Properties

Label 6223.2.a.k.1.3
Level $6223$
Weight $2$
Character 6223.1
Self dual yes
Analytic conductor $49.691$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6223,2,Mod(1,6223)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6223.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6223 = 7^{2} \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6223.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-2,4,12,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.6909051778\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 20 x^{14} + 38 x^{13} + 155 x^{12} - 275 x^{11} - 593 x^{10} + 957 x^{9} + 1177 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 889)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.18919\) of defining polynomial
Character \(\chi\) \(=\) 6223.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.18919 q^{2} +0.0358012 q^{3} +2.79257 q^{4} -0.868150 q^{5} -0.0783758 q^{6} -1.73509 q^{8} -2.99872 q^{9} +1.90055 q^{10} +0.280542 q^{11} +0.0999773 q^{12} -3.69064 q^{13} -0.0310808 q^{15} -1.78669 q^{16} +1.92048 q^{17} +6.56478 q^{18} -1.42421 q^{19} -2.42437 q^{20} -0.614161 q^{22} -6.52129 q^{23} -0.0621183 q^{24} -4.24632 q^{25} +8.07954 q^{26} -0.214761 q^{27} -3.07387 q^{29} +0.0680419 q^{30} +0.0163952 q^{31} +7.38160 q^{32} +0.0100437 q^{33} -4.20429 q^{34} -8.37413 q^{36} +0.359357 q^{37} +3.11787 q^{38} -0.132129 q^{39} +1.50632 q^{40} -8.75364 q^{41} +4.09079 q^{43} +0.783433 q^{44} +2.60334 q^{45} +14.2764 q^{46} -4.32210 q^{47} -0.0639657 q^{48} +9.29601 q^{50} +0.0687553 q^{51} -10.3064 q^{52} -14.1066 q^{53} +0.470154 q^{54} -0.243552 q^{55} -0.0509884 q^{57} +6.72929 q^{58} +13.7905 q^{59} -0.0867953 q^{60} -0.486241 q^{61} -0.0358923 q^{62} -12.5864 q^{64} +3.20403 q^{65} -0.0219877 q^{66} +0.701192 q^{67} +5.36306 q^{68} -0.233470 q^{69} -9.14768 q^{71} +5.20305 q^{72} +0.554740 q^{73} -0.786702 q^{74} -0.152023 q^{75} -3.97721 q^{76} +0.289257 q^{78} -14.4508 q^{79} +1.55112 q^{80} +8.98847 q^{81} +19.1634 q^{82} +11.1517 q^{83} -1.66726 q^{85} -8.95554 q^{86} -0.110048 q^{87} -0.486765 q^{88} +16.6821 q^{89} -5.69921 q^{90} -18.2111 q^{92} +0.000586969 q^{93} +9.46192 q^{94} +1.23643 q^{95} +0.264270 q^{96} -7.95594 q^{97} -0.841266 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} + 4 q^{3} + 12 q^{4} + 9 q^{5} + 12 q^{6} - 6 q^{8} + 14 q^{9} + 2 q^{10} - 22 q^{11} + 10 q^{12} + 4 q^{13} - 14 q^{15} + 12 q^{16} + 18 q^{17} - 5 q^{18} + 15 q^{19} + 40 q^{20} - 11 q^{22}+ \cdots - 73 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.18919 −1.54799 −0.773997 0.633189i \(-0.781745\pi\)
−0.773997 + 0.633189i \(0.781745\pi\)
\(3\) 0.0358012 0.0206698 0.0103349 0.999947i \(-0.496710\pi\)
0.0103349 + 0.999947i \(0.496710\pi\)
\(4\) 2.79257 1.39629
\(5\) −0.868150 −0.388249 −0.194124 0.980977i \(-0.562186\pi\)
−0.194124 + 0.980977i \(0.562186\pi\)
\(6\) −0.0783758 −0.0319968
\(7\) 0 0
\(8\) −1.73509 −0.613447
\(9\) −2.99872 −0.999573
\(10\) 1.90055 0.601006
\(11\) 0.280542 0.0845866 0.0422933 0.999105i \(-0.486534\pi\)
0.0422933 + 0.999105i \(0.486534\pi\)
\(12\) 0.0999773 0.0288610
\(13\) −3.69064 −1.02360 −0.511800 0.859104i \(-0.671021\pi\)
−0.511800 + 0.859104i \(0.671021\pi\)
\(14\) 0 0
\(15\) −0.0310808 −0.00802503
\(16\) −1.78669 −0.446673
\(17\) 1.92048 0.465784 0.232892 0.972503i \(-0.425181\pi\)
0.232892 + 0.972503i \(0.425181\pi\)
\(18\) 6.56478 1.54733
\(19\) −1.42421 −0.326736 −0.163368 0.986565i \(-0.552236\pi\)
−0.163368 + 0.986565i \(0.552236\pi\)
\(20\) −2.42437 −0.542106
\(21\) 0 0
\(22\) −0.614161 −0.130939
\(23\) −6.52129 −1.35978 −0.679891 0.733313i \(-0.737973\pi\)
−0.679891 + 0.733313i \(0.737973\pi\)
\(24\) −0.0621183 −0.0126798
\(25\) −4.24632 −0.849263
\(26\) 8.07954 1.58453
\(27\) −0.214761 −0.0413308
\(28\) 0 0
\(29\) −3.07387 −0.570803 −0.285402 0.958408i \(-0.592127\pi\)
−0.285402 + 0.958408i \(0.592127\pi\)
\(30\) 0.0680419 0.0124227
\(31\) 0.0163952 0.00294467 0.00147234 0.999999i \(-0.499531\pi\)
0.00147234 + 0.999999i \(0.499531\pi\)
\(32\) 7.38160 1.30489
\(33\) 0.0100437 0.00174839
\(34\) −4.20429 −0.721031
\(35\) 0 0
\(36\) −8.37413 −1.39569
\(37\) 0.359357 0.0590779 0.0295389 0.999564i \(-0.490596\pi\)
0.0295389 + 0.999564i \(0.490596\pi\)
\(38\) 3.11787 0.505786
\(39\) −0.132129 −0.0211576
\(40\) 1.50632 0.238170
\(41\) −8.75364 −1.36709 −0.683544 0.729909i \(-0.739562\pi\)
−0.683544 + 0.729909i \(0.739562\pi\)
\(42\) 0 0
\(43\) 4.09079 0.623840 0.311920 0.950108i \(-0.399028\pi\)
0.311920 + 0.950108i \(0.399028\pi\)
\(44\) 0.783433 0.118107
\(45\) 2.60334 0.388083
\(46\) 14.2764 2.10493
\(47\) −4.32210 −0.630443 −0.315222 0.949018i \(-0.602079\pi\)
−0.315222 + 0.949018i \(0.602079\pi\)
\(48\) −0.0639657 −0.00923266
\(49\) 0 0
\(50\) 9.29601 1.31465
\(51\) 0.0687553 0.00962767
\(52\) −10.3064 −1.42924
\(53\) −14.1066 −1.93769 −0.968846 0.247662i \(-0.920338\pi\)
−0.968846 + 0.247662i \(0.920338\pi\)
\(54\) 0.470154 0.0639799
\(55\) −0.243552 −0.0328406
\(56\) 0 0
