Properties

Label 621.2.s.a.494.12
Level $621$
Weight $2$
Character 621.494
Analytic conductor $4.959$
Analytic rank $0$
Dimension $440$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [621,2,Mod(17,621)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("621.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(621, base_ring=CyclotomicField(66)) chi = DirichletCharacter(H, H._module([55, 21])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 621 = 3^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 621.s (of order \(66\), degree \(20\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.95870996552\)
Analytic rank: \(0\)
Dimension: \(440\)
Relative dimension: \(22\) over \(\Q(\zeta_{66})\)
Twist minimal: no (minimal twist has level 207)
Sato-Tate group: $\mathrm{SU}(2)[C_{66}]$

Embedding invariants

Embedding label 494.12
Character \(\chi\) \(=\) 621.494
Dual form 621.2.s.a.44.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.412156 - 0.0196334i) q^{2} +(-1.82146 + 0.173928i) q^{4} +(-2.81788 - 2.68684i) q^{5} +(0.539603 + 2.79973i) q^{7} +(-1.56416 + 0.224892i) q^{8} +(-1.21416 - 1.05207i) q^{10} +(1.68703 - 0.869723i) q^{11} +(2.45673 + 0.473497i) q^{13} +(0.277369 + 1.14333i) q^{14} +(2.95309 - 0.569162i) q^{16} +(2.19831 + 4.81363i) q^{17} +(2.26539 + 1.03457i) q^{19} +(5.59996 + 4.40386i) q^{20} +(0.678243 - 0.391584i) q^{22} +(-1.47338 + 4.56390i) q^{23} +(0.483411 + 10.1480i) q^{25} +(1.02185 + 0.146921i) q^{26} +(-1.46982 - 5.00573i) q^{28} +(-0.293166 + 3.07018i) q^{29} +(-7.06488 + 5.55588i) q^{31} +(4.27735 - 1.03767i) q^{32} +(1.00056 + 1.94081i) q^{34} +(6.00189 - 9.33912i) q^{35} +(1.48644 - 5.06234i) q^{37} +(0.954008 + 0.381927i) q^{38} +(5.01185 + 3.56892i) q^{40} +(3.86707 - 4.05566i) q^{41} +(-0.990237 + 1.25919i) q^{43} +(-2.92158 + 1.87758i) q^{44} +(-0.517659 + 1.90997i) q^{46} +(3.02178 + 1.74463i) q^{47} +(-1.04873 + 0.419849i) q^{49} +(0.398482 + 4.17309i) q^{50} +(-4.55719 - 0.435159i) q^{52} +(4.68343 + 5.40497i) q^{53} +(-7.09064 - 2.08200i) q^{55} +(-1.47366 - 4.25786i) q^{56} +(-0.0605523 + 1.27115i) q^{58} +(0.385512 - 2.00023i) q^{59} +(5.11063 - 12.7657i) q^{61} +(-2.80275 + 2.42860i) q^{62} +(-4.02867 + 1.18292i) q^{64} +(-5.65057 - 7.93511i) q^{65} +(-4.41270 + 8.55943i) q^{67} +(-4.84136 - 8.38547i) q^{68} +(2.29036 - 3.96701i) q^{70} +(0.382777 + 0.595613i) q^{71} +(-1.51265 + 3.31223i) q^{73} +(0.513254 - 2.11566i) q^{74} +(-4.30625 - 1.49041i) q^{76} +(3.34531 + 4.25391i) q^{77} +(-8.46405 + 2.92944i) q^{79} +(-9.85069 - 6.33066i) q^{80} +(1.51421 - 1.74749i) q^{82} +(-9.59700 + 9.15072i) q^{83} +(6.73889 - 19.4707i) q^{85} +(-0.383410 + 0.538424i) q^{86} +(-2.44318 + 1.73978i) q^{88} +(-2.44096 + 16.9773i) q^{89} +7.13369i q^{91} +(1.88991 - 8.56920i) q^{92} +(1.27970 + 0.659731i) q^{94} +(-3.60387 - 9.00204i) q^{95} +(17.4427 + 4.23155i) q^{97} +(-0.423998 + 0.193633i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 440 q + 27 q^{2} - 29 q^{4} + 33 q^{5} - 11 q^{7} - 44 q^{10} + 33 q^{11} - 9 q^{13} + 33 q^{14} + 3 q^{16} - 44 q^{19} + 33 q^{20} + 27 q^{23} + 11 q^{25} - 44 q^{28} - 27 q^{29} - 3 q^{31} + 33 q^{32}+ \cdots + 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/621\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(461\)
\(\chi(n)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.412156 0.0196334i 0.291438 0.0138829i 0.0986464 0.995123i \(-0.468549\pi\)
0.192792 + 0.981240i \(0.438246\pi\)
\(3\) 0 0
\(4\) −1.82146 + 0.173928i −0.910728 + 0.0869640i
\(5\) −2.81788 2.68684i −1.26019 1.20159i −0.969586 0.244749i \(-0.921294\pi\)
−0.290607 0.956843i \(-0.593857\pi\)
\(6\) 0 0
\(7\) 0.539603 + 2.79973i 0.203951 + 1.05820i 0.929162 + 0.369672i \(0.120530\pi\)
−0.725212 + 0.688526i \(0.758258\pi\)
\(8\) −1.56416 + 0.224892i −0.553013 + 0.0795113i
\(9\) 0 0
\(10\) −1.21416 1.05207i −0.383950 0.332695i
\(11\) 1.68703 0.869723i 0.508658 0.262231i −0.184739 0.982788i \(-0.559144\pi\)
0.693396 + 0.720556i \(0.256114\pi\)
\(12\) 0 0
\(13\) 2.45673 + 0.473497i 0.681376 + 0.131324i 0.518183 0.855270i \(-0.326609\pi\)
0.163193 + 0.986594i \(0.447821\pi\)
\(14\) 0.277369 + 1.14333i 0.0741300 + 0.305568i
\(15\) 0 0
\(16\) 2.95309 0.569162i 0.738273 0.142290i
\(17\) 2.19831 + 4.81363i 0.533169 + 1.16748i 0.964209 + 0.265144i \(0.0854196\pi\)
−0.431040 + 0.902333i \(0.641853\pi\)
\(18\) 0 0
\(19\) 2.26539 + 1.03457i 0.519717 + 0.237347i 0.657962 0.753051i \(-0.271419\pi\)
−0.138245 + 0.990398i \(0.544146\pi\)
\(20\) 5.59996 + 4.40386i 1.25219 + 0.984732i
\(21\) 0 0
\(22\) 0.678243 0.391584i 0.144602 0.0834859i
\(23\) −1.47338 + 4.56390i −0.307221 + 0.951638i
\(24\) 0 0
\(25\) 0.483411 + 10.1480i 0.0966822 + 2.02961i
\(26\) 1.02185 + 0.146921i 0.200402 + 0.0288135i
\(27\) 0 0
\(28\) −1.46982 5.00573i −0.277769 0.945994i
\(29\) −0.293166 + 3.07018i −0.0544396 + 0.570118i 0.926565 + 0.376134i \(0.122747\pi\)
−0.981005 + 0.193983i \(0.937859\pi\)
\(30\) 0 0
\(31\) −7.06488 + 5.55588i −1.26889 + 0.997866i −0.269498 + 0.963001i \(0.586858\pi\)
−0.999392 + 0.0348655i \(0.988900\pi\)
\(32\) 4.27735 1.03767i 0.756137 0.183437i
\(33\) 0 0
\(34\) 1.00056 + 1.94081i 0.171594 + 0.332846i
\(35\) 6.00189 9.33912i 1.01450 1.57860i
\(36\) 0 0
\(37\) 1.48644 5.06234i 0.244369 0.832244i −0.742378 0.669981i \(-0.766302\pi\)
0.986747 0.162264i \(-0.0518795\pi\)
\(38\) 0.954008 + 0.381927i 0.154760 + 0.0619568i
