Properties

Label 621.2.s.a.494.18
Level $621$
Weight $2$
Character 621.494
Analytic conductor $4.959$
Analytic rank $0$
Dimension $440$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [621,2,Mod(17,621)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("621.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(621, base_ring=CyclotomicField(66)) chi = DirichletCharacter(H, H._module([55, 21])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 621 = 3^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 621.s (of order \(66\), degree \(20\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.95870996552\)
Analytic rank: \(0\)
Dimension: \(440\)
Relative dimension: \(22\) over \(\Q(\zeta_{66})\)
Twist minimal: no (minimal twist has level 207)
Sato-Tate group: $\mathrm{SU}(2)[C_{66}]$

Embedding invariants

Embedding label 494.18
Character \(\chi\) \(=\) 621.494
Dual form 621.2.s.a.44.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.82640 - 0.0870020i) q^{2} +(1.33722 - 0.127689i) q^{4} +(0.497778 + 0.474630i) q^{5} +(0.727727 + 3.77580i) q^{7} +(-1.18854 + 0.170886i) q^{8} +(0.950434 + 0.823555i) q^{10} +(3.80876 - 1.96355i) q^{11} +(0.691689 + 0.133312i) q^{13} +(1.65762 + 6.83281i) q^{14} +(-4.79392 + 0.923952i) q^{16} +(3.30816 + 7.24386i) q^{17} +(-1.89153 - 0.863831i) q^{19} +(0.726241 + 0.571122i) q^{20} +(6.78547 - 3.91760i) q^{22} +(4.04740 - 2.57265i) q^{23} +(-0.215401 - 4.52182i) q^{25} +(1.27490 + 0.183303i) q^{26} +(1.45525 + 4.95614i) q^{28} +(0.711492 - 7.45108i) q^{29} +(-3.93002 + 3.09060i) q^{31} +(-6.34139 + 1.53841i) q^{32} +(6.67225 + 12.9424i) q^{34} +(-1.42986 + 2.22491i) q^{35} +(-0.969499 + 3.30181i) q^{37} +(-3.52983 - 1.41313i) q^{38} +(-0.672735 - 0.479052i) q^{40} +(-0.863301 + 0.905404i) q^{41} +(1.04122 - 1.32402i) q^{43} +(4.84241 - 3.11203i) q^{44} +(7.16834 - 5.05081i) q^{46} +(-0.172200 - 0.0994197i) q^{47} +(-7.22854 + 2.89387i) q^{49} +(-0.786815 - 8.23989i) q^{50} +(0.941960 + 0.0899462i) q^{52} +(-7.10983 - 8.20518i) q^{53} +(2.82787 + 0.830339i) q^{55} +(-1.51016 - 4.36333i) q^{56} +(0.651208 - 13.6705i) q^{58} +(1.40276 - 7.27823i) q^{59} +(3.81925 - 9.54002i) q^{61} +(-6.90889 + 5.98659i) q^{62} +(-2.07929 + 0.610536i) q^{64} +(0.281033 + 0.394656i) q^{65} +(1.99939 - 3.87827i) q^{67} +(5.34868 + 9.26419i) q^{68} +(-2.41793 + 4.18797i) q^{70} +(-0.172587 - 0.268551i) q^{71} +(-4.97498 + 10.8937i) q^{73} +(-1.48343 + 6.11477i) q^{74} +(-2.63968 - 0.913602i) q^{76} +(10.1857 + 12.9522i) q^{77} +(-15.2755 + 5.28691i) q^{79} +(-2.82484 - 1.81542i) q^{80} +(-1.49796 + 1.72874i) q^{82} +(2.43239 - 2.31928i) q^{83} +(-1.79143 + 5.17599i) q^{85} +(1.78649 - 2.50877i) q^{86} +(-4.19131 + 2.98462i) q^{88} +(1.65318 - 11.4981i) q^{89} +2.70870i q^{91} +(5.08375 - 3.95699i) q^{92} +(-0.323155 - 0.166598i) q^{94} +(-0.531559 - 1.32777i) q^{95} +(-4.69126 - 1.13809i) q^{97} +(-12.9504 + 5.91426i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 440 q + 27 q^{2} - 29 q^{4} + 33 q^{5} - 11 q^{7} - 44 q^{10} + 33 q^{11} - 9 q^{13} + 33 q^{14} + 3 q^{16} - 44 q^{19} + 33 q^{20} + 27 q^{23} + 11 q^{25} - 44 q^{28} - 27 q^{29} - 3 q^{31} + 33 q^{32}+ \cdots + 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/621\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(461\)
\(\chi(n)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.82640 0.0870020i 1.29146 0.0615197i 0.609427 0.792842i \(-0.291400\pi\)
0.682032 + 0.731323i \(0.261097\pi\)
\(3\) 0 0
\(4\) 1.33722 0.127689i 0.668608 0.0638443i
\(5\) 0.497778 + 0.474630i 0.222613 + 0.212261i 0.793175 0.608993i \(-0.208426\pi\)
−0.570563 + 0.821254i \(0.693275\pi\)
\(6\) 0 0
\(7\) 0.727727 + 3.77580i 0.275055 + 1.42712i 0.812076 + 0.583551i \(0.198337\pi\)
−0.537021 + 0.843569i \(0.680451\pi\)
\(8\) −1.18854 + 0.170886i −0.420211 + 0.0604173i
\(9\) 0 0
\(10\) 0.950434 + 0.823555i 0.300553 + 0.260431i
\(11\) 3.80876 1.96355i 1.14838 0.592033i 0.224412 0.974494i \(-0.427954\pi\)
0.923972 + 0.382461i \(0.124923\pi\)
\(12\) 0 0
\(13\) 0.691689 + 0.133312i 0.191840 + 0.0369741i 0.284266 0.958745i \(-0.408250\pi\)
−0.0924261 + 0.995720i \(0.529462\pi\)
\(14\) 1.65762 + 6.83281i 0.443018 + 1.82614i
\(15\) 0 0
\(16\) −4.79392 + 0.923952i −1.19848 + 0.230988i
\(17\) 3.30816 + 7.24386i 0.802347 + 1.75689i 0.637310 + 0.770607i \(0.280047\pi\)
0.165037 + 0.986287i \(0.447226\pi\)
\(18\) 0 0
\(19\) −1.89153 0.863831i −0.433946 0.198176i 0.186451 0.982464i \(-0.440301\pi\)
−0.620397 + 0.784288i \(0.713029\pi\)
\(20\) 0.726241 + 0.571122i 0.162392 + 0.127707i
\(21\) 0 0
\(22\) 6.78547 3.91760i 1.44667 0.835234i
\(23\) 4.04740 2.57265i 0.843942 0.536434i
\(24\) 0 0
\(25\) −0.215401 4.52182i −0.0430801 0.904363i
\(26\) 1.27490 + 0.183303i 0.250028 + 0.0359486i
\(27\) 0 0
\(28\) 1.45525 + 4.95614i 0.275017 + 0.936623i
\(29\) 0.711492 7.45108i 0.132121 1.38363i −0.649730 0.760165i \(-0.725118\pi\)
0.781851 0.623465i \(-0.214276\pi\)
\(30\) 0 0
\(31\) −3.93002 + 3.09060i −0.705853 + 0.555089i −0.905276 0.424825i \(-0.860336\pi\)
0.199423 + 0.979914i \(0.436093\pi\)
\(32\) −6.34139 + 1.53841i −1.12101 + 0.271954i
\(33\) 0 0
\(34\) 6.67225 + 12.9424i 1.14428 + 2.21960i
\(35\) −1.42986 + 2.22491i −0.241691 + 0.376079i
\(36\) 0 0
\(37\) −0.969499 + 3.30181i −0.159385 + 0.542814i 0.840615 + 0.541634i \(0.182194\pi\)
−0.999999 + 0.00118053i \(0.999624\pi\)
\(38\) −3.52983 1.41313i −0.572615 0.229240i
\(39\) 0 0
\(40\) −0.672735 0.479052i −0.106369 0.0757448i
\(41\) −0.863301 + 0.905404i −0.134825 + 0.141400i −0.787685 0.616078i \(-0.788720\pi\)
0.652860 + 0.757479i \(0.273569\pi\)
\(42\) 0 0
\(43\) 1.04122 1.32402i 0.158785 0.201911i −0.700151 0.713995i \(-0.746884\pi\)
0.858935 + 0.512084i \(0.171126\pi\)
\(44\) 4.84241 3.11203i 0.730020 0.469156i
\(45\) 0 0
\(46\) 7.16834 5.05081i 1.05691 0.744702i
\(47\) −0.172200 0.0994197i −0.0251179 0.0145018i 0.487388 0.873185i \(-0.337950\pi\)
−0.512506 + 0.858683i \(0.671283\pi\)
\(48\) 0 0
\(49\) −7.22854 + 2.89387i −1.03265 + 0.413410i
\(50\) −0.786815 8.23989i −0.111272 1.16530i
\(51\) 0 0
\(52\) 0.941960 + 0.0899462i 0.130626 + 0.0124733i
\(53\) −7.10983 8.20518i −0.976610 1.12707i −0.991879 0.127185i \(-0.959406\pi\)
0.0152691 0.999883i \(-0.495139\pi\)
\(54\) 0 0
\(55\) 2.82787 + 0.830339i 0.381311 + 0.111963i
\(56\) −1.51016 4.36333i −0.201804 0.583074i
\(57\) 0 0
\(58\) 0.651208 13.6705i 0.0855078 1.79503i
\(59\) 1.40276 7.27823i 0.182624 0.947545i −0.768760 0.639538i \(-0.779126\pi\)