\(57\) −0.0509884 −0.00675359
\(58\) 6.72929 0.883600
\(59\) 13.7905 1.79537 0.897685 0.440638i \(-0.145248\pi\)
0.897685 + 0.440638i \(0.145248\pi\)
\(60\) −0.0867953 −0.0112052
\(61\) −0.486241 −0.0622568 −0.0311284 0.999515i \(-0.509910\pi\)
−0.0311284 + 0.999515i \(0.509910\pi\)
\(62\) −0.0358923 −0.00455833
\(63\) 0 0
\(64\) −12.5864 −1.57329
\(65\) 3.20403 0.397411
\(66\) −0.0219877 −0.00270650
\(67\) 0.701192 0.0856643 0.0428321 0.999082i \(-0.486362\pi\)
0.0428321 + 0.999082i \(0.486362\pi\)
\(68\) 5.36306 0.650367
\(69\) −0.233470 −0.0281065
\(70\) 0 0
\(71\) −9.14768 −1.08563 −0.542815 0.839852i \(-0.682642\pi\)
−0.542815 + 0.839852i \(0.682642\pi\)
\(72\) 5.20305 0.613185
\(73\) 0.554740 0.0649273 0.0324637 0.999473i \(-0.489665\pi\)
0.0324637 + 0.999473i \(0.489665\pi\)
\(74\) −0.786702 −0.0914522
\(75\) −0.152023 −0.0175541
\(76\) −3.97721 −0.456217
\(77\) 0 0
\(78\) 0.289257 0.0327519
\(79\) −14.4508 −1.62584 −0.812921 0.582374i \(-0.802124\pi\)
−0.812921 + 0.582374i \(0.802124\pi\)
\(80\) 1.55112 0.173420
\(81\) 8.98847 0.998718
\(82\) 19.1634 2.11624
\(83\) 11.1517 1.22405 0.612027 0.790837i \(-0.290354\pi\)
0.612027 + 0.790837i \(0.290354\pi\)
\(84\) 0 0
\(85\) −1.66726 −0.180840
\(86\) −8.95554 −0.965700
\(87\) −0.110048 −0.0117984
\(88\) −0.486765 −0.0518894
\(89\) 16.6821 1.76830 0.884149 0.467205i \(-0.154739\pi\)
0.884149 + 0.467205i \(0.154739\pi\)
\(90\) −5.69921 −0.600750
\(91\) 0 0
\(92\) −18.2111 −1.89864
\(93\) 0.000586969 0 6.08658e−5 0
\(94\) 9.46192 0.975922
\(95\) 1.23643 0.126855
\(96\) 0.264270 0.0269719
\(97\) −7.95594 −0.807803 −0.403902 0.914802i \(-0.632346\pi\)
−0.403902 + 0.914802i \(0.632346\pi\)
\(98\) 0 0
\(99\) −0.841266 −0.0845504
\(100\) −11.8581 −1.18581
\(101\) −5.03438 −0.500939 −0.250470 0.968124i \(-0.580585\pi\)
−0.250470 + 0.968124i \(0.580585\pi\)
\(102\) −0.150519 −0.0149036
\(103\) −2.57322 −0.253547 −0.126774 0.991932i \(-0.540462\pi\)
−0.126774 + 0.991932i \(0.540462\pi\)
\(104\) 6.40360 0.627925
\(105\) 0 0
\(106\) 30.8821 2.99954
\(107\) −6.71132 −0.648808 −0.324404 0.945919i \(-0.605164\pi\)
−0.324404 + 0.945919i \(0.605164\pi\)
\(108\) −0.599736 −0.0577096
\(109\) 1.76219 0.168787 0.0843935 0.996433i \(-0.473105\pi\)
0.0843935 + 0.996433i \(0.473105\pi\)
\(110\) 0.533184 0.0508371
\(111\) 0.0128654 0.00122113
\(112\) 0 0
\(113\) −8.28904 −0.779768 −0.389884 0.920864i \(-0.627485\pi\)
−0.389884 + 0.920864i \(0.627485\pi\)
\(114\) 0.111624 0.0104545
\(115\) 5.66145 0.527933
\(116\) −8.58399 −0.797004
\(117\) 11.0672 1.02316
\(118\) −30.1901 −2.77922
\(119\) 0 0
\(120\) 0.0539280 0.00492293
\(121\) −10.9213 −0.992845
\(122\) 1.06448 0.0963732
\(123\) −0.313391 −0.0282575
\(124\) 0.0457848 0.00411160
\(125\) 8.02719 0.717974
\(126\) 0 0
\(127\) −1.00000 −0.0887357
\(128\) 12.7908 1.13056
\(129\) 0.146455 0.0128947
\(130\) −7.01425 −0.615190
\(131\) 15.0169 1.31203 0.656015 0.754748i \(-0.272241\pi\)
0.656015 + 0.754748i \(0.272241\pi\)
\(132\) 0.0280478 0.00244125
\(133\) 0 0
\(134\) −1.53505 −0.132608
\(135\) 0.186445 0.0160466
\(136\) −3.33220 −0.285734
\(137\) 16.5669 1.41540 0.707702 0.706511i \(-0.249732\pi\)
0.707702 + 0.706511i \(0.249732\pi\)
\(138\) 0.511111 0.0435086
\(139\) 14.5682 1.23566 0.617830 0.786312i \(-0.288012\pi\)
0.617830 + 0.786312i \(0.288012\pi\)
\(140\) 0 0
\(141\) −0.154736 −0.0130312
\(142\) 20.0261 1.68055
\(143\) −1.03538 −0.0865828
\(144\) 5.35779 0.446482
\(145\) 2.66858 0.221613
\(146\) −1.21443 −0.100507
\(147\) 0 0
\(148\) 1.00353 0.0824896
\(149\) −11.3687 −0.931364 −0.465682 0.884952i \(-0.654191\pi\)
−0.465682 + 0.884952i \(0.654191\pi\)
\(150\) 0.332808 0.0271737
\(151\) −9.59570 −0.780887 −0.390443 0.920627i \(-0.627678\pi\)
−0.390443 + 0.920627i \(0.627678\pi\)
\(152\) 2.47113 0.200435
\(153\) −5.75897 −0.465585
\(154\) 0 0
\(155\) −0.0142335 −0.00114326
\(156\) −0.368981 −0.0295421
\(157\) −10.8227 −0.863743 −0.431871 0.901935i \(-0.642147\pi\)
−0.431871 + 0.901935i \(0.642147\pi\)
\(158\) 31.6356 2.51679
\(159\) −0.505034 −0.0400518
\(160\) −6.40833 −0.506623
\(161\) 0 0
\(162\) −19.6775 −1.54601
\(163\) 24.3493 1.90718 0.953590 0.301107i \(-0.0973561\pi\)
0.953590 + 0.301107i \(0.0973561\pi\)
\(164\) −24.4451 −1.90885
\(165\) −0.00871947 −0.000678810 0
\(166\) −24.4131 −1.89483
\(167\) −14.3860 −1.11322 −0.556611 0.830773i \(-0.687899\pi\)
−0.556611 + 0.830773i \(0.687899\pi\)
\(168\) 0 0
\(169\) 0.620853 0.0477579
\(170\) 3.64996 0.279939
\(171\) 4.27081 0.326597
\(172\) 11.4238 0.871058
\(173\) 20.4335 1.55353 0.776765 0.629790i \(-0.216859\pi\)
0.776765 + 0.629790i \(0.216859\pi\)
\(174\) 0.240917 0.0182639
\(175\) 0 0
\(176\) −0.501242 −0.0377825
\(177\) 0.493716 0.0371100
\(178\) −36.5203 −2.73731
\(179\) −1.77187 −0.132436 −0.0662178 0.997805i \(-0.521093\pi\)
−0.0662178 + 0.997805i \(0.521093\pi\)
\(180\) 7.27000 0.541874
\(181\) −13.7325 −1.02073 −0.510365 0.859958i \(-0.670490\pi\)
−0.510365 + 0.859958i \(0.670490\pi\)
\(182\) 0 0
\(183\) −0.0174080 −0.00128684
