.511942\pi\)
−0.0375086 + 0.999296i \(0.511942\pi\)
\(984\) 4.30585 0.137266
\(985\) 4.77259 0.152067
\(986\) −1.44095 −0.0458893
\(987\) 0 0
\(988\) 2.83185 0.0900931
\(989\) −6.32497 −0.201122
\(990\) 0.189605 0.00602604
\(991\) −26.3037 −0.835564 −0.417782 0.908547i \(-0.637193\pi\)
−0.417782 + 0.908547i \(0.637193\pi\)
\(992\) −11.0636 −0.351270
\(993\) 53.8649 1.70935
\(994\) 0 0
\(995\) −1.97362 −0.0625679
\(996\) 18.3315 0.580855
\(997\) 24.0943 0.763076 0.381538 0.924353i \(-0.375395\pi\)
0.381538 + 0.924353i \(0.375395\pi\)
\(998\) −1.94109 −0.0614440
\(999\) 103.244 3.26650
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6223.2.a.k.1.8 16
7.6 odd 2 889.2.a.c.1.8 16
21.20 even 2 8001.2.a.t.1.9 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.a.c.1.8 16 7.6 odd 2
6223.2.a.k.1.8 16 1.1 even 1 trivial
8001.2.a.t.1.9 16 21.20 even 2