\(39\) 0 0
\(40\) 5.01185 + 3.56892i 0.792443 + 0.564296i
\(41\) 3.86707 4.05566i 0.603934 0.633388i −0.348799 0.937198i \(-0.613410\pi\)
0.952733 + 0.303810i \(0.0982588\pi\)
\(42\) 0 0
\(43\) −0.990237 + 1.25919i −0.151010 + 0.192024i −0.855672 0.517518i \(-0.826856\pi\)
0.704663 + 0.709543i \(0.251098\pi\)
\(44\) −2.92158 + 1.87758i −0.440444 + 0.283056i
\(45\) 0 0
\(46\) −0.517659 + 1.90997i −0.0763246 + 0.281609i
\(47\) 3.02178 + 1.74463i 0.440772 + 0.254480i 0.703925 0.710274i \(-0.251429\pi\)
−0.263153 + 0.964754i \(0.584762\pi\)
\(48\) 0 0
\(49\) −1.04873 + 0.419849i −0.149819 + 0.0599784i
\(50\) 0.398482 + 4.17309i 0.0563538 + 0.590164i
\(51\) 0 0
\(52\) −4.55719 0.435159i −0.631969 0.0603457i
\(53\) 4.68343 + 5.40497i 0.643319 + 0.742430i 0.979958 0.199204i \(-0.0638356\pi\)
−0.336639 + 0.941634i \(0.609290\pi\)
\(54\) 0 0
\(55\) −7.09064 2.08200i −0.956102 0.280737i
\(56\) −1.47366 4.25786i −0.196926 0.568981i
\(57\) 0 0
\(58\) −0.0605523 + 1.27115i −0.00795090 + 0.166910i
\(59\) 0.385512 2.00023i 0.0501894 0.260408i −0.948163 0.317784i \(-0.897061\pi\)
0.998353 + 0.0573763i \(0.0182735\pi\)
\(60\) 0 0
\(61\) 5.11063 12.7657i 0.654349 1.63448i −0.113260 0.993565i \(-0.536129\pi\)
0.767609 0.640919i \(-0.221446\pi\)
\(62\) −2.80275 + 2.42860i −0.355950 + 0.308433i
\(63\) 0 0
\(64\) −4.02867 + 1.18292i −0.503583 + 0.147865i
\(65\) −5.65057 7.93511i −0.700867 0.984230i
\(66\) 0 0
\(67\) −4.41270 + 8.55943i −0.539097 + 1.04570i 0.449239 + 0.893411i \(0.351695\pi\)
−0.988336 + 0.152290i \(0.951335\pi\)
\(68\) −4.84136 8.38547i −0.587101 1.01689i
\(69\) 0 0
\(70\) 2.29036 3.96701i 0.273750 0.474149i
\(71\) 0.382777 + 0.595613i 0.0454273 + 0.0706863i 0.863224 0.504820i \(-0.168441\pi\)
−0.817797 + 0.575507i \(0.804805\pi\)
\(72\) 0 0
\(73\) −1.51265 + 3.31223i −0.177042 + 0.387668i −0.977261 0.212040i \(-0.931989\pi\)
0.800219 + 0.599708i \(0.204717\pi\)
\(74\) 0.513254 2.11566i 0.0596645 0.245941i
\(75\) 0 0
\(76\) −4.30625 1.49041i −0.493961 0.170962i
\(77\) 3.34531 + 4.25391i 0.381234 + 0.484778i
\(78\) 0 0
\(79\) −8.46405 + 2.92944i −0.952280 + 0.329587i −0.758658 0.651489i \(-0.774145\pi\)
−0.193622 + 0.981076i \(0.562023\pi\)
\(80\) −9.85069 6.33066i −1.10134 0.707789i
\(81\) 0 0
\(82\) 1.51421 1.74749i 0.167216 0.192978i
\(83\) −9.59700 + 9.15072i −1.05341 + 1.00442i −0.0534245 + 0.998572i \(0.517014\pi\)
−0.999983 + 0.00585005i \(0.998138\pi\)
\(84\) 0 0
\(85\) 6.73889 19.4707i 0.730935 2.11190i
\(86\) −0.383410 + 0.538424i −0.0413442 + 0.0580598i
\(87\) 0 0
\(88\) −2.44318 + 1.73978i −0.260444 + 0.185461i
\(89\) −2.44096 + 16.9773i −0.258742 + 1.79959i 0.283083 + 0.959096i \(0.408643\pi\)