\(184\) 11.3150 0.834154
\(185\) −0.311976 −0.0229369
\(186\) −0.00128499 −9.42199e−5 0
\(187\) 0.538774 0.0393991
\(188\) −12.0698 −0.880279
\(189\) 0 0
\(190\) −2.70678 −0.196371
\(191\) 7.22638 0.522883 0.261441 0.965219i \(-0.415802\pi\)
0.261441 + 0.965219i \(0.415802\pi\)
\(192\) −0.450607 −0.0325197
\(193\) 13.0486 0.939255 0.469628 0.882865i \(-0.344388\pi\)
0.469628 + 0.882865i \(0.344388\pi\)
\(194\) 17.4171 1.25047
\(195\) 0.114708 0.00821442
\(196\) 0 0
\(197\) −3.12406 −0.222580 −0.111290 0.993788i \(-0.535498\pi\)
−0.111290 + 0.993788i \(0.535498\pi\)
\(198\) 1.84169 0.130884
\(199\) 10.9671 0.777438 0.388719 0.921356i \(-0.372918\pi\)
0.388719 + 0.921356i \(0.372918\pi\)
\(200\) 7.36774 0.520978
\(201\) 0.0251035 0.00177067
\(202\) 11.0212 0.775451
\(203\) 0 0
\(204\) 0.192004 0.0134430
\(205\) 7.59947 0.530770
\(206\) 5.63328 0.392489
\(207\) 19.5555 1.35920
\(208\) 6.59404 0.457215
\(209\) −0.399551 −0.0276375
\(210\) 0 0
\(211\) −13.8674 −0.954668 −0.477334 0.878722i \(-0.658397\pi\)
−0.477334 + 0.878722i \(0.658397\pi\)
\(212\) −39.3937 −2.70557
\(213\) −0.327498 −0.0224398
\(214\) 14.6924 1.00435
\(215\) −3.55142 −0.242205
\(216\) 0.372630 0.0253543
\(217\) 0 0
\(218\) −3.85777 −0.261281
\(219\) 0.0198603 0.00134204
\(220\) −0.680137 −0.0458548
\(221\) −7.08779 −0.476777
\(222\) −0.0281649 −0.00189030
\(223\) −9.77971 −0.654898 −0.327449 0.944869i \(-0.606189\pi\)
−0.327449 + 0.944869i \(0.606189\pi\)
\(224\) 0 0
\(225\) 12.7335 0.848900
\(226\) 18.1463 1.20708
\(227\) 12.3932 0.822563 0.411282 0.911508i \(-0.365081\pi\)
0.411282 + 0.911508i \(0.365081\pi\)
\(228\) −0.142389 −0.00942993
\(229\) −24.5147 −1.61998 −0.809988 0.586447i \(-0.800526\pi\)
−0.809988 + 0.586447i \(0.800526\pi\)
\(230\) −12.3940 −0.817238
\(231\) 0 0
\(232\) 5.33344 0.350157
\(233\) −7.75695 −0.508175 −0.254087 0.967181i \(-0.581775\pi\)
−0.254087 + 0.967181i \(0.581775\pi\)
\(234\) −24.2283 −1.58385
\(235\) 3.75223 0.244769
\(236\) 38.5109 2.50685
\(237\) −0.517356 −0.0336059
\(238\) 0 0
\(239\) 12.1161 0.783723 0.391862 0.920024i \(-0.371831\pi\)
0.391862 + 0.920024i \(0.371831\pi\)
\(240\) 0.0555318 0.00358456
\(241\) −3.36131 −0.216521 −0.108261 0.994123i \(-0.534528\pi\)
−0.108261 + 0.994123i \(0.534528\pi\)
\(242\) 23.9088 1.53692
\(243\) 0.966082 0.0619742
\(244\) −1.35786 −0.0869283
\(245\) 0 0
\(246\) 0.686073 0.0437424
\(247\) 5.25626 0.334448
\(248\) −0.0284472 −0.00180640
\(249\) 0.399243 0.0253010
\(250\) −17.5731 −1.11142
\(251\) 23.2358 1.46663 0.733314 0.679890i \(-0.237973\pi\)
0.733314 + 0.679890i \(0.237973\pi\)
\(252\) 0 0
\(253\) −1.82949 −0.115019
\(254\) 2.18919 0.137362
\(255\) −0.0596900 −0.00373793
\(256\) −2.82880 −0.176800
\(257\) −19.4430 −1.21282 −0.606411 0.795151i \(-0.707392\pi\)
−0.606411 + 0.795151i \(0.707392\pi\)
\(258\) −0.320619 −0.0199609
\(259\) 0 0
\(260\) 8.94749 0.554900
\(261\) 9.21767 0.570559
\(262\) −32.8749 −2.03102
\(263\) −4.25647 −0.262465 −0.131233 0.991352i \(-0.541894\pi\)
−0.131233 + 0.991352i \(0.541894\pi\)
\(264\) −0.0174268 −0.00107254
\(265\) 12.2467 0.752306
\(266\) 0 0
\(267\) 0.597239 0.0365504
\(268\) 1.95813 0.119612
\(269\) −4.00443 −0.244154 −0.122077 0.992521i \(-0.538956\pi\)
−0.122077 + 0.992521i \(0.538956\pi\)
\(270\) −0.408164 −0.0248401
\(271\) −0.684262 −0.0415659 −0.0207830 0.999784i \(-0.506616\pi\)
−0.0207830 + 0.999784i \(0.506616\pi\)
\(272\) −3.43130 −0.208053
\(273\) 0 0
\(274\) −36.2681 −2.19104
\(275\) −1.19127 −0.0718362
\(276\) −0.651981 −0.0392446
\(277\) 5.19540 0.312162 0.156081 0.987744i \(-0.450114\pi\)
0.156081 + 0.987744i \(0.450114\pi\)
\(278\) −31.8926 −1.91279
\(279\) −0.0491647 −0.00294341
\(280\) 0 0
\(281\) 23.1569 1.38143 0.690713 0.723129i \(-0.257297\pi\)
0.690713 + 0.723129i \(0.257297\pi\)
\(282\) 0.338748 0.0201721
\(283\) 0.107190 0.00637180 0.00318590 0.999995i \(-0.498986\pi\)
0.00318590 + 0.999995i \(0.498986\pi\)
\(284\) −25.5455 −1.51585
\(285\) 0.0442656 0.00262207
\(286\) 2.26665 0.134030
\(287\) 0 0
\(288\) −22.1353 −1.30434
\(289\) −13.3118 −0.783045
\(290\) −5.84204 −0.343056
\(291\) −0.284832 −0.0166972
\(292\) 1.54915 0.0906571
\(293\) −10.5671 −0.617337 −0.308668 0.951170i \(-0.599883\pi\)
−0.308668 + 0.951170i \(0.599883\pi\)
\(294\) 0 0
\(295\) −11.9722 −0.697050
\(296\) −0.623516 −0.0362411
\(297\) −0.0602495 −0.00349603
\(298\) 24.8884 1.44175
\(299\) 24.0677 1.39187
\(300\) −0.424535 −0.0245106
\(301\) 0 0
\(302\) 21.0068 1.20881
\(303\) −0.180237 −0.0103543
\(304\) 2.54463 0.145944
\(305\) 0.422130 0.0241711
\(306\) 12.6075 0.720723
\(307\) 3.41074 0.194661 0.0973307 0.995252i \(-0.468970\pi\)
0.0973307 + 0.995252i \(0.468970\pi\)
\(308\) 0 0
\(309\) −0.0921244 −0.00524078
\(310\) 0.0311599 0.00176977
\(311\) −29.7332 −1.68602 −0.843008 0.537901i \(-0.819218\pi\)
−0.843008 + 0.537901i \(0.819218\pi\)
\(312\) 0.229256 0.0129791
\(313\) −21.5328 −1.21710 −0.608552 0.793514i \(-0.708249\pi\)
−0.608552 + 0.793514i \(0.708249\pi\)
\(314\) 23.6929 1.33707