0.951384 0.308007i \(-0.0996620\pi\)
\(60\) 0 0
\(61\) 3.81925 9.54002i 0.489005 1.22147i −0.454688 0.890651i \(-0.650249\pi\)
0.943693 0.330824i \(-0.107327\pi\)
\(62\) −6.90889 + 5.98659i −0.877430 + 0.760298i
\(63\) 0 0
\(64\) −2.07929 + 0.610536i −0.259912 + 0.0763170i
\(65\) 0.281033 + 0.394656i 0.0348579 + 0.0489511i
\(66\) 0 0
\(67\) 1.99939 3.87827i 0.244264 0.473807i −0.734551 0.678554i \(-0.762607\pi\)
0.978815 + 0.204747i \(0.0656373\pi\)
\(68\) 5.34868 + 9.26419i 0.648623 + 1.12345i
\(69\) 0 0
\(70\) −2.41793 + 4.18797i −0.288998 + 0.500559i
\(71\) −0.172587 0.268551i −0.0204823 0.0318711i 0.830861 0.556479i \(-0.187848\pi\)
−0.851344 + 0.524608i \(0.824212\pi\)
\(72\) 0 0
\(73\) −4.97498 + 10.8937i −0.582277 + 1.27501i 0.357721 + 0.933829i \(0.383554\pi\)
−0.939998 + 0.341181i \(0.889173\pi\)
\(74\) −1.48343 + 6.11477i −0.172445 + 0.710827i
\(75\) 0 0
\(76\) −2.63968 0.913602i −0.302792 0.104797i
\(77\) 10.1857 + 12.9522i 1.16077 + 1.47604i
\(78\) 0 0
\(79\) −15.2755 + 5.28691i −1.71863 + 0.594823i −0.995402 0.0957862i \(-0.969463\pi\)
−0.723228 + 0.690610i \(0.757342\pi\)
\(80\) −2.82484 1.81542i −0.315827 0.202970i
\(81\) 0 0
\(82\) −1.49796 + 1.72874i −0.165422 + 0.190907i
\(83\) 2.43239 2.31928i 0.266990 0.254574i −0.544743 0.838603i \(-0.683373\pi\)
0.811733 + 0.584029i \(0.198524\pi\)
\(84\) 0 0
\(85\) −1.79143 + 5.17599i −0.194307 + 0.561414i
\(86\) 1.78649 2.50877i 0.192642 0.270528i
\(87\) 0 0
\(88\) −4.19131 + 2.98462i −0.446795 + 0.318161i
\(89\) 1.65318 11.4981i 0.175237 1.21880i −0.692367 0.721546i \(-0.743432\pi\)
0.867604 0.497256i \(-0.165659\pi\)
\(90\) 0 0
\(91\) 2.70870i 0.283949i
\(92\) 5.08375 3.95699i 0.530018 0.412545i
\(93\) 0 0
\(94\) −0.323155 0.166598i −0.0333309 0.0171833i
\(95\) −0.531559 1.32777i −0.0545368 0.136226i
\(96\) 0 0
\(97\) −4.69126 1.13809i −0.476326 0.115555i −0.00959340 0.999954i \(-0.503054\pi\)
−0.466732 + 0.884399i \(0.654569\pi\)
\(98\) −12.9504 + 5.91426i −1.30819 + 0.597430i
\(99\) 0 0
\(100\) −0.865421 6.01914i −0.0865421 0.601914i
\(101\) −1.99639 2.09375i −0.198648 0.208336i 0.616874 0.787062i \(-0.288399\pi\)
−0.815522 + 0.578726i \(0.803550\pi\)
\(102\) 0 0
\(103\) 6.92991 + 0.330112i 0.682824 + 0.0325269i 0.386128 0.922445i \(-0.373812\pi\)
0.296696 + 0.954972i \(0.404115\pi\)
\(104\) −0.844880 0.0402466i −0.0828473 0.00394650i
\(105\) 0 0
\(106\) −13.6992 14.3673i −1.33059 1.39548i
\(107\) 1.45241 + 10.1017i 0.140410 + 0.976572i 0.931206 + 0.364493i \(0.118758\pi\)
−0.790796 + 0.612079i \(0.790333\pi\)
\(108\) 0 0
\(109\) −2.47709 + 1.13125i −0.237262 + 0.108354i −0.530498 0.847686i \(-0.677995\pi\)
0.293236 + 0.956040i \(0.405268\pi\)
\(110\) 5.23706 + 1.27050i 0.499335 + 0.121137i
\(111\) 0 0
\(112\) −6.97733 17.4285i −0.659295 1.64684i
\(113\) −0.523879 0.270079i −0.0492824 0.0254069i 0.433409 0.901197i \(-0.357310\pi\)
−0.482692 + 0.875790i \(0.660341\pi\)
\(114\) 0 0
\(115\) 3.23576 + 0.640412i 0.301736 + 0.0597187i
\(116\) 10.0545i 0.933541i
\(117\) 0 0
\(118\) 1.92878 13.4150i 0.177559 1.23495i
\(119\) −24.9440 + 17.7625i −2.28661 + 1.62829i
\(120\) 0 0
\(121\) 4.27048 5.99705i 0.388225 0.545186i
\(122\) 6.14547 17.7562i 0.556384 1.60757i
\(123\) 0 0
\(124\) −4.86065 + 4.63462i −0.436499 + 0.416201i
\(125\) 4.29100 4.95208i 0.383799 0.442928i
\(126\) 0 0
\(127\) 13.9757 + 8.98161i 1.24014 + 0.796989i 0.985439 0.170031i \(-0.0543866\pi\)
0.254701 + 0.967020i \(0.418023\pi\)
\(128\) 8.58839 2.97247i 0.759114 0.262732i
\(129\) 0 0
\(130\) 0.547615 + 0.696349i 0.0480290 + 0.0610738i
\(131\) −5.39981 1.86889i −0.471783 0.163286i 0.0808225 0.996729i \(-0.474245\pi\)
−0.552606 + 0.833443i \(0.686367\pi\)
\(132\) 0 0
\(133\) 1.88514 7.77066i 0.163463 0.673802i
\(134\) 3.31426 7.25722i 0.286309 0.626929i
\(135\) 0 0
\(136\) −5.16975 8.04428i −0.443302 0.689792i
\(137\) −0.705864 + 1.22259i −0.0603060 + 0.104453i −0.894602 0.446863i \(-0.852541\pi\)
0.834296 + 0.551317i \(0.185874\pi\)
\(138\) 0 0
\(139\) 7.64739 + 13.2457i 0.648643 + 1.12348i 0.983447 + 0.181196i \(0.0579967\pi\)
−0.334804 + 0.942288i \(0.608670\pi\)
\(140\) −1.62794 + 3.15776i −0.137586 + 0.266880i
\(141\) 0 0
\(142\) −0.338577 0.475466i −0.0284128 0.0399002i
\(143\) 2.89624 0.850413i 0.242196 0.0711151i
\(144\) 0 0
\(145\) 3.89067 3.37128i 0.323102 0.279970i
\(146\) −8.13852 + 20.3290i −0.673548 + 1.68244i
\(147\) 0 0
\(148\) −0.874825 + 4.53902i −0.0719102 + 0.373105i
\(149\) 0.364633 7.65459i 0.0298719 0.627089i −0.933445 0.358721i \(-0.883213\pi\)
0.963317 0.268367i \(-0.0864841\pi\)
\(150\) 0 0
\(151\) −3.21483 9.28863i −0.261619 0.755898i −0.996939 0.0781786i \(-0.975090\pi\)
0.735320 0.677720i \(-0.237032\pi\)
\(152\) 2.39577 + 0.703460i 0.194322 + 0.0570582i
\(153\) 0 0
\(154\) 19.7300 + 22.7697i 1.58989 + 1.83483i
\(155\) −3.42317 0.326873i −0.274956 0.0262551i
\(156\) 0 0
\(157\) −0.657534 6.88601i −0.0524770 0.549564i −0.983035 0.183419i \(-0.941284\pi\)
0.930558 0.366145i \(-0.119322\pi\)
\(158\) −27.4392 + 10.9850i −2.18294 + 0.873919i
\(159\) 0 0
\(160\) −3.88678 2.24403i −0.307277 0.177406i
\(161\) 12.6592 + 13.4100i 0.997687 + 1.05686i
\(162\) 0 0
\(163\) 7.94124 5.10352i 0.622006 0.399739i −0.191336 0.981525i \(-0.561282\pi\)
0.813342 + 0.581786i \(0.197646\pi\)
\(164\) −1.03881 + 1.32095i −0.0811174 + 0.103149i
\(165\) 0 0
\(166\) 4.24073 4.44755i 0.329145 0.345197i
\(167\) −6.05282 4.31020i −0.468382 0.333533i 0.321376 0.946952i \(-0.395855\pi\)
−0.789758 + 0.613419i \(0.789794\pi\)
\(168\) 0 0
\(169\) −11.6081 4.64719i −0.892932 0.357476i
\(170\) −2.82153 + 9.60926i −0.216402 + 0.736997i
\(171\) 0 0
\(172\) 1.22327 1.90345i 0.0932737 0.145137i
\(173\) −4.76457 9.24197i −0.362243 0.702654i 0.635333 0.772239i \(-0.280863\pi\)
−0.997576 + 0.0695845i \(0.977833\pi\)
\(174\) 0 0
\(175\) 16.9167 4.10396i 1.27879 0.310230i
\(176\) −16.4447 + 12.9322i −1.23956 + 0.974803i
\(177\) 0 0
\(178\) 2.01901 21.1440i 0.151331 1.58481i
\(179\) 2.75416 + 9.37982i 0.205856 + 0.701080i 0.996095 + 0.0882825i \(0.0281378\pi\)
−0.790240 + 0.612798i \(0.790044\pi\)
\(180\) 0 0
\(181\) 4.57265 + 0.657447i 0.339882 + 0.0488677i 0.310143 0.950690i \(-0.399623\pi\)
0.0297394 + 0.999558i \(0.490532\pi\)
\(182\) 0.235662 + 4.94716i 0.0174684 + 0.366708i
\(183\) 0 0
\(184\) −4.37086 + 3.74933i −0.322224 + 0.276405i
\(185\) −2.04973 + 1.18341i −0.150699 + 0.0870063i
\(186\) 0 0
\(187\) 26.8237 + 21.0944i 1.96154 + 1.54257i
\(188\) −0.242963 0.110958i −0.0177199 0.00809241i