−0.541824 + 0.840492i \(0.682266\pi\)
\(90\) 0 0
\(91\) 7.13369i 0.747814i
\(92\) 1.88991 8.56920i 0.197037 0.893401i
\(93\) 0 0
\(94\) 1.27970 + 0.659731i 0.131991 + 0.0680460i
\(95\) −3.60387 9.00204i −0.369750 0.923590i
\(96\) 0 0
\(97\) 17.4427 + 4.23155i 1.77104 + 0.429649i 0.982641 0.185519i \(-0.0593968\pi\)
0.788396 + 0.615168i \(0.210912\pi\)
\(98\) −0.423998 + 0.193633i −0.0428303 + 0.0195599i
\(99\) 0 0
\(100\) −2.64554 18.4001i −0.264554 1.84001i
\(101\) −6.88320 7.21890i −0.684904 0.718307i 0.285879 0.958266i \(-0.407715\pi\)
−0.970783 + 0.239959i \(0.922866\pi\)
\(102\) 0 0
\(103\) −5.40186 0.257322i −0.532261 0.0253547i −0.220269 0.975439i \(-0.570693\pi\)
−0.311993 + 0.950085i \(0.600996\pi\)
\(104\) −3.94920 0.188124i −0.387251 0.0184471i
\(105\) 0 0
\(106\) 2.03642 + 2.13574i 0.197795 + 0.207441i
\(107\) −0.313712 2.18191i −0.0303277 0.210933i 0.969023 0.246971i \(-0.0794354\pi\)
−0.999350 + 0.0360379i \(0.988526\pi\)
\(108\) 0 0
\(109\) 1.91450 0.874322i 0.183376 0.0837449i −0.321611 0.946872i \(-0.604224\pi\)
0.504987 + 0.863127i \(0.331497\pi\)
\(110\) −2.96333 0.718896i −0.282542 0.0685440i
\(111\) 0 0
\(112\) 3.18700 + 7.96073i 0.301143 + 0.752218i
\(113\) 8.00063 + 4.12461i 0.752636 + 0.388011i 0.791449 0.611236i \(-0.209327\pi\)
−0.0388126 + 0.999247i \(0.512358\pi\)
\(114\) 0 0
\(115\) 16.4143 8.90176i 1.53064 0.830093i
\(116\) 5.64319i 0.523957i
\(117\) 0 0
\(118\) 0.119620 0.831975i 0.0110119 0.0765895i
\(119\) −12.2906 + 8.75213i −1.12668 + 0.802306i
\(120\) 0 0
\(121\) −4.29098 + 6.02584i −0.390089 + 0.547804i
\(122\) 1.85574 5.36181i 0.168011 0.485436i
\(123\) 0 0
\(124\) 11.9021 11.3486i 1.06884 1.01913i
\(125\) 13.1554 15.1821i 1.17665 1.35793i
\(126\) 0 0
\(127\) 12.9965 + 8.35233i 1.15325 + 0.741150i 0.970284 0.241969i \(-0.0777933\pi\)
0.182967 + 0.983119i \(0.441430\pi\)
\(128\) −9.95591 + 3.44577i −0.879987 + 0.304566i
\(129\) 0 0
\(130\) −2.48471 3.15957i −0.217923 0.277112i
\(131\) 8.21538 + 2.84337i 0.717781 + 0.248426i 0.661454 0.749986i \(-0.269940\pi\)
0.0563273 + 0.998412i \(0.482061\pi\)
\(132\) 0 0
\(133\) −1.67410 + 6.90074i −0.145163 + 0.598370i
\(134\) −1.65067 + 3.61446i −0.142596 + 0.312242i
\(135\) 0 0
\(136\) −4.52105 7.03490i −0.387677 0.603237i
\(137\) 3.66836 6.35378i 0.313409 0.542840i −0.665689 0.746229i \(-0.731862\pi\)
0.979098 + 0.203389i \(0.0651956\pi\)
\(138\) 0 0
\(139\) −5.07885 8.79682i −0.430782 0.746137i 0.566159 0.824296i \(-0.308429\pi\)
−0.996941 + 0.0781594i \(0.975096\pi\)
\(140\) −9.30784 + 18.0547i −0.786656 + 1.52590i
\(141\) 0 0
\(142\) 0.169458 + 0.237971i 0.0142206 + 0.0199700i
\(143\) 4.55639 1.33788i 0.381024 0.111879i
\(144\) 0 0