\(315\) 0 0
\(316\) −40.3549 −2.27014
\(317\) 28.3682 1.59332 0.796660 0.604428i \(-0.206598\pi\)
0.796660 + 0.604428i \(0.206598\pi\)
\(318\) 1.10562 0.0619999
\(319\) −0.862349 −0.0482823
\(320\) 10.9268 0.610829
\(321\) −0.240273 −0.0134107
\(322\) 0 0
\(323\) −2.73516 −0.152189
\(324\) 25.1009 1.39450
\(325\) 15.6716 0.869306
\(326\) −53.3052 −2.95230
\(327\) 0.0630884 0.00348880
\(328\) 15.1883 0.838636
\(329\) 0 0
\(330\) 0.0190886 0.00105079
\(331\) −7.53693 −0.414267 −0.207134 0.978313i \(-0.566414\pi\)
−0.207134 + 0.978313i \(0.566414\pi\)
\(332\) 31.1418 1.70913
\(333\) −1.07761 −0.0590527
\(334\) 31.4938 1.72326
\(335\) −0.608740 −0.0332590
\(336\) 0 0
\(337\) 11.9671 0.651888 0.325944 0.945389i \(-0.394318\pi\)
0.325944 + 0.945389i \(0.394318\pi\)
\(338\) −1.35917 −0.0739289
\(339\) −0.296758 −0.0161177
\(340\) −4.65594 −0.252504
\(341\) 0.00459955 0.000249080 0
\(342\) −9.34963 −0.505570
\(343\) 0 0
\(344\) −7.09789 −0.382693
\(345\) 0.202687 0.0109123
\(346\) −44.7329 −2.40486
\(347\) 4.07527 0.218772 0.109386 0.993999i \(-0.465112\pi\)
0.109386 + 0.993999i \(0.465112\pi\)
\(348\) −0.307317 −0.0164739
\(349\) 2.38630 0.127736 0.0638679 0.997958i \(-0.479656\pi\)
0.0638679 + 0.997958i \(0.479656\pi\)
\(350\) 0 0
\(351\) 0.792607 0.0423063
\(352\) 2.07085 0.110376
\(353\) −19.0735 −1.01518 −0.507591 0.861598i \(-0.669464\pi\)
−0.507591 + 0.861598i \(0.669464\pi\)
\(354\) −1.08084 −0.0574460
\(355\) 7.94156 0.421494
\(356\) 46.5859 2.46905
\(357\) 0 0
\(358\) 3.87896 0.205010
\(359\) 1.49830 0.0790775 0.0395387 0.999218i \(-0.487411\pi\)
0.0395387 + 0.999218i \(0.487411\pi\)
\(360\) −4.51702 −0.238068
\(361\) −16.9716 −0.893243
\(362\) 30.0631 1.58008
\(363\) −0.390995 −0.0205219
\(364\) 0 0
\(365\) −0.481597 −0.0252079
\(366\) 0.0381095 0.00199202
\(367\) −10.1206 −0.528291 −0.264146 0.964483i \(-0.585090\pi\)
−0.264146 + 0.964483i \(0.585090\pi\)
\(368\) 11.6515 0.607378
\(369\) 26.2497 1.36650
\(370\) 0.682975 0.0355062
\(371\) 0 0
\(372\) 0.00163915 8.49861e−5 0
\(373\) −25.6071 −1.32588 −0.662942 0.748671i \(-0.730693\pi\)
−0.662942 + 0.748671i \(0.730693\pi\)
\(374\) −1.17948 −0.0609895
\(375\) 0.287383 0.0148404
\(376\) 7.49923 0.386743
\(377\) 11.3446 0.584274
\(378\) 0 0
\(379\) −13.9735 −0.717771 −0.358886 0.933382i \(-0.616843\pi\)
−0.358886 + 0.933382i \(0.616843\pi\)
\(380\) 3.45281 0.177126
\(381\) −0.0358012 −0.00183415
\(382\) −15.8199 −0.809419
\(383\) 25.7039 1.31341 0.656705 0.754147i \(-0.271950\pi\)
0.656705 + 0.754147i \(0.271950\pi\)
\(384\) 0.457926 0.0233684
\(385\) 0 0
\(386\) −28.5658 −1.45396
\(387\) −12.2671 −0.623573
\(388\) −22.2175 −1.12792
\(389\) 4.06415 0.206061 0.103030 0.994678i \(-0.467146\pi\)
0.103030 + 0.994678i \(0.467146\pi\)
\(390\) −0.251118 −0.0127159
\(391\) −12.5240 −0.633365
\(392\) 0 0
\(393\) 0.537622 0.0271194
\(394\) 6.83918 0.344553
\(395\) 12.5455 0.631231
\(396\) −2.34929 −0.118056
\(397\) −1.03102 −0.0517453 −0.0258726 0.999665i \(-0.508236\pi\)
−0.0258726 + 0.999665i \(0.508236\pi\)
\(398\) −24.0091 −1.20347
\(399\) 0 0
\(400\) 7.58686 0.379343
\(401\) −3.59965 −0.179758 −0.0898789 0.995953i \(-0.528648\pi\)
−0.0898789 + 0.995953i \(0.528648\pi\)
\(402\) −0.0549565 −0.00274098
\(403\) −0.0605090 −0.00301417
\(404\) −14.0588 −0.699454
\(405\) −7.80334 −0.387751
\(406\) 0 0
\(407\) 0.100815 0.00499720
\(408\) −0.119297 −0.00590607
\(409\) 21.8694 1.08137 0.540685 0.841225i \(-0.318165\pi\)
0.540685 + 0.841225i \(0.318165\pi\)
\(410\) −16.6367 −0.821629
\(411\) 0.593114 0.0292562
\(412\) −7.18590 −0.354024
\(413\) 0 0
\(414\) −42.8108 −2.10403
\(415\) −9.68131 −0.475237
\(416\) −27.2428 −1.33569
\(417\) 0.521559 0.0255409
\(418\) 0.874694 0.0427827
\(419\) 14.5188 0.709288 0.354644 0.935001i \(-0.384602\pi\)
0.354644 + 0.935001i \(0.384602\pi\)
\(420\) 0 0
\(421\) 1.74372 0.0849836 0.0424918 0.999097i \(-0.486470\pi\)
0.0424918 + 0.999097i \(0.486470\pi\)
\(422\) 30.3583 1.47782
\(423\) 12.9608 0.630174
\(424\) 24.4762 1.18867
\(425\) −8.15495 −0.395573
\(426\) 0.716957 0.0347367
\(427\) 0 0
\(428\) −18.7418 −0.905920
\(429\) −0.0370678 −0.00178965
\(430\) 7.77475 0.374932
\(431\) 24.6850 1.18904 0.594518 0.804082i \(-0.297343\pi\)
0.594518 + 0.804082i \(0.297343\pi\)
\(432\) 0.383712 0.0184614
\(433\) 16.9930 0.816633 0.408316 0.912840i \(-0.366116\pi\)
0.408316 + 0.912840i \(0.366116\pi\)
\(434\) 0 0
\(435\) 0.0955383 0.00458071
\(436\) 4.92103 0.235675
\(437\) 9.28769 0.444290
\(438\) −0.0434781 −0.00207747
\(439\) −9.88431 −0.471752 −0.235876 0.971783i \(-0.575796\pi\)
−0.235876 + 0.971783i \(0.575796\pi\)
\(440\) 0.422585 0.0201460
\(441\) 0 0
\(442\) 15.5166 0.738047
\(443\) 39.8440 1.89305 0.946523 0.322636i \(-0.104569\pi\)
0.946523 + 0.322636i \(0.104569\pi\)
\(444\) 0.0359275 0.00170505
\(445\) −14.4826 −0.686539
\(446\) 21.4097 1.01378
\(447\) −0.407015 −0.0192511
\(448\) 0 0
\(449\) 24.0250 1.13381 0.566904 0.823784i \(-0.308141\pi\)
0.566904 + 0.823784i \(0.308141\pi\)