\(189\) 0 0
\(190\) −1.08636 2.37879i −0.0788126 0.172576i
\(191\) 20.6911 3.98788i 1.49715 0.288553i 0.626101 0.779742i \(-0.284650\pi\)
0.871053 + 0.491189i \(0.163438\pi\)
\(192\) 0 0
\(193\) 3.01877 + 12.4435i 0.217296 + 0.895706i 0.971113 + 0.238621i \(0.0766954\pi\)
−0.753817 + 0.657084i \(0.771789\pi\)
\(194\) −8.66713 1.67045i −0.622264 0.119932i
\(195\) 0 0
\(196\) −9.29660 + 4.79273i −0.664043 + 0.342338i
\(197\) −12.7308 11.0313i −0.907034 0.785950i 0.0703277 0.997524i \(-0.477596\pi\)
−0.977362 + 0.211574i \(0.932141\pi\)
\(198\) 0 0
\(199\) −4.85097 + 0.697464i −0.343876 + 0.0494419i −0.312089 0.950053i \(-0.601029\pi\)
−0.0317868 + 0.999495i \(0.510120\pi\)
\(200\) 1.02873 + 5.33754i 0.0727419 + 0.377421i
\(201\) 0 0
\(202\) −3.82836 3.65033i −0.269362 0.256836i
\(203\) 28.6516 2.73589i 2.01095 0.192022i
\(204\) 0 0
\(205\) −0.859464 + 0.0409413i −0.0600275 + 0.00285946i
\(206\) 12.6855 0.883840
\(207\) 0 0
\(208\) −3.43908 −0.238457
\(209\) −8.90054 + 0.423985i −0.615663 + 0.0293277i
\(210\) 0 0
\(211\) −21.0335 + 2.00845i −1.44800 + 0.138268i −0.789241 0.614083i \(-0.789526\pi\)
−0.658763 + 0.752351i \(0.728920\pi\)
\(212\) −10.5551 10.0642i −0.724926 0.691215i
\(213\) 0 0
\(214\) 3.53155 + 18.3234i 0.241412 + 1.25256i
\(215\) 1.14672 0.164873i 0.0782053 0.0112442i
\(216\) 0 0
\(217\) −14.5295 12.5899i −0.986326 0.854657i
\(218\) −4.42573 + 2.28162i −0.299749 + 0.154531i
\(219\) 0 0
\(220\) 3.88750 + 0.749255i 0.262095 + 0.0505147i
\(221\) 1.32252 + 5.45152i 0.0889626 + 0.366709i
\(222\) 0 0
\(223\) 20.0900 3.87204i 1.34533 0.259291i 0.534794 0.844982i \(-0.320389\pi\)
0.810534 + 0.585691i \(0.199177\pi\)
\(224\) −10.4235 22.8243i −0.696451 1.52501i
\(225\) 0 0
\(226\) −0.980310 0.447692i −0.0652092 0.0297801i
\(227\) 2.07842 + 1.63448i 0.137949 + 0.108485i 0.684749 0.728779i \(-0.259912\pi\)
−0.546800 + 0.837263i \(0.684154\pi\)
\(228\) 0 0
\(229\) 5.44939 3.14621i 0.360106 0.207907i −0.309021 0.951055i \(-0.600001\pi\)
0.669127 + 0.743148i \(0.266668\pi\)
\(230\) 5.96551 + 0.888129i 0.393354 + 0.0585615i
\(231\) 0 0
\(232\) 0.427649 + 8.97747i 0.0280766 + 0.589400i
\(233\) 15.1039 + 2.17161i 0.989488 + 0.142267i 0.618006 0.786173i \(-0.287941\pi\)
0.371482 + 0.928440i \(0.378850\pi\)
\(234\) 0 0
\(235\) −0.0385297 0.131220i −0.00251340 0.00855986i
\(236\) 0.946450 9.91167i 0.0616087 0.645195i
\(237\) 0 0
\(238\) −44.0122 + 34.6116i −2.85289 + 2.24354i
\(239\) 10.1974 2.47386i 0.659614 0.160021i 0.108040 0.994147i \(-0.465543\pi\)
0.551574 + 0.834126i \(0.314027\pi\)
\(240\) 0 0
\(241\) 3.34809 + 6.49439i 0.215669 + 0.418340i 0.971708 0.236187i \(-0.0758979\pi\)
−0.756038 + 0.654527i \(0.772868\pi\)
\(242\) 7.27784 11.3245i 0.467837 0.727969i
\(243\) 0 0
\(244\) 3.88901 13.2447i 0.248968 0.847907i
\(245\) −4.97172 1.99038i −0.317632 0.127161i
\(246\) 0 0
\(247\) −1.19319 0.849666i −0.0759208 0.0540629i
\(248\) 4.14284 4.34488i 0.263070 0.275900i
\(249\) 0 0
\(250\) 7.40624 9.41780i 0.468412 0.595634i
\(251\) −2.09511 + 1.34645i −0.132242 + 0.0849871i −0.605089 0.796157i \(-0.706863\pi\)
0.472847 + 0.881145i \(0.343226\pi\)
\(252\) 0 0
\(253\) 10.3641 17.7459i 0.651582 1.11567i
\(254\) 26.3065 + 15.1881i 1.65062 + 0.952985i
\(255\) 0 0
\(256\) 19.4509 7.78696i 1.21568 0.486685i
\(257\) 1.93438 + 20.2578i 0.120663 + 1.26364i 0.829594 + 0.558366i \(0.188572\pi\)
−0.708931 + 0.705278i \(0.750822\pi\)
\(258\) 0 0
\(259\) −13.1725 1.25782i −0.818500 0.0781573i
\(260\) 0.426195 + 0.491856i 0.0264315 + 0.0305036i
\(261\) 0 0
\(262\) −10.0248 2.94354i −0.619334 0.181853i
\(263\) 3.97236 + 11.4774i 0.244946 + 0.707726i 0.998719 + 0.0505910i \(0.0161105\pi\)
−0.753773 + 0.657135i \(0.771768\pi\)
\(264\) 0 0
\(265\) 0.355311 7.45889i 0.0218266 0.458196i
\(266\) 2.76696 14.3563i 0.169653 0.880243i
\(267\) 0 0
\(268\) 2.17840 5.44139i 0.133067 0.332386i
\(269\) −9.86711 + 8.54990i −0.601609 + 0.521297i −0.901558 0.432658i \(-0.857576\pi\)
0.299949 + 0.953955i \(0.403030\pi\)
\(270\) 0 0
\(271\) −9.43054 + 2.76906i −0.572864 + 0.168208i −0.555318 0.831638i \(-0.687404\pi\)
−0.0175461 + 0.999846i \(0.505585\pi\)
\(272\) −22.5520 31.6699i −1.36742 1.92027i
\(273\) 0 0
\(274\) −1.18282 + 2.29435i −0.0714568 + 0.138607i
\(275\) −9.69923 16.7996i −0.584885 1.01305i
\(276\) 0 0
\(277\) −4.91170 + 8.50732i −0.295116 + 0.511155i −0.975012 0.222153i \(-0.928692\pi\)
0.679896 + 0.733308i \(0.262025\pi\)
\(278\) 15.1196 + 23.5265i 0.906812 + 1.41103i
\(279\) 0 0
\(280\) 1.31924 2.88873i 0.0788397 0.172635i
\(281\) −3.71993 + 15.3338i −0.221912 + 0.914735i 0.746501 + 0.665384i \(0.231732\pi\)
−0.968413 + 0.249351i \(0.919783\pi\)
\(282\) 0 0
\(283\) 18.8674 + 6.53008i 1.12155 + 0.388173i 0.824033 0.566542i \(-0.191719\pi\)
0.297520 + 0.954716i \(0.403840\pi\)
\(284\) −0.265077 0.337073i −0.0157294 0.0200016i
\(285\) 0 0
\(286\) 5.21570 1.80517i 0.308411 0.106742i
\(287\) −4.04687 2.60077i −0.238879 0.153519i
\(288\) 0 0
\(289\) −30.3970 + 35.0800i −1.78806 + 2.06353i
\(290\) 6.81260 6.49580i 0.400050 0.381447i
\(291\) 0 0
\(292\) −5.26162 + 15.2024i −0.307913 + 0.889656i
\(293\) 2.67432 3.75555i 0.156235 0.219402i −0.729038 0.684474i \(-0.760032\pi\)
0.885273 + 0.465072i \(0.153972\pi\)
\(294\) 0 0
\(295\) 4.15273 2.95715i 0.241781 0.172172i
\(296\) 0.588053 4.09000i 0.0341799 0.237726i
\(297\) 0 0
\(298\) 14.0121i 0.811696i
\(299\) 3.14251 1.23991i 0.181736 0.0717056i
\(300\) 0 0
\(301\) 5.75696 + 2.96792i 0.331826 + 0.171068i
\(302\) −6.67968 16.6850i −0.384373 0.960116i
\(303\) 0 0
\(304\) 9.86596 + 2.39346i 0.565852 + 0.137274i
\(305\) 6.42912 2.93608i 0.368130 0.168119i
\(306\) 0 0
\(307\) 3.22232 + 22.4117i 0.183908 + 1.27910i 0.847413 + 0.530934i \(0.178159\pi\)
−0.663506 + 0.748171i \(0.730932\pi\)
\(308\) 15.2743 + 16.0193i 0.870337 + 0.912783i
\(309\) 0 0
\(310\) −6.28051 0.299177i −0.356709 0.0169921i
\(311\) 21.5965 + 1.02877i 1.22462 + 0.0583361i 0.649906 0.760015i \(-0.274808\pi\)
0.574719 + 0.818351i \(0.305111\pi\)
\(312\) 0 0
\(313\) 12.9438 + 13.5750i 0.731624 + 0.767305i 0.979491 0.201489i \(-0.0645780\pi\)
−0.247867 + 0.968794i \(0.579730\pi\)
\(314\) −1.80002 12.5194i −0.101581 0.706510i
\(315\) 0 0
\(316\) −19.7516 + 9.02024i −1.11111 + 0.507428i
\(317\) −27.7410 6.72988i −1.55809 0.377988i −0.638106 0.769949i \(-0.720282\pi\)
−0.919982 + 0.391961i \(0.871797\pi\)
\(318\) 0 0
\(319\) −11.9207 29.7764i −0.667430 1.66716i
\(320\) −1.32480 0.682984i −0.0740588 0.0381800i
\(321\) 0 0