\(145\) 9.07519 7.86370i 0.753653 0.653044i
\(146\) −0.558416 + 1.39486i −0.0462149 + 0.115439i
\(147\) 0 0
\(148\) −1.82700 + 9.47937i −0.150178 + 0.779200i
\(149\) −0.0190670 + 0.400267i −0.00156203 + 0.0327911i −0.999514 0.0311799i \(-0.990074\pi\)
0.997952 + 0.0639711i \(0.0203765\pi\)
\(150\) 0 0
\(151\) −2.85563 8.25080i −0.232388 0.671441i −0.999550 0.0299878i \(-0.990453\pi\)
0.767162 0.641453i \(-0.221668\pi\)
\(152\) −3.77610 1.10876i −0.306282 0.0899325i
\(153\) 0 0
\(154\) 1.46231 + 1.68760i 0.117836 + 0.135990i
\(155\) 34.8358 + 3.32641i 2.79808 + 0.267184i
\(156\) 0 0
\(157\) 0.561998 + 5.88551i 0.0448524 + 0.469715i 0.989797 + 0.142485i \(0.0455092\pi\)
−0.944945 + 0.327230i \(0.893885\pi\)
\(158\) −3.43100 + 1.37356i −0.272955 + 0.109275i
\(159\) 0 0
\(160\) −14.8411 8.56853i −1.17329 0.677402i
\(161\) −13.5727 1.66238i −1.06968 0.131014i
\(162\) 0 0
\(163\) −11.9294 + 7.66656i −0.934383 + 0.600491i −0.916797 0.399354i \(-0.869234\pi\)
−0.0175860 + 0.999845i \(0.505598\pi\)
\(164\) −6.33830 + 8.05980i −0.494938 + 0.629365i
\(165\) 0 0
\(166\) −3.77580 + 3.95995i −0.293059 + 0.307352i
\(167\) 0.456629 + 0.325164i 0.0353350 + 0.0251620i 0.597588 0.801803i \(-0.296126\pi\)
−0.562253 + 0.826965i \(0.690065\pi\)
\(168\) 0 0
\(169\) −6.25744 2.50510i −0.481341 0.192700i
\(170\) 2.39520 8.15730i 0.183703 0.625636i
\(171\) 0 0
\(172\) 1.58467 2.46579i 0.120830 0.188015i
\(173\) 0.0263099 + 0.0510341i 0.00200031 + 0.00388005i 0.889833 0.456285i \(-0.150820\pi\)
−0.887833 + 0.460165i \(0.847790\pi\)
\(174\) 0 0
\(175\) −28.1509 + 6.82934i −2.12801 + 0.516249i
\(176\) 4.48693 3.52856i 0.338215 0.265975i
\(177\) 0 0
\(178\) −0.672736 + 7.04521i −0.0504237 + 0.528061i
\(179\) −0.0316032 0.107631i −0.00236213 0.00804469i 0.958303 0.285752i \(-0.0922435\pi\)
−0.960666 + 0.277708i \(0.910425\pi\)
\(180\) 0 0
\(181\) 14.9883 + 2.15499i 1.11407 + 0.160179i 0.674676 0.738114i \(-0.264283\pi\)
0.439396 + 0.898293i \(0.355192\pi\)
\(182\) 0.140059 + 2.94019i 0.0103818 + 0.217942i
\(183\) 0 0
\(184\) 1.27822 7.47000i 0.0942315 0.550696i
\(185\) −17.7903 + 10.2712i −1.30797 + 0.755157i
\(186\) 0 0
\(187\) 7.89514 + 6.20881i 0.577350 + 0.454033i
\(188\) −5.80748 2.65219i −0.423554 0.193431i
\(189\) 0 0
\(190\) −1.66210 3.63949i −0.120581 0.264036i
\(191\) −3.04518 + 0.586910i −0.220341 + 0.0424673i −0.298227 0.954495i \(-0.596395\pi\)
0.0778856 + 0.996962i \(0.475183\pi\)
\(192\) 0 0
\(193\) −2.33717 9.63397i −0.168234 0.693468i −0.991968 0.126492i \(-0.959628\pi\)
0.823734 0.566976i \(-0.191887\pi\)
\(194\) 7.27219 + 1.40160i 0.522113 + 0.100629i
\(195\) 0 0
\(196\) 1.83719 0.947140i 0.131228 0.0676528i
\(197\) −18.3799 15.9263i −1.30952 1.13470i −0.981798 0.189928i \(-0.939175\pi\)