\(450\) −27.8761 −1.31409
\(451\) −2.45576 −0.115637
\(452\) −23.1477 −1.08878
\(453\) −0.343537 −0.0161408
\(454\) −27.1310 −1.27332
\(455\) 0 0
\(456\) 0.0884695 0.00414297
\(457\) 3.81846 0.178620 0.0893101 0.996004i \(-0.471534\pi\)
0.0893101 + 0.996004i \(0.471534\pi\)
\(458\) 53.6674 2.50771
\(459\) −0.412444 −0.0192512
\(460\) 15.8100 0.737145
\(461\) 27.3775 1.27510 0.637549 0.770409i \(-0.279948\pi\)
0.637549 + 0.770409i \(0.279948\pi\)
\(462\) 0 0
\(463\) −6.11153 −0.284027 −0.142013 0.989865i \(-0.545358\pi\)
−0.142013 + 0.989865i \(0.545358\pi\)
\(464\) 5.49206 0.254962
\(465\) −0.000509577 0 −2.36311e−5 0
\(466\) 16.9815 0.786652
\(467\) −23.4738 −1.08624 −0.543118 0.839656i \(-0.682756\pi\)
−0.543118 + 0.839656i \(0.682756\pi\)
\(468\) 30.9059 1.42863
\(469\) 0 0
\(470\) −8.21437 −0.378900
\(471\) −0.387464 −0.0178534
\(472\) −23.9278 −1.10136
\(473\) 1.14764 0.0527685
\(474\) 1.13259 0.0520217
\(475\) 6.04765 0.277485
\(476\) 0 0
\(477\) 42.3018 1.93687
\(478\) −26.5244 −1.21320
\(479\) 30.4428 1.39097 0.695484 0.718541i \(-0.255190\pi\)
0.695484 + 0.718541i \(0.255190\pi\)
\(480\) −0.229426 −0.0104718
\(481\) −1.32626 −0.0604722
\(482\) 7.35857 0.335173
\(483\) 0 0
\(484\) −30.4985 −1.38629
\(485\) 6.90695 0.313628
\(486\) −2.11494 −0.0959356
\(487\) −43.9485 −1.99150 −0.995749 0.0921094i \(-0.970639\pi\)
−0.995749 + 0.0921094i \(0.970639\pi\)
\(488\) 0.843672 0.0381912
\(489\) 0.871732 0.0394211
\(490\) 0 0
\(491\) −4.76508 −0.215045 −0.107522 0.994203i \(-0.534292\pi\)
−0.107522 + 0.994203i \(0.534292\pi\)
\(492\) −0.875165 −0.0394555
\(493\) −5.90329 −0.265871
\(494\) −11.5070 −0.517723
\(495\) 0.730345 0.0328266
\(496\) −0.0292932 −0.00131531
\(497\) 0 0
\(498\) −0.874020 −0.0391658
\(499\) −9.87038 −0.441859 −0.220929 0.975290i \(-0.570909\pi\)
−0.220929 + 0.975290i \(0.570909\pi\)
\(500\) 22.4165 1.00250
\(501\) −0.515036 −0.0230101
\(502\) −50.8676 −2.27033
\(503\) 29.9723 1.33640 0.668200 0.743982i \(-0.267065\pi\)
0.668200 + 0.743982i \(0.267065\pi\)
\(504\) 0 0
\(505\) 4.37059 0.194489
\(506\) 4.00512 0.178049
\(507\) 0.0222273 0.000987148 0
\(508\) −2.79257 −0.123900
\(509\) −33.7727 −1.49695 −0.748474 0.663165i \(-0.769213\pi\)
−0.748474 + 0.663165i \(0.769213\pi\)
\(510\) 0.130673 0.00578629
\(511\) 0 0
\(512\) −19.3888 −0.856871
\(513\) 0.305865 0.0135043
\(514\) 42.5646 1.87744
\(515\) 2.23394 0.0984393
\(516\) 0.408986 0.0180046
\(517\) −1.21253 −0.0533270
\(518\) 0 0
\(519\) 0.731544 0.0321112
\(520\) −5.55928 −0.243791
\(521\) −23.4277 −1.02639 −0.513194 0.858273i \(-0.671538\pi\)
−0.513194 + 0.858273i \(0.671538\pi\)
\(522\) −20.1793 −0.883222
\(523\) −0.337038 −0.0147376 −0.00736882 0.999973i \(-0.502346\pi\)
−0.00736882 + 0.999973i \(0.502346\pi\)
\(524\) 41.9357 1.83197
\(525\) 0 0
\(526\) 9.31825 0.406295
\(527\) 0.0314867 0.00137158
\(528\) −0.0179451 −0.000780959 0
\(529\) 19.5272 0.849007
\(530\) −26.8103 −1.16457
\(531\) −41.3538 −1.79460
\(532\) 0 0
\(533\) 32.3066 1.39935
\(534\) −1.30747 −0.0565798
\(535\) 5.82643 0.251899
\(536\) −1.21663 −0.0525505
\(537\) −0.0634350 −0.00273742
\(538\) 8.76646 0.377949
\(539\) 0 0
\(540\) 0.520661 0.0224057
\(541\) 5.85948 0.251919 0.125959 0.992035i \(-0.459799\pi\)
0.125959 + 0.992035i \(0.459799\pi\)
\(542\) 1.49798 0.0643438
\(543\) −0.491640 −0.0210983
\(544\) 14.1762 0.607799
\(545\) −1.52984 −0.0655313
\(546\) 0 0
\(547\) 31.8131 1.36023 0.680114 0.733106i \(-0.261930\pi\)
0.680114 + 0.733106i \(0.261930\pi\)
\(548\) 46.2642 1.97631
\(549\) 1.45810 0.0622302
\(550\) 2.60792 0.111202
\(551\) 4.37784 0.186502
\(552\) 0.405091 0.0172418
\(553\) 0 0
\(554\) −11.3737 −0.483224
\(555\) −0.0111691 −0.000474102 0
\(556\) 40.6827 1.72533
\(557\) −7.19289 −0.304773 −0.152386 0.988321i \(-0.548696\pi\)
−0.152386 + 0.988321i \(0.548696\pi\)
\(558\) 0.107631 0.00455638
\(559\) −15.0977 −0.638563
\(560\) 0 0
\(561\) 0.0192887 0.000814372 0
\(562\) −50.6950 −2.13844
\(563\) −28.3208 −1.19358 −0.596789 0.802398i \(-0.703557\pi\)
−0.596789 + 0.802398i \(0.703557\pi\)
\(564\) −0.432112 −0.0181952
\(565\) 7.19613 0.302744
\(566\) −0.234660 −0.00986351
\(567\) 0 0
\(568\) 15.8721 0.665977
\(569\) 26.6346 1.11658 0.558290 0.829646i \(-0.311458\pi\)
0.558290 + 0.829646i \(0.311458\pi\)
\(570\) −0.0969060 −0.00405895
\(571\) 15.4515 0.646625 0.323313 0.946292i \(-0.395203\pi\)
0.323313 + 0.946292i \(0.395203\pi\)
\(572\) −2.89137 −0.120894
\(573\) 0.258713 0.0108079
\(574\) 0 0
\(575\) 27.6914 1.15481
\(576\) 37.7429 1.57262
\(577\) 24.0575 1.00153 0.500763 0.865585i \(-0.333053\pi\)
0.500763 + 0.865585i \(0.333053\pi\)
\(578\) 29.1420 1.21215
\(579\) 0.467154 0.0194142
\(580\) 7.45219 0.309436
\(581\) 0 0
\(582\) 0.623553 0.0258471
\(583\) −3.95750 −0.163903
\(584\) −0.962523 −0.0398295
\(585\) −9.60799 −0.397242
\(586\) 23.1334 0.955634
\(587\) 38.3645 1.58347 0.791736 0.610863i \(-0.209177\pi\)
0.791736 + 0.610863i \(0.209177\pi\)
\(588\) 0 0
\(589\) −0.0233503 −0.000962131 0
\(590\) 26.2095 1.07903