\(322\) 24.2875 + 23.3907i 1.35349 + 1.30351i
\(323\) 16.5596i 0.921403i
\(324\) 0 0
\(325\) 0.453823 3.15641i 0.0251736 0.175086i
\(326\) 14.0598 10.0120i 0.778703 0.554512i
\(327\) 0 0
\(328\) 0.871344 1.22363i 0.0481119 0.0675638i
\(329\) 0.250075 0.722544i 0.0137871 0.0398351i
\(330\) 0 0
\(331\) 14.8418 14.1516i 0.815779 0.777844i −0.162153 0.986766i \(-0.551844\pi\)
0.977932 + 0.208922i \(0.0669955\pi\)
\(332\) 2.95648 3.41197i 0.162258 0.187256i
\(333\) 0 0
\(334\) −11.4299 7.34552i −0.625414 0.401929i
\(335\) 2.83600 0.981548i 0.154947 0.0536277i
\(336\) 0 0
\(337\) −15.5934 19.8286i −0.849424 1.08013i −0.995859 0.0909103i \(-0.971022\pi\)
0.146435 0.989220i \(-0.453220\pi\)
\(338\) −21.6054 7.47769i −1.17518 0.406733i
\(339\) 0 0
\(340\) −1.73461 + 7.15015i −0.0940723 + 0.387771i
\(341\) −8.89994 + 19.4882i −0.481959 + 1.05534i
\(342\) 0 0
\(343\) −1.63463 2.54353i −0.0882617 0.137338i
\(344\) −1.01127 + 1.75158i −0.0545242 + 0.0944387i
\(345\) 0 0
\(346\) −9.50607 16.4650i −0.511049 0.885163i
\(347\) −10.3882 + 20.1503i −0.557669 + 1.08173i 0.426499 + 0.904488i \(0.359747\pi\)
−0.984168 + 0.177238i \(0.943284\pi\)
\(348\) 0 0
\(349\) −5.02038 7.05014i −0.268735 0.377386i 0.658052 0.752972i \(-0.271381\pi\)
−0.926787 + 0.375587i \(0.877441\pi\)
\(350\) 30.5396 8.96725i 1.63241 0.479320i
\(351\) 0 0
\(352\) −21.1321 + 18.3111i −1.12634 + 0.975983i
\(353\) −8.65884 + 21.6287i −0.460864 + 1.15118i 0.497965 + 0.867197i \(0.334081\pi\)
−0.958829 + 0.283985i \(0.908343\pi\)
\(354\) 0 0
\(355\) 0.0415523 0.215594i 0.00220537 0.0114425i
\(356\) 0.742481 15.5866i 0.0393514 0.826088i
\(357\) 0 0
\(358\) 5.84626 + 16.8917i 0.308984 + 0.892752i
\(359\) 11.1076 + 3.26148i 0.586235 + 0.172134i 0.561382 0.827557i \(-0.310270\pi\)
0.0248533 + 0.999691i \(0.492088\pi\)
\(360\) 0 0
\(361\) −9.61069 11.0913i −0.505826 0.583754i
\(362\) 8.40867 + 0.802930i 0.441950 + 0.0422011i
\(363\) 0 0
\(364\) 0.345870 + 3.62211i 0.0181285 + 0.189850i
\(365\) −7.64690 + 3.06136i −0.400257 + 0.160239i
\(366\) 0 0
\(367\) −18.6842 10.7873i −0.975308 0.563094i −0.0744577 0.997224i \(-0.523723\pi\)
−0.900850 + 0.434130i \(0.857056\pi\)
\(368\) −17.0259 + 16.0727i −0.887538 + 0.837846i
\(369\) 0 0
\(370\) −3.64067 + 2.33971i −0.189269 + 0.121636i
\(371\) 25.8071 32.8164i 1.33984 1.70375i
\(372\) 0 0
\(373\) −24.2002 + 25.3805i −1.25304 + 1.31415i −0.323136 + 0.946352i \(0.604737\pi\)
−0.929905 + 0.367799i \(0.880111\pi\)
\(374\) 50.8260 + 36.1930i 2.62815 + 1.87150i
\(375\) 0 0
\(376\) 0.221655 + 0.0887374i 0.0114310 + 0.00457628i
\(377\) 1.48545 5.05898i 0.0765046 0.260551i
\(378\) 0 0
\(379\) 6.54282 10.1808i 0.336082 0.522954i −0.631545 0.775339i \(-0.717579\pi\)
0.967627 + 0.252386i \(0.0812152\pi\)
\(380\) −0.880350 1.70764i −0.0451610 0.0876001i
\(381\) 0 0
\(382\) 37.4432 9.08362i 1.91576 0.464758i
\(383\) −12.6744 + 9.96723i −0.647630 + 0.509302i −0.887085 0.461606i \(-0.847274\pi\)
0.239455 + 0.970907i \(0.423031\pi\)
\(384\) 0 0
\(385\) −1.07728 + 11.2818i −0.0549032 + 0.574972i
\(386\) 6.59609 + 22.4642i 0.335732 + 1.14340i
\(387\) 0 0
\(388\) −6.41855 0.922848i −0.325853 0.0468505i
\(389\) −0.533965 11.2093i −0.0270731 0.568335i −0.971130 0.238551i \(-0.923327\pi\)
0.944057 0.329783i \(-0.106976\pi\)
\(390\) 0 0
\(391\) 32.0254 + 20.8081i 1.61959 + 1.05231i
\(392\) 8.09687 4.67473i 0.408954 0.236109i
\(393\) 0 0
\(394\) −24.2113 19.0400i −1.21975 0.959221i
\(395\) −10.1131 4.61851i −0.508847 0.232383i
\(396\) 0 0
\(397\) 0.386564 + 0.846457i 0.0194011 + 0.0424825i 0.919085 0.394060i \(-0.128930\pi\)
−0.899683 + 0.436543i \(0.856203\pi\)
\(398\) −8.79912 + 1.69589i −0.441060 + 0.0850074i
\(399\) 0 0
\(400\) 5.21056 + 21.4782i 0.260528 + 1.07391i
\(401\) −23.7964 4.58639i −1.18834 0.229033i −0.443497 0.896276i \(-0.646262\pi\)
−0.744841 + 0.667243i \(0.767474\pi\)
\(402\) 0 0
\(403\) −3.13037 + 1.61382i −0.155935 + 0.0803899i
\(404\) −2.93695 2.54488i −0.146119 0.126613i
\(405\) 0 0
\(406\) 52.0912 7.48958i 2.58524 0.371702i
\(407\) 2.79069 + 14.4795i 0.138329 + 0.717720i
\(408\) 0 0
\(409\) 16.3095 + 15.5511i 0.806453 + 0.768952i 0.976278 0.216523i \(-0.0694715\pi\)
−0.169824 + 0.985474i \(0.554320\pi\)
\(410\) −1.56616 + 0.149550i −0.0773471 + 0.00738576i
\(411\) 0 0
\(412\) 9.30893 0.443439i 0.458618 0.0218467i
\(413\) 28.5020 1.40249
\(414\) 0 0
\(415\) 2.31159 0.113471
\(416\) −4.59136 + 0.218714i −0.225110 + 0.0107233i
\(417\) 0 0
\(418\) −16.2190 + 1.54873i −0.793299 + 0.0757509i
\(419\) 12.3790 + 11.8033i 0.604752 + 0.576630i 0.929340 0.369226i \(-0.120377\pi\)
−0.324588 + 0.945856i \(0.605226\pi\)
\(420\) 0 0
\(421\) −6.89914 35.7961i −0.336243 1.74460i −0.618987 0.785401i \(-0.712457\pi\)
0.282744 0.959196i \(-0.408755\pi\)
\(422\) −38.2407 + 5.49819i −1.86153 + 0.267648i
\(423\) 0 0
\(424\) 9.85244 + 8.53719i 0.478477 + 0.414603i
\(425\) 32.0428 16.5192i 1.55431 0.801300i
\(426\) 0 0
\(427\) 38.8006 + 7.47821i 1.87769 + 0.361896i
\(428\) 3.23206 + 13.3227i 0.156228 + 0.643979i
\(429\) 0 0
\(430\) 2.08001 0.400890i 0.100307 0.0193326i
\(431\) −1.29293 2.83113i −0.0622783 0.136371i 0.875934 0.482432i \(-0.160246\pi\)
−0.938212 + 0.346061i \(0.887519\pi\)
\(432\) 0 0
\(433\) −28.0657 12.8172i −1.34875 0.615954i −0.395593 0.918426i \(-0.629461\pi\)
−0.953158 + 0.302471i \(0.902188\pi\)
\(434\) −27.6320 21.7300i −1.32638 1.04307i
\(435\) 0 0
\(436\) −3.16796 + 1.82902i −0.151718 + 0.0875942i
\(437\) −9.87810 + 1.36996i −0.472534 + 0.0655341i
\(438\) 0 0
\(439\) 0.407501 + 8.55450i 0.0194490 + 0.408284i 0.987509 + 0.157564i \(0.0503642\pi\)
−0.968060 + 0.250720i \(0.919333\pi\)
\(440\) −3.50293 0.503645i −0.166996 0.0240103i
\(441\) 0 0
\(442\) 2.88975 + 9.84158i 0.137451 + 0.468116i
\(443\) 1.77405 18.5787i 0.0842877 0.882701i −0.850142 0.526554i \(-0.823484\pi\)
0.934430 0.356148i \(-0.115910\pi\)
\(444\) 0 0
\(445\) 6.28028 4.93887i 0.297714 0.234125i
\(446\) 36.3555 8.81976i 1.72148 0.417628i
\(447\) 0 0
\(448\) −3.81842 7.40670i −0.180403 0.349934i
\(449\) −21.5862 + 33.5888i −1.01872 + 1.58515i −0.227346 + 0.973814i \(0.573005\pi\)
−0.791370 + 0.611338i \(0.790632\pi\)
\(450\) 0 0
\(451\) −1.51030 + 5.14360i −0.0711171 + 0.242203i
\(452\) −0.735026 0.294260i −0.0345727 0.0138408i
\(453\) 0 0
\(454\) 3.93822 + 2.80439i 0.184830 + 0.131617i
\(455\) −1.28563 + 1.34833i −0.0602712 + 0.0632106i
\(456\) 0 0
\(457\) 7.10588 9.03586i 0.332399 0.422680i −0.590910 0.806737i \(-0.701231\pi\)
0.923309 + 0.384058i \(0.125474\pi\)