−0.327719 0.944775i \(-0.606280\pi\)
\(198\) 0 0
\(199\) −6.67327 + 0.959471i −0.473055 + 0.0680151i −0.374720 0.927138i \(-0.622261\pi\)
−0.0983357 + 0.995153i \(0.531352\pi\)
\(200\) −3.03834 15.7644i −0.214843 1.11471i
\(201\) 0 0
\(202\) −2.97869 2.84017i −0.209580 0.199834i
\(203\) −8.75386 + 0.835892i −0.614400 + 0.0586681i
\(204\) 0 0
\(205\) −21.7938 + 1.03817i −1.52215 + 0.0725088i
\(206\) −2.23146 −0.155473
\(207\) 0 0
\(208\) 7.52446 0.521727
\(209\) 4.72157 0.224916i 0.326598 0.0155578i
\(210\) 0 0
\(211\) 24.4711 2.33671i 1.68466 0.160866i 0.791674 0.610944i \(-0.209210\pi\)
0.892989 + 0.450078i \(0.148604\pi\)
\(212\) −9.47075 9.03034i −0.650454 0.620206i
\(213\) 0 0
\(214\) −0.172137 0.893130i −0.0117670 0.0610531i
\(215\) 6.17361 0.887631i 0.421036 0.0605359i
\(216\) 0 0
\(217\) −19.3672 16.7818i −1.31473 1.13922i
\(218\) 0.771906 0.397945i 0.0522801 0.0269523i
\(219\) 0 0
\(220\) 13.2774 + 2.55901i 0.895163 + 0.172529i
\(221\) 3.12143 + 12.8667i 0.209970 + 0.865509i
\(222\) 0 0
\(223\) −13.1037 + 2.52554i −0.877492 + 0.169123i −0.608055 0.793895i \(-0.708050\pi\)
−0.269437 + 0.963018i \(0.586838\pi\)
\(224\) 5.21328 + 11.4155i 0.348327 + 0.762730i
\(225\) 0 0
\(226\) 3.37849 + 1.54290i 0.224734 + 0.102632i
\(227\) 3.28026 + 2.57962i 0.217718 + 0.171216i 0.721062 0.692871i \(-0.243654\pi\)
−0.503343 + 0.864087i \(0.667897\pi\)
\(228\) 0 0
\(229\) 0.135177 0.0780442i 0.00893272 0.00515731i −0.495527 0.868593i \(-0.665025\pi\)
0.504460 + 0.863435i \(0.331692\pi\)
\(230\) 6.59047 3.99118i 0.434563 0.263171i
\(231\) 0 0
\(232\) −0.231900 4.86817i −0.0152250 0.319611i
\(233\) 10.2631 + 1.47562i 0.672360 + 0.0966708i 0.470035 0.882648i \(-0.344241\pi\)
0.202325 + 0.979318i \(0.435150\pi\)
\(234\) 0 0
\(235\) −3.82748 13.0352i −0.249677 0.850322i
\(236\) −0.354298 + 3.71038i −0.0230629 + 0.241525i
\(237\) 0 0
\(238\) −4.89383 + 3.84855i −0.317220 + 0.249465i
\(239\) −8.54758 + 2.07362i −0.552897 + 0.134131i −0.502467 0.864596i \(-0.667574\pi\)
−0.0504299 + 0.998728i \(0.516059\pi\)
\(240\) 0 0
\(241\) 10.0070 + 19.4108i 0.644607 + 1.25036i 0.954108 + 0.299463i \(0.0968077\pi\)
−0.309501 + 0.950899i \(0.600162\pi\)
\(242\) −1.65025 + 2.56784i −0.106082 + 0.165067i
\(243\) 0 0
\(244\) −7.08847 + 24.1411i −0.453793 + 1.54548i
\(245\) 4.08326 + 1.63469i 0.260870 + 0.104437i
\(246\) 0 0
\(247\) 5.07560 + 3.61432i 0.322953 + 0.229974i
\(248\) 9.80111 10.2791i 0.622371 0.652724i
\(249\) 0 0
\(250\) 5.12400 6.51570i 0.324070 0.412089i
\(251\) 19.9712 12.8347i 1.26057 0.810119i 0.272207 0.962239i \(-0.412246\pi\)
0.988362 + 0.152120i \(0.0486100\pi\)
\(252\) 0 0