\(591\) −0.111845 −0.00460069
\(592\) −0.642060 −0.0263885
\(593\) 39.1039 1.60580 0.802902 0.596111i \(-0.203288\pi\)
0.802902 + 0.596111i \(0.203288\pi\)
\(594\) 0.131898 0.00541184
\(595\) 0 0
\(596\) −31.7480 −1.30045
\(597\) 0.392636 0.0160695
\(598\) −52.6890 −2.15461
\(599\) −34.6581 −1.41609 −0.708045 0.706167i \(-0.750423\pi\)
−0.708045 + 0.706167i \(0.750423\pi\)
\(600\) 0.263774 0.0107685
\(601\) −31.9773 −1.30438 −0.652190 0.758056i \(-0.726150\pi\)
−0.652190 + 0.758056i \(0.726150\pi\)
\(602\) 0 0
\(603\) −2.10268 −0.0856277
\(604\) −26.7967 −1.09034
\(605\) 9.48132 0.385471
\(606\) 0.394573 0.0160284
\(607\) 24.7650 1.00518 0.502591 0.864525i \(-0.332380\pi\)
0.502591 + 0.864525i \(0.332380\pi\)
\(608\) −10.5129 −0.426356
\(609\) 0 0
\(610\) −0.924125 −0.0374167
\(611\) 15.9513 0.645322
\(612\) −16.0823 −0.650089
\(613\) 28.3938 1.14681 0.573407 0.819271i \(-0.305621\pi\)
0.573407 + 0.819271i \(0.305621\pi\)
\(614\) −7.46678 −0.301335
\(615\) 0.272070 0.0109709
\(616\) 0 0
\(617\) 5.98355 0.240889 0.120444 0.992720i \(-0.461568\pi\)
0.120444 + 0.992720i \(0.461568\pi\)
\(618\) 0.201678 0.00811269
\(619\) −4.70457 −0.189093 −0.0945464 0.995520i \(-0.530140\pi\)
−0.0945464 + 0.995520i \(0.530140\pi\)
\(620\) −0.0397481 −0.00159632
\(621\) 1.40052 0.0562009
\(622\) 65.0918 2.60994
\(623\) 0 0
\(624\) 0.236075 0.00945055
\(625\) 14.2628 0.570511
\(626\) 47.1394 1.88407
\(627\) −0.0143044 −0.000571262 0
\(628\) −30.2231 −1.20603
\(629\) 0.690136 0.0275175
\(630\) 0 0
\(631\) −21.1503 −0.841978 −0.420989 0.907066i \(-0.638317\pi\)
−0.420989 + 0.907066i \(0.638317\pi\)
\(632\) 25.0734 0.997367
\(633\) −0.496468 −0.0197328
\(634\) −62.1036 −2.46645
\(635\) 0.868150 0.0344515
\(636\) −1.41034 −0.0559237
\(637\) 0 0
\(638\) 1.88785 0.0747406
\(639\) 27.4313 1.08517
\(640\) −11.1043 −0.438937
\(641\) 8.70143 0.343686 0.171843 0.985124i \(-0.445028\pi\)
0.171843 + 0.985124i \(0.445028\pi\)
\(642\) 0.526005 0.0207597
\(643\) 12.9855 0.512100 0.256050 0.966664i \(-0.417579\pi\)
0.256050 + 0.966664i \(0.417579\pi\)
\(644\) 0 0
\(645\) −0.127145 −0.00500633
\(646\) 5.98780 0.235587
\(647\) 29.0762 1.14310 0.571552 0.820566i \(-0.306342\pi\)
0.571552 + 0.820566i \(0.306342\pi\)
\(648\) −15.5958 −0.612661
\(649\) 3.86881 0.151864
\(650\) −34.3083 −1.34568
\(651\) 0 0
\(652\) 67.9970 2.66297
\(653\) 0.0994735 0.00389270 0.00194635 0.999998i \(-0.499380\pi\)
0.00194635 + 0.999998i \(0.499380\pi\)
\(654\) −0.138113 −0.00540064
\(655\) −13.0369 −0.509394
\(656\) 15.6401 0.610642
\(657\) −1.66351 −0.0648996
\(658\) 0 0
\(659\) 31.4715 1.22596 0.612978 0.790100i \(-0.289971\pi\)
0.612978 + 0.790100i \(0.289971\pi\)
\(660\) −0.0243497 −0.000947812 0
\(661\) 41.6056 1.61827 0.809135 0.587623i \(-0.199936\pi\)
0.809135 + 0.587623i \(0.199936\pi\)
\(662\) 16.4998 0.641283
\(663\) −0.253751 −0.00985489
\(664\) −19.3491 −0.750892
\(665\) 0 0
\(666\) 2.35910 0.0914131
\(667\) 20.0456 0.776168
\(668\) −40.1739 −1.55438
\(669\) −0.350125 −0.0135366
\(670\) 1.33265 0.0514848
\(671\) −0.136411 −0.00526609
\(672\) 0 0
\(673\) 2.99578 0.115479 0.0577394 0.998332i \(-0.481611\pi\)
0.0577394 + 0.998332i \(0.481611\pi\)
\(674\) −26.1982 −1.00912
\(675\) 0.911944 0.0351007
\(676\) 1.73377 0.0666837
\(677\) −48.2569 −1.85466 −0.927332 0.374239i \(-0.877904\pi\)
−0.927332 + 0.374239i \(0.877904\pi\)
\(678\) 0.649660 0.0249500
\(679\) 0 0
\(680\) 2.89285 0.110936
\(681\) 0.443690 0.0170022
\(682\) −0.0100693 −0.000385574 0
\(683\) 12.9192 0.494338 0.247169 0.968972i \(-0.420500\pi\)
0.247169 + 0.968972i \(0.420500\pi\)
\(684\) 11.9265 0.456022
\(685\) −14.3825 −0.549529
\(686\) 0 0
\(687\) −0.877655 −0.0334846
\(688\) −7.30899 −0.278652
\(689\) 52.0625 1.98342
\(690\) −0.443721 −0.0168922
\(691\) −20.8880 −0.794616 −0.397308 0.917685i \(-0.630055\pi\)
−0.397308 + 0.917685i \(0.630055\pi\)
\(692\) 57.0620 2.16917
\(693\) 0 0
\(694\) −8.92155 −0.338657
\(695\) −12.6474 −0.479743
\(696\) 0.190943 0.00723769
\(697\) −16.8111 −0.636768
\(698\) −5.22407 −0.197734
\(699\) −0.277708 −0.0105039
\(700\) 0 0
\(701\) 46.8697 1.77024 0.885122 0.465358i \(-0.154074\pi\)
0.885122 + 0.465358i \(0.154074\pi\)
\(702\) −1.73517 −0.0654898
\(703\) −0.511800 −0.0193029
\(704\) −3.53100 −0.133080
\(705\) 0.134334 0.00505933
\(706\) 41.7557 1.57150
\(707\) 0 0
\(708\) 1.37874 0.0518161
\(709\) −33.3937 −1.25413 −0.627064 0.778968i \(-0.715744\pi\)
−0.627064 + 0.778968i \(0.715744\pi\)
\(710\) −17.3856 −0.652471
\(711\) 43.3339 1.62515
\(712\) −28.9449 −1.08476
\(713\) −0.106918 −0.00400411
\(714\) 0 0
\(715\) 0.898865 0.0336157
\(716\) −4.94807 −0.184918
\(717\) 0.433770 0.0161994
\(718\) −3.28008 −0.122411
\(719\) 14.6697 0.547088 0.273544 0.961860i \(-0.411804\pi\)
0.273544 + 0.961860i \(0.411804\pi\)
\(720\) −4.65136 −0.173346
\(721\) 0 0
\(722\) 37.1542 1.38274
\(723\) −0.120339 −0.00447546
\(724\) −38.3490 −1.42523
\(725\) 13.0526 0.484762
\(726\) 0.855965 0.0317678
\(727\) 39.9187 1.48050 0.740250 0.672331i \(-0.234707\pi\)