\(458\) 9.67902 6.22033i 0.452271 0.290657i
\(459\) 0 0
\(460\) 4.40869 + 0.443199i 0.205556 + 0.0206642i
\(461\) 1.94634 + 1.12372i 0.0906502 + 0.0523369i 0.544640 0.838670i \(-0.316666\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(462\) 0 0
\(463\) −3.53910 + 1.41684i −0.164476 + 0.0658462i −0.452439 0.891795i \(-0.649446\pi\)
0.287963 + 0.957641i \(0.407022\pi\)
\(464\) 3.47361 + 36.3773i 0.161258 + 1.68877i
\(465\) 0 0
\(466\) 27.7746 + 2.65215i 1.28663 + 0.122859i
\(467\) −5.27043 6.08240i −0.243886 0.281460i 0.620588 0.784137i \(-0.286894\pi\)
−0.864474 + 0.502677i \(0.832349\pi\)
\(468\) 0 0
\(469\) 16.0986 + 4.72698i 0.743365 + 0.218272i
\(470\) −0.0817870 0.236308i −0.00377255 0.0109001i
\(471\) 0 0
\(472\) −0.423490 + 8.89016i −0.0194927 + 0.409203i
\(473\) 1.36598 7.08736i 0.0628077 0.325877i
\(474\) 0 0
\(475\) −3.49865 + 8.73920i −0.160529 + 0.400982i
\(476\) −31.0874 + 26.9374i −1.42489 + 1.23467i
\(477\) 0 0
\(478\) 18.4092 5.40544i 0.842019 0.247239i
\(479\) 6.51917 + 9.15489i 0.297868 + 0.418298i 0.936202 0.351462i \(-0.114315\pi\)
−0.638334 + 0.769760i \(0.720376\pi\)
\(480\) 0 0
\(481\) −1.11076 + 2.15458i −0.0506464 + 0.0982404i
\(482\) 6.67997 + 11.5700i 0.304264 + 0.527001i
\(483\) 0 0
\(484\) 4.94479 8.56464i 0.224763 0.389302i
\(485\) −1.79504 2.79313i −0.0815084 0.126829i
\(486\) 0 0
\(487\) 11.1988 24.5219i 0.507466 1.11119i −0.466505 0.884519i \(-0.654487\pi\)
0.973970 0.226676i \(-0.0727858\pi\)
\(488\) −2.90906 + 11.9913i −0.131687 + 0.542822i
\(489\) 0 0
\(490\) −9.25351 3.20267i −0.418031 0.144682i
\(491\) −1.80173 2.29108i −0.0813108 0.103395i 0.743696 0.668518i \(-0.233071\pi\)
−0.825007 + 0.565123i \(0.808829\pi\)
\(492\) 0 0
\(493\) 56.3283 19.4954i 2.53690 0.878029i
\(494\) −2.25316 1.44802i −0.101374 0.0651494i
\(495\) 0 0
\(496\) 15.9846 18.4473i 0.717731 0.828306i
\(497\) 0.888400 0.847088i 0.0398502 0.0379971i
\(498\) 0 0
\(499\) −13.2568 + 38.3030i −0.593456 + 1.71468i 0.100759 + 0.994911i \(0.467873\pi\)
−0.694215 + 0.719768i \(0.744248\pi\)
\(500\) 5.10567 7.16991i 0.228333 0.320648i
\(501\) 0 0
\(502\) −3.70937 + 2.64143i −0.165557 + 0.117893i
\(503\) 1.21107 8.42315i 0.0539988 0.375570i −0.944846 0.327515i \(-0.893789\pi\)
0.998845 0.0480546i \(-0.0153021\pi\)
\(504\) 0 0
\(505\) 1.98977i 0.0885435i
\(506\) 17.3850 33.3127i 0.772855 1.48093i
\(507\) 0 0
\(508\) 19.8353 + 10.2258i 0.880050 + 0.453697i
\(509\) −9.97524 24.9169i −0.442145 1.10442i −0.967349 0.253448i \(-0.918435\pi\)
0.525205 0.850976i \(-0.323989\pi\)
\(510\) 0 0
\(511\) −44.7528 10.8569i −1.97975 0.480282i
\(512\) 18.3137 8.36358i 0.809358 0.369621i
\(513\) 0 0
\(514\) 5.29542 + 36.8304i 0.233571 + 1.62452i
\(515\) 3.29287 + 3.45346i 0.145101 + 0.152178i
\(516\) 0 0
\(517\) −0.851083 0.0405421i −0.0374306 0.00178304i
\(518\) −24.1677 1.15125i −1.06187 0.0505830i
\(519\) 0 0
\(520\) −0.401460 0.421039i −0.0176052 0.0184638i
\(521\) 0.983411 + 6.83977i 0.0430840 + 0.299656i 0.999958 + 0.00915296i \(0.00291352\pi\)
−0.956874 + 0.290503i \(0.906177\pi\)
\(522\) 0 0
\(523\) −39.2907 + 17.9435i −1.71806 + 0.784613i −0.722410 + 0.691465i \(0.756966\pi\)
−0.995652 + 0.0931477i \(0.970307\pi\)
\(524\) −7.45934 1.80962i −0.325863 0.0790535i
\(525\) 0 0
\(526\) 8.25366 + 20.6167i 0.359877 + 0.898929i
\(527\) −35.3891 18.2443i −1.54157 0.794735i
\(528\) 0 0
\(529\) 9.76295 20.8251i 0.424476 0.905439i
\(530\) 13.6538i 0.593084i
\(531\) 0 0
\(532\) 1.52862 10.6318i 0.0662739 0.460945i
\(533\) −0.717837 + 0.511169i −0.0310930 + 0.0221412i
\(534\) 0 0
\(535\) −4.07161 + 5.71778i −0.176031 + 0.247201i
\(536\) −1.71361 + 4.95114i −0.0740165 + 0.213857i
\(537\) 0 0
\(538\) −17.2774 + 16.4740i −0.744882 + 0.710244i
\(539\) −21.8495 + 25.2157i −0.941124 + 1.08612i
\(540\) 0 0
\(541\) −24.4970 15.7433i −1.05321 0.676855i −0.104989 0.994473i \(-0.533481\pi\)
−0.948219 + 0.317618i \(0.897117\pi\)
\(542\) −16.9830 + 5.87787i −0.729482 + 0.252476i
\(543\) 0 0
\(544\) −32.1224 40.8469i −1.37723 1.75130i
\(545\) −1.76997 0.612591i −0.0758170 0.0262405i
\(546\) 0 0
\(547\) −5.67335 + 23.3859i −0.242575 + 0.999907i 0.712058 + 0.702121i \(0.247763\pi\)
−0.954633 + 0.297786i \(0.903752\pi\)
\(548\) −0.787781 + 1.72500i −0.0336523 + 0.0736883i
\(549\) 0 0
\(550\) −19.1762 29.8388i −0.817678 1.27233i
\(551\) −7.78228 + 13.4793i −0.331536 + 0.574237i
\(552\) 0 0
\(553\) −31.0787 53.8299i −1.32160 2.28908i
\(554\) −8.23057 + 15.9651i −0.349683 + 0.678291i
\(555\) 0 0
\(556\) 11.9175 + 16.7358i 0.505416 + 0.709757i
\(557\) −30.6458 + 8.99841i −1.29850 + 0.381275i −0.856689 0.515833i \(-0.827483\pi\)
−0.441813 + 0.897107i \(0.645664\pi\)
\(558\) 0 0
\(559\) 0.896709 0.777002i 0.0379267 0.0328637i
\(560\) 4.79894 11.9872i 0.202792 0.506551i
\(561\) 0 0
\(562\) −5.46000 + 28.3292i −0.230316 + 1.19499i
\(563\) −0.520129 + 10.9188i −0.0219208 + 0.460175i 0.961046 + 0.276390i \(0.0891380\pi\)
−0.982966 + 0.183785i \(0.941165\pi\)
\(564\) 0 0
\(565\) −0.132588 0.383088i −0.00557802 0.0161166i
\(566\) 35.0276 + 10.2850i 1.47232 + 0.432312i
\(567\) 0 0
\(568\) 0.251018 + 0.289690i 0.0105325 + 0.0121551i
\(569\) −16.2143 1.54828i −0.679738 0.0649071i −0.250525 0.968110i \(-0.580603\pi\)
−0.429213 + 0.903203i \(0.641209\pi\)
\(570\) 0 0
\(571\) 0.370369 + 3.87867i 0.0154994 + 0.162317i 0.999908 0.0135809i \(-0.00432306\pi\)
−0.984408 + 0.175898i \(0.943717\pi\)
\(572\) 3.76431 1.50700i 0.157394 0.0630109i
\(573\) 0 0
\(574\) −7.61747 4.39795i −0.317947 0.183567i
\(575\) −12.5049 17.7475i −0.521489 0.740120i
\(576\) 0 0
\(577\) 23.9241 15.3751i 0.995972 0.640072i 0.0622458 0.998061i \(-0.480174\pi\)
0.933726 + 0.357989i \(0.116537\pi\)
\(578\) −52.4650 + 66.7146i −2.18225 + 2.77496i
\(579\) 0 0
\(580\) 4.77219 5.00493i 0.198154 0.207818i
\(581\) 10.5273 + 7.49643i 0.436745 + 0.311004i
\(582\) 0 0
\(583\) −43.1909 17.2910i −1.78878 0.716121i
\(584\) 4.05137 13.7977i 0.167647 0.570953i
\(585\) 0 0
\(586\) 4.55762 7.09180i 0.188274 0.292960i
\(587\) −12.1250 23.5191i −0.500451 0.970739i −0.994836 0.101496i \(-0.967637\pi\)
0.494385 0.869243i \(-0.335393\pi\)
\(588\) 0 0
\(589\) 10.1035 2.45108i 0.416307 0.100995i
\(590\) 7.32726 5.76222i 0.301658 0.237227i
\(591\) 0 0
\(592\) 1.59698 16.7244i 0.0656357 0.687368i
\(593\) −10.3740 35.3306i −0.426009 1.45085i −0.841004 0.541029i \(-0.818035\pi\)
0.414995 0.909824i \(-0.363783\pi\)
\(594\) 0 0
\(595\) −20.8472 2.99737i −0.854651 0.122880i
\(596\) −0.489811 10.2824i −0.0200634 0.421183i
\(597\) 0 0
\(598\) 5.63160 2.53797i 0.230293 0.103785i
\(599\) 16.3246 9.42499i 0.667004 0.385095i −0.127937 0.991782i \(-0.540835\pi\)
0.794940 + 0.606688i \(0.207502\pi\)
\(600\) 0 0
\(601\) 13.5827 + 10.6816i 0.554051 + 0.435711i 0.855523 0.517764i \(-0.173236\pi\)
−0.301472 + 0.953475i \(0.597478\pi\)
\(602\) 10.7727 + 4.91973i 0.439063 + 0.200513i
\(603\) 0 0
\(604\) −5.48497 12.0104i −0.223180 0.488696i
\(605\) 4.97213 0.958299i 0.202146 0.0389604i
\(606\) 0 0
\(607\) −1.99971 8.24293i −0.0811658 0.334570i 0.916722 0.399525i \(-0.130825\pi\)
−0.997888 + 0.0649547i \(0.979310\pi\)
\(608\) 13.3238 + 2.56796i 0.540353 + 0.104144i
\(609\) 0 0
\(610\) 11.4867 5.92179i 0.465082 0.239766i
\(611\) −0.105855 0.0917238i −0.00428243 0.00371075i
\(612\) 0 0
\(613\) −16.6964 + 2.40059i −0.674363 + 0.0969587i −0.470985 0.882141i \(-0.656101\pi\)
−0.203378 + 0.979100i \(0.565192\pi\)
\(614\) 7.83510 + 40.6524i 0.316199 + 1.64060i
\(615\) 0 0
\(616\) −14.3195 13.6536i −0.576947 0.550118i
\(617\) 45.2101 4.31704i 1.82009 0.173798i 0.871520 0.490361i \(-0.163135\pi\)
0.948571 + 0.316563i \(0.102529\pi\)
\(618\) 0 0
\(619\) 17.0176 0.810648i 0.683995 0.0325827i 0.297291 0.954787i \(-0.403917\pi\)
0.386703 + 0.922204i \(0.373614\pi\)
\(620\) −4.61925 −0.185514
\(621\) 0 0
\(622\) 39.5333 1.58514
\(623\) 44.6178 2.12541i 1.78758 0.0851527i
\(624\) 0 0
\(625\) −18.0459 + 1.72317i −0.721834 + 0.0689268i
\(626\) 24.8215 + 23.6672i 0.992066 + 0.945933i
\(627\) 0 0
\(628\) −1.75853 9.12412i −0.0701730 0.364092i
\(629\) −27.1251 + 3.90000i −1.08155 + 0.155503i
\(630\) 0 0
\(631\) −0.534040 0.462748i −0.0212598 0.0184217i 0.644166 0.764886i \(-0.277205\pi\)
−0.665426 + 0.746464i \(0.731750\pi\)
\(632\) 17.2521 8.89406i 0.686250 0.353787i
\(633\) 0 0
\(634\) −51.2515 9.87793i −2.03546 0.392303i
\(635\) 2.69383 + 11.1041i 0.106901 + 0.440653i
\(636\) 0 0
\(637\) −5.38569 + 1.03801i −0.213389 + 0.0411273i
\(638\) −24.3625 53.3464i −0.964521 2.11201i
\(639\) 0 0
\(640\) 5.68593 + 2.59668i 0.224756 + 0.102643i
\(641\) −25.7812 20.2746i −1.01830 0.800797i −0.0381900 0.999270i \(-0.512159\pi\)
−0.980106 + 0.198473i \(0.936402\pi\)
\(642\) 0 0
\(643\) −14.4108 + 8.32011i −0.568308 + 0.328113i −0.756473 0.654024i \(-0.773079\pi\)
0.188165 + 0.982137i \(0.439746\pi\)
\(644\) 18.6404 + 16.3156i 0.734535 + 0.642927i
\(645\) 0 0
\(646\) −1.44072 30.2445i −0.0566845 1.18995i
\(647\) −4.37389 0.628871i −0.171955 0.0247235i 0.0557992 0.998442i \(-0.482229\pi\)
−0.227755 + 0.973719i \(0.573138\pi\)
\(648\) 0 0
\(649\) −8.94839 30.4754i −0.351255 1.19626i
\(650\) 0.554247 5.80434i 0.0217394 0.227665i
\(651\) 0 0
\(652\) 9.96749 7.83852i 0.390357 0.306980i
\(653\) −39.2063 + 9.51134i −1.53426 + 0.372208i −0.911863 0.410494i \(-0.865356\pi\)
−0.622397 + 0.782701i \(0.713841\pi\)
\(654\) 0 0
\(655\) −1.80087 3.49320i −0.0703659 0.136491i
\(656\) 3.30204 5.13808i 0.128923 0.200608i
\(657\) 0 0
\(658\) 0.393873 1.34141i 0.0153548 0.0522936i
\(659\) 15.6766 + 6.27595i 0.610672 + 0.244476i 0.656321 0.754481i \(-0.272112\pi\)
−0.0456496 + 0.998958i \(0.514536\pi\)
\(660\) 0 0
\(661\) 4.72808 + 3.36685i 0.183901 + 0.130955i 0.668300 0.743892i \(-0.267022\pi\)
−0.484399 + 0.874847i \(0.660962\pi\)
\(662\) 25.8758 27.1378i 1.00569 1.05474i
\(663\) 0 0
\(664\) −2.49466 + 3.17221i −0.0968114 + 0.123106i
\(665\) 4.62657 2.97332i 0.179411 0.115300i
\(666\) 0 0
\(667\) −16.2893 31.9879i −0.630725 1.23858i
\(668\) −8.64429 4.99078i −0.334458 0.193099i
\(669\) 0 0
\(670\) 5.09426 2.03943i 0.196808 0.0787902i
\(671\) −4.18573 43.8349i −0.161588 1.69223i
\(672\) 0 0
\(673\) −8.70790 0.831504i −0.335665 0.0320521i −0.0741371 0.997248i \(-0.523620\pi\)
−0.261528 + 0.965196i \(0.584226\pi\)
\(674\) −30.2048 34.8582i −1.16345 1.34269i
\(675\) 0 0
\(676\) −16.1160 4.73207i −0.619844 0.182003i
\(677\) −0.831292 2.40186i −0.0319491 0.0923110i 0.927898 0.372833i \(-0.121614\pi\)
−0.959848 + 0.280522i \(0.909492\pi\)
\(678\) 0 0
\(679\) 0.883241 18.5415i 0.0338957 0.711558i
\(680\) 1.24467 6.45798i 0.0477311 0.247652i
\(681\) 0 0
\(682\) −14.5593 + 36.3674i −0.557505 + 1.39258i
\(683\) 24.5834 21.3017i 0.940659 0.815086i −0.0422633 0.999107i \(-0.513457\pi\)
0.982922 + 0.184021i \(0.0589114\pi\)
\(684\) 0 0
\(685\) −0.931642 + 0.273555i −0.0355962 + 0.0104520i
\(686\) −3.20678 4.50329i −0.122435 0.171936i
\(687\) 0 0
\(688\) −3.76820 + 7.30928i −0.143661 + 0.278664i
\(689\) −3.82394 6.62326i −0.145681 0.252326i
\(690\) 0 0
\(691\) −16.1522 + 27.9765i −0.614460 + 1.06428i 0.376019 + 0.926612i \(0.377293\pi\)
−0.990479 + 0.137663i \(0.956041\pi\)
\(692\) −7.55135 11.7501i −0.287059 0.446673i
\(693\) 0 0
\(694\) −17.2199 + 37.7063i −0.653658 + 1.43131i
\(695\) −2.48009 + 10.2231i −0.0940753 + 0.387784i
\(696\) 0 0
\(697\) −9.41456 3.25841i −0.356602 0.123421i
\(698\) −9.78260 12.4396i −0.370277 0.470845i
\(699\) 0 0
\(700\) 22.0973 7.64795i 0.835199 0.289065i
\(701\) 29.4895 + 18.9518i 1.11380 + 0.715798i 0.962119 0.272630i \(-0.0878936\pi\)
0.151685 + 0.988429i \(0.451530\pi\)
\(702\) 0 0
\(703\) 4.68604 5.40797i 0.176737 0.203966i
\(704\) −6.72071 + 6.40818i −0.253296 + 0.241517i
\(705\) 0 0
\(706\) −13.9327 + 40.2560i −0.524366 + 1.51506i
\(707\) 6.45277 9.06165i 0.242681 0.340798i
\(708\) 0 0
\(709\) 17.9176 12.7591i 0.672911 0.479178i −0.191809 0.981432i \(-0.561435\pi\)
0.864720 + 0.502255i \(0.167496\pi\)
\(710\) 0.0571339 0.397375i 0.00214420 0.0149132i
\(711\) 0 0
\(712\) 13.9485i 0.522741i
\(713\) −7.95535 + 22.6195i −0.297930 + 0.847106i
\(714\) 0 0
\(715\) 1.84532 + 0.951326i 0.0690109 + 0.0355776i
\(716\) 4.88060 + 12.1912i 0.182397 + 0.455605i
\(717\) 0 0
\(718\) 20.5706 + 4.99037i 0.767688 + 0.186239i
\(719\) −34.9109 + 15.9433i −1.30196 + 0.594583i −0.941128 0.338050i \(-0.890233\pi\)
−0.360827 + 0.932633i \(0.617505\pi\)
\(720\) 0 0
\(721\) 3.79664 + 26.4062i 0.141394 + 0.983418i
\(722\) −18.5179 19.4210i −0.689165 0.722776i
\(723\) 0 0
\(724\) 6.19856 + 0.295274i 0.230368 + 0.0109738i
\(725\) −33.8457 1.61227i −1.25700 0.0598781i
\(726\) 0 0
\(727\) −28.4361 29.8230i −1.05464 1.10607i −0.994161 0.107902i \(-0.965587\pi\)
−0.0604761 0.998170i \(-0.519262\pi\)
\(728\) −0.462878 3.21939i −0.0171554 0.119318i
\(729\) 0 0
\(730\) −13.6999 + 6.25655i −0.507057 + 0.231565i
\(731\) 13.0355 + 3.16239i 0.482137 + 0.116965i
\(732\) 0 0
\(733\) −5.53644 13.8294i −0.204493 0.510799i 0.790299 0.612721i \(-0.209925\pi\)
−0.994792 + 0.101922i \(0.967501\pi\)