0.740250 + 0.672331i \(0.234707\pi\)
\(728\) 0 0
\(729\) −26.9308 −0.997437
\(730\) 1.05431 0.0390217
\(731\) 7.85627 0.290575
\(732\) −0.0486131 −0.00179679
\(733\) −44.3086 −1.63657 −0.818287 0.574810i \(-0.805076\pi\)
−0.818287 + 0.574810i \(0.805076\pi\)
\(734\) 22.1560 0.817792
\(735\) 0 0
\(736\) −48.1375 −1.77437
\(737\) 0.196714 0.00724605
\(738\) −57.4657 −2.11534
\(739\) −9.90080 −0.364207 −0.182103 0.983279i \(-0.558291\pi\)
−0.182103 + 0.983279i \(0.558291\pi\)
\(740\) −0.871214 −0.0320265
\(741\) 0.188180 0.00691297
\(742\) 0 0
\(743\) 43.7246 1.60410 0.802049 0.597258i \(-0.203743\pi\)
0.802049 + 0.597258i \(0.203743\pi\)
\(744\) −0.00101844 −3.73380e−5 0
\(745\) 9.86977 0.361601
\(746\) 56.0589 2.05246
\(747\) −33.4407 −1.22353
\(748\) 1.50456 0.0550123
\(749\) 0 0
\(750\) −0.629137 −0.0229728
\(751\) −1.71759 −0.0626756 −0.0313378 0.999509i \(-0.509977\pi\)
−0.0313378 + 0.999509i \(0.509977\pi\)
\(752\) 7.72227 0.281602
\(753\) 0.831868 0.0303149
\(754\) −24.8354 −0.904453
\(755\) 8.33050 0.303178
\(756\) 0 0
\(757\) 33.7461 1.22652 0.613261 0.789880i \(-0.289857\pi\)
0.613261 + 0.789880i \(0.289857\pi\)
\(758\) 30.5907 1.11111
\(759\) −0.0654980 −0.00237743
\(760\) −2.14532 −0.0778188
\(761\) 5.95307 0.215799 0.107899 0.994162i \(-0.465588\pi\)
0.107899 + 0.994162i \(0.465588\pi\)
\(762\) 0.0783758 0.00283925
\(763\) 0 0
\(764\) 20.1802 0.730093
\(765\) 4.99965 0.180763
\(766\) −56.2709 −2.03315
\(767\) −50.8958 −1.83774
\(768\) −0.101275 −0.00365443
\(769\) −19.4719 −0.702173 −0.351087 0.936343i \(-0.614188\pi\)
−0.351087 + 0.936343i \(0.614188\pi\)
\(770\) 0 0
\(771\) −0.696084 −0.0250688
\(772\) 36.4390 1.31147
\(773\) 34.4291 1.23833 0.619165 0.785261i \(-0.287471\pi\)
0.619165 + 0.785261i \(0.287471\pi\)
\(774\) 26.8551 0.965288
\(775\) −0.0696193 −0.00250080
\(776\) 13.8043 0.495544
\(777\) 0 0
\(778\) −8.89721 −0.318981
\(779\) 12.4670 0.446678
\(780\) 0.320331 0.0114697
\(781\) −2.56631 −0.0918297
\(782\) 27.4174 0.980444
\(783\) 0.660148 0.0235918
\(784\) 0 0
\(785\) 9.39570 0.335347
\(786\) −1.17696 −0.0419807
\(787\) 26.7540 0.953676 0.476838 0.878991i \(-0.341783\pi\)
0.476838 + 0.878991i \(0.341783\pi\)
\(788\) −8.72416 −0.310785
\(789\) −0.152387 −0.00542512
\(790\) −27.4644 −0.977141
\(791\) 0 0
\(792\) 1.45967 0.0518672
\(793\) 1.79454 0.0637261
\(794\) 2.25710 0.0801014
\(795\) 0.438445 0.0155500
\(796\) 30.6264 1.08552
\(797\) −4.82222 −0.170812 −0.0854058 0.996346i \(-0.527219\pi\)
−0.0854058 + 0.996346i \(0.527219\pi\)
\(798\) 0 0
\(799\) −8.30049 −0.293650
\(800\) −31.3446 −1.10820
\(801\) −50.0249 −1.76754
\(802\) 7.88033 0.278264
\(803\) 0.155628 0.00549198
\(804\) 0.0701033 0.00247235
\(805\) 0 0
\(806\) 0.132466 0.00466591
\(807\) −0.143363 −0.00504662
\(808\) 8.73509 0.307300
\(809\) 7.80400 0.274374 0.137187 0.990545i \(-0.456194\pi\)
0.137187 + 0.990545i \(0.456194\pi\)
\(810\) 17.0830 0.600236
\(811\) −26.2261 −0.920924 −0.460462 0.887679i \(-0.652316\pi\)
−0.460462 + 0.887679i \(0.652316\pi\)
\(812\) 0 0
\(813\) −0.0244974 −0.000859161 0
\(814\) −0.220703 −0.00773563
\(815\) −21.1388 −0.740460
\(816\) −0.122845 −0.00430042
\(817\) −5.82615 −0.203831
\(818\) −47.8762 −1.67395
\(819\) 0 0
\(820\) 21.2221 0.741106
\(821\) 2.81989 0.0984148 0.0492074 0.998789i \(-0.484330\pi\)
0.0492074 + 0.998789i \(0.484330\pi\)
\(822\) −1.29844 −0.0452884
\(823\) 36.8534 1.28463 0.642314 0.766441i \(-0.277974\pi\)
0.642314 + 0.766441i \(0.277974\pi\)
\(824\) 4.46477 0.155538
\(825\) −0.0426489 −0.00148484
\(826\) 0 0
\(827\) −17.0927 −0.594371 −0.297186 0.954820i \(-0.596048\pi\)
−0.297186 + 0.954820i \(0.596048\pi\)
\(828\) 54.6101 1.89783
\(829\) 34.5735 1.20079 0.600394 0.799704i \(-0.295010\pi\)
0.600394 + 0.799704i \(0.295010\pi\)
\(830\) 21.1943 0.735664
\(831\) 0.186002 0.00645233
\(832\) 46.4518 1.61043
\(833\) 0 0
\(834\) −1.14179 −0.0395371
\(835\) 12.4892 0.432207
\(836\) −1.11577 −0.0385898
\(837\) −0.00352106 −0.000121706 0
\(838\) −31.7844 −1.09797
\(839\) 17.1104 0.590718 0.295359 0.955386i \(-0.404561\pi\)
0.295359 + 0.955386i \(0.404561\pi\)
\(840\) 0 0
\(841\) −19.5513 −0.674184
\(842\) −3.81733 −0.131554
\(843\) 0.829045 0.0285538
\(844\) −38.7256 −1.33299
\(845\) −0.538993 −0.0185419
\(846\) −28.3736 −0.975505
\(847\) 0 0
\(848\) 25.2042 0.865515
\(849\) 0.00383754 0.000131704 0
\(850\) 17.8528 0.612345
\(851\) −2.34347 −0.0803331
\(852\) −0.914561 −0.0313323
\(853\) 45.5681 1.56022 0.780111 0.625642i \(-0.215163\pi\)
0.780111 + 0.625642i \(0.215163\pi\)
\(854\) 0 0
\(855\) −3.70770 −0.126801
\(856\) 11.6447 0.398009
\(857\) 30.0586 1.02678 0.513391 0.858155i \(-0.328389\pi\)
0.513391 + 0.858155i \(0.328389\pi\)
\(858\) 0.0811487 0.00277037
\(859\) −24.8645 −0.848365 −0.424183 0.905577i \(-0.639439\pi\)
−0.424183 + 0.905577i \(0.639439\pi\)
\(860\) −9.91759 −0.338187
\(861\) 0 0
\(862\) −54.0403 −1.84062
\(863\) −14.4612 −0.492264 −0.246132 0.969236i \(-0.579160\pi\)
−0.246132 + 0.969236i \(0.579160\pi\)