\(734\) −35.0633 18.0764i −1.29421 0.667212i
\(735\) 0 0
\(736\) −21.7084 + 22.5407i −0.800182 + 0.830862i
\(737\) 18.6973i 0.688724i
\(738\) 0 0
\(739\) −1.85257 + 12.8849i −0.0681480 + 0.473979i 0.926958 + 0.375165i \(0.122414\pi\)
−0.995106 + 0.0988142i \(0.968495\pi\)
\(740\) −2.58983 + 1.84421i −0.0952039 + 0.0677944i
\(741\) 0 0
\(742\) 44.2790 62.1812i 1.62553 2.28274i
\(743\) −4.62943 + 13.3759i −0.169837 + 0.490713i −0.997512 0.0704953i \(-0.977542\pi\)
0.827675 + 0.561208i \(0.189663\pi\)
\(744\) 0 0
\(745\) 3.81460 3.63722i 0.139756 0.133257i
\(746\) −41.9911 + 48.4603i −1.53740 + 1.77426i
\(747\) 0 0
\(748\) 38.5625 + 24.7826i 1.40999 + 0.906143i
\(749\) −37.0852 + 12.8353i −1.35506 + 0.468992i
\(750\) 0 0
\(751\) 18.1504 + 23.0801i 0.662318 + 0.842206i 0.994900 0.100868i \(-0.0321620\pi\)
−0.332581 + 0.943075i \(0.607920\pi\)
\(752\) 0.917372 + 0.317505i 0.0334531 + 0.0115782i
\(753\) 0 0
\(754\) 2.27288 9.36894i 0.0827735 0.341197i
\(755\) 2.80839 6.14953i 0.102208 0.223804i
\(756\) 0 0
\(757\) 13.7741 + 21.4329i 0.500628 + 0.778993i 0.995968 0.0897066i \(-0.0285929\pi\)
−0.495340 + 0.868699i \(0.664957\pi\)
\(758\) 11.0640 19.1635i 0.401864 0.696049i
\(759\) 0 0
\(760\) 0.858675 + 1.48727i 0.0311474 + 0.0539489i
\(761\) 0.503166 0.976006i 0.0182398 0.0353802i −0.879540 0.475826i \(-0.842149\pi\)
0.897779 + 0.440446i \(0.145180\pi\)
\(762\) 0 0
\(763\) −6.07402 8.52977i −0.219894 0.308799i
\(764\) 27.1592 7.97467i 0.982586 0.288513i
\(765\) 0 0
\(766\) −22.2813 + 19.3068i −0.805055 + 0.697584i
\(767\) 1.94055 4.84727i 0.0700693 0.175025i
\(768\) 0 0
\(769\) −4.25832 + 22.0942i −0.153559 + 0.796739i 0.820709 + 0.571346i \(0.193579\pi\)
−0.974268 + 0.225393i \(0.927633\pi\)
\(770\) −0.986001 + 20.6987i −0.0355330 + 0.745930i
\(771\) 0 0
\(772\) 5.62564 + 16.2542i 0.202471 + 0.585002i
\(773\) 21.4593 + 6.30101i 0.771836 + 0.226632i 0.643858 0.765145i \(-0.277333\pi\)
0.127979 + 0.991777i \(0.459151\pi\)
\(774\) 0 0
\(775\) 14.8217 + 17.1051i 0.532410 + 0.614434i
\(776\) 5.77023 + 0.550990i 0.207139 + 0.0197794i
\(777\) 0 0
\(778\) −1.95047 20.4262i −0.0699276 0.732315i
\(779\) 2.41507 0.966849i 0.0865289 0.0346410i
\(780\) 0 0
\(781\) −1.18466 0.683962i −0.0423904 0.0244741i
\(782\) 60.3014 + 35.2176i 2.15637 + 1.25938i
\(783\) 0 0
\(784\) 31.9792 20.5518i 1.14212 0.733993i
\(785\) 2.94100 3.73979i 0.104969 0.133479i
\(786\) 0 0
\(787\) 8.31925 8.72498i 0.296549 0.311012i −0.558556 0.829467i \(-0.688644\pi\)
0.855105 + 0.518455i \(0.173493\pi\)
\(788\) −18.4324 13.1257i −0.656628 0.467583i
\(789\) 0 0
\(790\) −18.8724 7.55538i −0.671451 0.268808i
\(791\) 0.638523 2.17461i 0.0227033 0.0773202i
\(792\) 0 0
\(793\) 3.91353 6.08958i 0.138974 0.216247i
\(794\) 0.779663 + 1.51234i 0.0276692 + 0.0536708i
\(795\) 0 0
\(796\) −6.39774 + 1.55207i −0.226762 + 0.0550118i
\(797\) 7.37897 5.80289i 0.261377 0.205549i −0.478867 0.877887i \(-0.658952\pi\)
0.740244 + 0.672338i \(0.234710\pi\)
\(798\) 0 0
\(799\) 0.150517 1.57629i 0.00532492 0.0557651i
\(800\) 8.32233 + 28.3432i 0.294239 + 1.00209i
\(801\) 0 0
\(802\) −43.8608 6.30623i −1.54878 0.222681i
\(803\) 2.44182 + 51.2600i 0.0861698 + 1.80893i
\(804\) 0 0
\(805\) −0.0633193 + 12.6837i −0.00223171 + 0.447040i
\(806\) −5.57689 + 3.21982i −0.196438 + 0.113413i
\(807\) 0 0
\(808\) 2.73057 + 2.14735i 0.0960612 + 0.0755434i
\(809\) 7.44835 + 3.40155i 0.261870 + 0.119592i 0.542024 0.840363i \(-0.317658\pi\)
−0.280154 + 0.959955i \(0.590385\pi\)
\(810\) 0 0
\(811\) 12.1769 + 26.6638i 0.427590 + 0.936291i 0.993712 + 0.111970i \(0.0357159\pi\)
−0.566122 + 0.824322i \(0.691557\pi\)
\(812\) 37.9640 7.31696i 1.33228 0.256775i
\(813\) 0 0
\(814\) 6.35664 + 26.2024i 0.222800 + 0.918395i
\(815\) 6.37526 + 1.22873i 0.223316 + 0.0430405i
\(816\) 0 0
\(817\) −3.11322 + 1.60498i −0.108918 + 0.0561511i
\(818\) 31.1406 + 26.9835i 1.08881 + 0.943456i
\(819\) 0 0
\(820\) −1.14406 + 0.164491i −0.0399523 + 0.00574427i
\(821\) −6.03426 31.3087i −0.210597 1.09268i −0.921200 0.389088i \(-0.872790\pi\)
0.710603 0.703593i \(-0.248422\pi\)
\(822\) 0 0
\(823\) 18.2680 + 17.4185i 0.636783 + 0.607171i 0.938105 0.346351i \(-0.112579\pi\)
−0.301322 + 0.953522i \(0.597428\pi\)
\(824\) −8.29286 + 0.791872i −0.288896 + 0.0275862i
\(825\) 0 0
\(826\) 52.0560 2.47973i 1.81126 0.0862809i
\(827\) 11.5329 0.401037 0.200518 0.979690i \(-0.435737\pi\)
0.200518 + 0.979690i \(0.435737\pi\)
\(828\) 0 0
\(829\) 27.0765 0.940405 0.470203 0.882558i \(-0.344181\pi\)
0.470203 + 0.882558i \(0.344181\pi\)
\(830\) 4.22188 0.201113i 0.146544 0.00698073i
\(831\) 0 0
\(832\) −1.51962 + 0.145106i −0.0526832 + 0.00503064i
\(833\) −44.8760 42.7892i −1.55486 1.48256i
\(834\) 0 0
\(835\) −0.967212 5.01837i −0.0334717 0.173668i
\(836\) −11.8478 + 1.70346i −0.409765 + 0.0589153i
\(837\) 0 0
\(838\) 23.6358 + 20.4805i 0.816486 + 0.707489i
\(839\) −34.8493 + 17.9661i −1.20313 + 0.620257i −0.938896 0.344201i \(-0.888150\pi\)
−0.264235 + 0.964458i \(0.585119\pi\)
\(840\) 0 0
\(841\) −26.5364 5.11447i −0.915048 0.176361i
\(842\) −15.7149 64.7777i −0.541571 2.23239i
\(843\) 0 0
\(844\) −27.8698 + 5.37147i −0.959319 + 0.184894i
\(845\) −3.57257 7.82283i −0.122900 0.269114i
\(846\) 0 0
\(847\) 25.7514 + 11.7603i 0.884829 + 0.404088i
\(848\) 41.6651 + 32.7658i 1.43079 + 1.12518i
\(849\) 0 0
\(850\) 57.0858 32.9585i 1.95803 1.13047i
\(851\) 4.57044 + 15.8579i 0.156673 + 0.543603i
\(852\) 0 0
\(853\) 2.21807 + 46.5631i 0.0759454 + 1.59429i 0.639883 + 0.768472i \(0.278983\pi\)
−0.563937 + 0.825817i \(0.690714\pi\)
\(854\) 71.5160 + 10.2824i 2.44723 + 0.351858i
\(855\) 0 0
\(856\) −3.45249 11.7581i −0.118004 0.401883i
\(857\) 1.70902 17.8977i 0.0583790 0.611372i −0.918186 0.396150i \(-0.870346\pi\)
0.976565 0.215223i \(-0.0690478\pi\)
\(858\) 0 0
\(859\) 42.3897 33.3357i 1.44632 1.13740i 0.480875 0.876789i \(-0.340319\pi\)
0.965444 0.260609i \(-0.0839233\pi\)
\(860\) 1.51235 0.366893i 0.0515708 0.0125109i
\(861\) 0 0
\(862\) −2.60772 5.05827i −0.0888193 0.172285i
\(863\) 11.8456 18.4322i 0.403230 0.627438i −0.578954 0.815360i \(-0.696539\pi\)
0.982184 + 0.187922i \(0.0601752\pi\)
\(864\) 0 0
\(865\) 2.01482 6.86185i 0.0685060 0.233310i
\(866\) −52.3743 20.9675i −1.77975 0.712504i
\(867\) 0 0
\(868\) −21.0366 14.9801i −0.714030 0.508459i
\(869\) −47.7996 + 50.1308i −1.62149 + 1.70057i
\(870\) 0 0
\(871\) 1.89998 2.41602i 0.0643783 0.0818636i
\(872\) 2.75080 1.76783i 0.0931539 0.0598664i
\(873\) 0 0
\(874\) −17.9222 + 3.36151i −0.606226 + 0.113705i
\(875\) 21.8208 + 12.5982i 0.737677 + 0.425898i
\(876\) 0 0
\(877\) −11.9736 + 4.79350i −0.404319 + 0.161865i −0.564903 0.825157i \(-0.691086\pi\)
0.160584 + 0.987022i \(0.448662\pi\)
\(878\) 1.48852 + 15.5885i 0.0502351 + 0.526085i
\(879\) 0 0
\(880\) −14.3238 1.36776i −0.482855 0.0461071i
\(881\) −33.9904 39.2270i −1.14516 1.32159i −0.939334 0.343003i \(-0.888556\pi\)
−0.205831 0.978588i \(-0.565990\pi\)
\(882\) 0 0
\(883\) 5.75369 + 1.68944i 0.193627 + 0.0568540i 0.377108 0.926169i \(-0.376918\pi\)
−0.183481 + 0.983023i \(0.558737\pi\)
\(884\) 2.46460 + 7.12098i 0.0828933 + 0.239505i
\(885\) 0 0
\(886\) 1.62374 34.0865i 0.0545505 1.14516i
\(887\) −2.04269 + 10.5985i −0.0685870 + 0.355863i −0.999966 0.00818669i \(-0.997394\pi\)
0.931380 + 0.364050i \(0.118606\pi\)
\(888\) 0 0
\(889\) −23.7424 + 59.3055i −0.796293 + 1.98904i
\(890\) 11.0406 9.56674i 0.370082 0.320678i
\(891\) 0 0
\(892\) 26.3703 7.74302i 0.882943 0.259255i
\(893\) 0.239839 + 0.336806i 0.00802590 + 0.0112708i
\(894\) 0 0
\(895\) −3.08098 + 5.97627i −0.102986 + 0.199765i
\(896\) 17.4735 + 30.2649i 0.583748 + 1.01108i
\(897\) 0 0
\(898\) −36.5027 + 63.2245i −1.21811 + 2.10983i
\(899\) 20.2321 + 31.4818i 0.674780 + 1.04998i
\(900\) 0 0
\(901\) 35.9167 78.6467i 1.19656 2.62010i
\(902\) −2.31090 + 9.52566i −0.0769445 + 0.317170i
\(903\) 0 0
\(904\) 0.668803 + 0.231475i 0.0222441 + 0.00769874i
\(905\) 1.96412 + 2.49758i 0.0652894 + 0.0830223i
\(906\) 0 0
\(907\) −15.2489 + 5.27770i −0.506332 + 0.175243i −0.568278 0.822836i \(-0.692390\pi\)
0.0619466 + 0.998079i \(0.480269\pi\)
\(908\) 2.98799 + 1.92027i 0.0991601 + 0.0637263i
\(909\) 0 0
\(910\) −2.23076 + 2.57444i −0.0739491 + 0.0853418i
\(911\) 12.3736 11.7982i 0.409956 0.390892i −0.456845 0.889546i \(-0.651021\pi\)
0.866801 + 0.498654i \(0.166172\pi\)
\(912\) 0 0
\(913\) 4.71036 13.6097i 0.155890 0.450415i
\(914\) 12.1920 17.1213i 0.403276 0.566322i
\(915\) 0 0
\(916\) 6.88527 4.90298i 0.227496 0.161999i
\(917\) 3.12699 21.7487i 0.103262 0.718204i
\(918\) 0 0
\(919\) 32.0171i 1.05615i 0.849198 + 0.528074i \(0.177086\pi\)
−0.849198 + 0.528074i \(0.822914\pi\)
\(920\) −3.95526 0.208207i −0.130401 0.00686439i
\(921\) 0 0
\(922\) 3.65256 + 1.88303i 0.120291 + 0.0620142i
\(923\) −0.0835756 0.208762i −0.00275093 0.00687148i
\(924\) 0 0
\(925\) 15.1390 + 3.67268i 0.497767 + 0.120757i
\(926\) −6.34054 + 2.89563i −0.208363 + 0.0951562i
\(927\) 0 0
\(928\) 6.95093 + 48.3448i 0.228175 + 1.58700i
\(929\) 23.6958 + 24.8515i 0.777435 + 0.815351i 0.986707 0.162507i \(-0.0519579\pi\)
−0.209272 + 0.977857i \(0.567109\pi\)
\(930\) 0 0
\(931\) 16.1728 + 0.770405i 0.530042 + 0.0252490i
\(932\) 20.4744 + 0.975317i 0.670662 + 0.0319476i
\(933\) 0 0
\(934\) −10.1551 10.6503i −0.332284 0.348490i
\(935\) 3.34020 + 23.2316i 0.109236 + 0.759756i
\(936\) 0 0
\(937\) 16.6128 7.58683i 0.542718 0.247851i −0.125141 0.992139i \(-0.539938\pi\)
0.667859 + 0.744288i \(0.267211\pi\)
\(938\) 29.8137 + 7.23273i 0.973453 + 0.236157i
\(939\) 0 0
\(940\) −0.0682778 0.170550i −0.00222698 0.00556272i
\(941\) 37.7729 + 19.4733i 1.23136 + 0.634811i 0.946173 0.323660i \(-0.104914\pi\)
0.285188 + 0.958471i \(0.407944\pi\)
\(942\) 0 0
\(943\) −1.16484 + 5.88550i −0.0379324 + 0.191658i
\(944\) 36.1873i 1.17780i
\(945\) 0 0
\(946\) 1.87820 13.0632i 0.0610656 0.424721i
\(947\) 18.0529 12.8554i 0.586640 0.417744i −0.247826 0.968805i \(-0.579716\pi\)
0.834465 + 0.551060i \(0.185777\pi\)
\(948\) 0 0
\(949\) −4.89340 + 6.87182i −0.158846 + 0.223069i
\(950\) −5.62960 + 16.2656i −0.182648 + 0.527727i
\(951\) 0 0
\(952\) 26.6115 25.3740i 0.862483 0.822376i
\(953\) 12.7163 14.6754i 0.411921 0.475382i −0.511438 0.859320i \(-0.670887\pi\)
0.923359 + 0.383938i \(0.125433\pi\)
\(954\) 0 0
\(955\) 12.1923 + 7.83553i 0.394534 + 0.253552i
\(956\) 13.3202 4.61017i 0.430806 0.149104i
\(957\) 0 0
\(958\) 12.7031 + 16.1533i 0.410418 + 0.521889i
\(959\) −5.12994 1.77549i −0.165655 0.0573336i
\(960\) 0 0
\(961\) −1.41529 + 5.83388i −0.0456544 + 0.188190i
\(962\) −1.84124 + 4.03176i −0.0593640 + 0.129989i
\(963\) 0 0
\(964\) 5.30637 + 8.25688i 0.170907 + 0.265936i
\(965\) −4.40340 + 7.62691i −0.141750 + 0.245519i
\(966\) 0 0
\(967\) −3.78066 6.54830i −0.121578 0.210579i 0.798812 0.601581i \(-0.205462\pi\)
−0.920390 + 0.391001i \(0.872129\pi\)
\(968\) −4.05081 + 7.85748i −0.130198 + 0.252549i
\(969\) 0 0
\(970\) −3.52146 4.94519i −0.113067 0.158781i
\(971\) 47.2669 13.8788i 1.51687 0.445392i 0.585866 0.810408i \(-0.300755\pi\)
0.931001 + 0.365016i \(0.118936\pi\)
\(972\) 0 0
\(973\) −44.4479 + 38.5143i −1.42493 + 1.23471i
\(974\) 18.3200 45.7611i 0.587010 1.46628i
\(975\) 0 0
\(976\) −9.49465 + 49.2629i −0.303916 + 1.57687i
\(977\) 0.427563 8.97565i 0.0136789 0.287156i −0.981655 0.190666i \(-0.938935\pi\)
0.995334 0.0964904i \(-0.0307617\pi\)
\(978\) 0 0
\(979\) −16.2806 47.0398i −0.520331 1.50340i
\(980\) −6.90241 2.02673i −0.220489 0.0647415i
\(981\) 0 0
\(982\) −3.49000 4.02767i −0.111370 0.128528i
\(983\) −29.9087 2.85594i −0.953940 0.0910902i −0.393536 0.919309i \(-0.628748\pi\)
−0.560404 + 0.828219i \(0.689354\pi\)
\(984\) 0 0
\(985\) −1.10132 11.5336i −0.0350911 0.367490i
\(986\) 101.182 40.5071i 3.22228 1.29001i
\(987\) 0 0
\(988\) −1.70404 0.983830i −0.0542128 0.0312998i
\(989\) 0.808002 8.03753i 0.0256930 0.255579i
\(990\) 0 0
\(991\) −18.6828 + 12.0067i −0.593478 + 0.381405i −0.802629 0.596478i \(-0.796566\pi\)
0.209151 + 0.977883i \(0.432930\pi\)
\(992\) 20.1672 25.6447i 0.640310 0.814220i
\(993\) 0 0
\(994\) 1.54887 1.62441i 0.0491273 0.0515232i
\(995\) −2.74574 1.95523i −0.0870459 0.0619851i
\(996\) 0 0
\(997\) 45.0476 + 18.0343i 1.42667 + 0.571153i 0.951199 0.308578i \(-0.0998532\pi\)
0.475472 + 0.879731i \(0.342277\pi\)
\(998\) −20.8798 + 71.1099i −0.660937 + 2.25094i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 621.2.s.a.494.18 440
3.2 odd 2 207.2.o.a.11.5 440
9.4 even 3 207.2.o.a.149.5 yes 440
9.5 odd 6 inner 621.2.s.a.287.18 440
23.21 odd 22 inner 621.2.s.a.251.18 440
69.44 even 22 207.2.o.a.182.5 yes 440
207.67 odd 66 207.2.o.a.113.5 yes 440
207.113 even 66 inner 621.2.s.a.44.18 440
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
207.2.o.a.11.5 440 3.2 odd 2
207.2.o.a.113.5 yes 440 207.67 odd 66
207.2.o.a.149.5 yes 440 9.4 even 3
207.2.o.a.182.5 yes 440 69.44 even 22
621.2.s.a.44.18 440 207.113 even 66 inner
621.2.s.a.251.18 440 23.21 odd 22 inner
621.2.s.a.287.18 440 9.5 odd 6 inner
621.2.s.a.494.18 440 1.1 even 1 trivial