\(864\) −1.58528 −0.0539323
\(865\) −17.7393 −0.603156
\(866\) −37.2010 −1.26414
\(867\) −0.476577 −0.0161854
\(868\) 0 0
\(869\) −4.05405 −0.137524
\(870\) −0.209152 −0.00709091
\(871\) −2.58785 −0.0876860
\(872\) −3.05755 −0.103542
\(873\) 23.8576 0.807458
\(874\) −20.3325 −0.687759
\(875\) 0 0
\(876\) 0.0554614 0.00187387
\(877\) −32.6606 −1.10287 −0.551435 0.834218i \(-0.685920\pi\)
−0.551435 + 0.834218i \(0.685920\pi\)
\(878\) 21.6387 0.730269
\(879\) −0.378315 −0.0127602
\(880\) 0.435153 0.0146690
\(881\) −11.2108 −0.377700 −0.188850 0.982006i \(-0.560476\pi\)
−0.188850 + 0.982006i \(0.560476\pi\)
\(882\) 0 0
\(883\) 27.6874 0.931754 0.465877 0.884849i \(-0.345739\pi\)
0.465877 + 0.884849i \(0.345739\pi\)
\(884\) −19.7932 −0.665716
\(885\) −0.428620 −0.0144079
\(886\) −87.2263 −2.93042
\(887\) −9.88366 −0.331861 −0.165930 0.986137i \(-0.553063\pi\)
−0.165930 + 0.986137i \(0.553063\pi\)
\(888\) −0.0223226 −0.000749098 0
\(889\) 0 0
\(890\) 31.7051 1.06276
\(891\) 2.52164 0.0844782
\(892\) −27.3105 −0.914424
\(893\) 6.15558 0.205989
\(894\) 0.891034 0.0298006
\(895\) 1.53825 0.0514179
\(896\) 0 0
\(897\) 0.861654 0.0287698
\(898\) −52.5953 −1.75513
\(899\) −0.0503968 −0.00168083
\(900\) 35.5592 1.18531
\(901\) −27.0914 −0.902546
\(902\) 5.37614 0.179006
\(903\) 0 0
\(904\) 14.3822 0.478346
\(905\) 11.9219 0.396297
\(906\) 0.752070 0.0249858
\(907\) −2.03008 −0.0674076 −0.0337038 0.999432i \(-0.510730\pi\)
−0.0337038 + 0.999432i \(0.510730\pi\)
\(908\) 34.6088 1.14853
\(909\) 15.0967 0.500725
\(910\) 0 0
\(911\) −29.2269 −0.968330 −0.484165 0.874977i \(-0.660877\pi\)
−0.484165 + 0.874977i \(0.660877\pi\)
\(912\) 0.0911007 0.00301664
\(913\) 3.12851 0.103538
\(914\) −8.35936 −0.276503
\(915\) 0.0151128 0.000499613 0
\(916\) −68.4590 −2.26195
\(917\) 0 0
\(918\) 0.902920 0.0298008
\(919\) 15.5165 0.511842 0.255921 0.966698i \(-0.417621\pi\)
0.255921 + 0.966698i \(0.417621\pi\)
\(920\) −9.82313 −0.323859
\(921\) 0.122109 0.00402362
\(922\) −59.9347 −1.97385
\(923\) 33.7608 1.11125
\(924\) 0 0
\(925\) −1.52594 −0.0501727
\(926\) 13.3793 0.439672
\(927\) 7.71637 0.253439
\(928\) −22.6901 −0.744838
\(929\) −53.4586 −1.75392 −0.876960 0.480562i \(-0.840433\pi\)
−0.876960 + 0.480562i \(0.840433\pi\)
\(930\) 0.00111556 3.65808e−5 0
\(931\) 0 0
\(932\) −21.6618 −0.709557
\(933\) −1.06448 −0.0348497
\(934\) 51.3886 1.68149
\(935\) −0.467737 −0.0152966
\(936\) −19.2026 −0.627656
\(937\) 25.9970 0.849285 0.424642 0.905361i \(-0.360400\pi\)
0.424642 + 0.905361i \(0.360400\pi\)
\(938\) 0 0
\(939\) −0.770899 −0.0251573
\(940\) 10.4784 0.341767
\(941\) 45.2741 1.47589 0.737947 0.674858i \(-0.235795\pi\)
0.737947 + 0.674858i \(0.235795\pi\)
\(942\) 0.848235 0.0276370
\(943\) 57.0850 1.85894
\(944\) −24.6394 −0.801943
\(945\) 0 0
\(946\) −2.51240 −0.0816853
\(947\) −24.4990 −0.796111 −0.398056 0.917361i \(-0.630315\pi\)
−0.398056 + 0.917361i \(0.630315\pi\)
\(948\) −1.44475 −0.0469234
\(949\) −2.04735 −0.0664597
\(950\) −13.2395 −0.429545
\(951\) 1.01562 0.0329336
\(952\) 0 0
\(953\) 11.2283 0.363720 0.181860 0.983324i \(-0.441788\pi\)
0.181860 + 0.983324i \(0.441788\pi\)
\(954\) −92.6068 −2.99826
\(955\) −6.27358 −0.203008
\(956\) 33.8350 1.09430
\(957\) −0.0308731 −0.000997986 0
\(958\) −66.6453 −2.15321
\(959\) 0 0
\(960\) 0.391194 0.0126257
\(961\) −30.9997 −0.999991
\(962\) 2.90344 0.0936105
\(963\) 20.1253 0.648530
\(964\) −9.38670 −0.302325
\(965\) −11.3281 −0.364665
\(966\) 0 0
\(967\) 4.25392 0.136797 0.0683984 0.997658i \(-0.478211\pi\)
0.0683984 + 0.997658i \(0.478211\pi\)
\(968\) 18.9494 0.609058
\(969\) −0.0979221 −0.00314571
\(970\) −15.1206 −0.485495
\(971\) 33.0193 1.05964 0.529821 0.848110i \(-0.322259\pi\)
0.529821 + 0.848110i \(0.322259\pi\)
\(972\) 2.69785 0.0865336
\(973\) 0 0
\(974\) 96.2118 3.08283
\(975\) 0.561063 0.0179684
\(976\) 0.868763 0.0278084
\(977\) 28.1942 0.902013 0.451006 0.892521i \(-0.351065\pi\)
0.451006 + 0.892521i \(0.351065\pi\)
\(978\) −1.90839 −0.0610236
\(979\) 4.68002 0.149574
\(980\) 0 0
\(981\) −5.28430 −0.168715
\(982\) 10.4317 0.332888
\(983\) 40.8708 1.30358 0.651788 0.758401i \(-0.274019\pi\)
0.651788 + 0.758401i \(0.274019\pi\)
\(984\) 0.543761 0.0173345
\(985\) 2.71215 0.0864164
\(986\) 12.9234 0.411566
\(987\) 0 0
\(988\) 14.6785 0.466984
\(989\) −26.6772 −0.848286
\(990\) −1.59887 −0.0508153
\(991\) −2.56939 −0.0816194 −0.0408097 0.999167i \(-0.512994\pi\)
−0.0408097 + 0.999167i \(0.512994\pi\)
\(992\) 0.121023 0.00384248
\(993\) −0.269831 −0.00856284
\(994\) 0 0
\(995\) −9.52110 −0.301839
\(996\) 1.11491 0.0353274
\(997\) 36.9676 1.17077 0.585387 0.810754i \(-0.300943\pi\)
0.585387 + 0.810754i \(0.300943\pi\)
\(998\) 21.6082 0.683995
\(999\) −0.0771759 −0.00244174
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6223.2.a.k.1.3 16
7.6 odd 2 889.2.a.c.1.3 16
21.20 even 2 8001.2.a.t.1.14 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.a.c.1.3 16 7.6 odd 2
6223.2.a.k.1.3 16 1.1 even 1 trivial
8001.2.a.t.1.14 16 21.20 even 2