\(253\) 1.48369 + 8.98085i 0.0932787 + 0.564621i
\(254\) 5.52057 + 3.18730i 0.346391 + 0.199989i
\(255\) 0 0
\(256\) 3.76022 1.50537i 0.235014 0.0940854i
\(257\) −2.02811 21.2393i −0.126510 1.32487i −0.806319 0.591481i \(-0.798543\pi\)
0.679809 0.733389i \(-0.262063\pi\)
\(258\) 0 0
\(259\) 14.9753 + 1.42997i 0.930518 + 0.0888537i
\(260\) 11.6724 + 13.4707i 0.723892 + 0.835416i
\(261\) 0 0
\(262\) 3.44185 + 1.01062i 0.212638 + 0.0624361i
\(263\) −0.0103775 0.0299839i −0.000639905 0.00184889i 0.944680 0.327992i \(-0.106372\pi\)
−0.945320 + 0.326143i \(0.894251\pi\)
\(264\) 0 0
\(265\) 1.32495 27.8142i 0.0813912 1.70861i
\(266\) −0.554506 + 2.87705i −0.0339990 + 0.176403i
\(267\) 0 0
\(268\) 6.54881 16.3581i 0.400032 0.999232i
\(269\) 6.25253 5.41785i 0.381224 0.330332i −0.443078 0.896483i \(-0.646114\pi\)
0.824302 + 0.566151i \(0.191568\pi\)
\(270\) 0 0
\(271\) 20.7664 6.09758i 1.26147 0.370401i 0.418430 0.908249i \(-0.362581\pi\)
0.843042 + 0.537848i \(0.180762\pi\)
\(272\) 9.23155 + 12.9639i 0.559745 + 0.786052i
\(273\) 0 0
\(274\) 1.38719 2.69077i 0.0838032 0.162555i
\(275\) 9.64151 + 16.6996i 0.581405 + 1.00702i
\(276\) 0 0
\(277\) −12.6723 + 21.9491i −0.761405 + 1.31879i 0.180722 + 0.983534i \(0.442157\pi\)
−0.942127 + 0.335257i \(0.891177\pi\)
\(278\) −2.26599 3.52595i −0.135905 0.211472i
\(279\) 0 0
\(280\) −7.28760 + 15.9576i −0.435518 + 0.953651i
\(281\) 2.00902 8.28129i 0.119848 0.494020i −0.879972 0.475026i \(-0.842439\pi\)
0.999820 0.0189939i \(-0.00604630\pi\)
\(282\) 0 0
\(283\) 17.6109 + 6.09521i 1.04686 + 0.362323i 0.795744 0.605634i \(-0.207080\pi\)
0.251119 + 0.967956i \(0.419202\pi\)
\(284\) −0.800806 1.01831i −0.0475191 0.0604255i
\(285\) 0 0
\(286\) 1.85168 0.640872i 0.109492 0.0378955i
\(287\) 13.4414 + 8.63828i 0.793423 + 0.509902i
\(288\) 0 0
\(289\) −7.20585 + 8.31599i −0.423873 + 0.489176i
\(290\) 3.58600 3.41925i 0.210577 0.200785i
\(291\) 0 0
\(292\) 2.17913 6.29618i 0.127524 0.368456i
\(293\) −5.26116 + 7.38826i −0.307360 + 0.431627i −0.939147 0.343515i \(-0.888382\pi\)
0.631787 + 0.775142i \(0.282322\pi\)
\(294\) 0 0
\(295\) −6.46062 + 4.60059i −0.376152 + 0.267857i
\(296\) −1.18654 + 8.25259i −0.0689664 + 0.479672i
\(297\) 0 0
\(298\) 0.165347i 0.00957828i
\(299\) −5.78070 + 10.5146i −0.334307 + 0.608077i
\(300\) 0 0
\(301\) −4.05972 2.09293i −0.233998 0.120635i
\(302\) −1.33896 3.34455i −0.0770483 0.192457i
\(303\) 0 0
\(304\) 7.27875 + 1.76580i 0.417465 + 0.101276i
\(305\) −48.7006 + 22.2408i −2.78859 + 1.27351i
\(306\) 0 0
\(307\) −0.383791 2.66932i −0.0219041 0.152346i 0.975934 0.218066i \(-0.0699748\pi\)
−0.997838 + 0.0657196i \(0.979066\pi\)
\(308\) −6.83322 7.16647i −0.389359 0.408348i
\(309\) 0 0
\(310\) 14.4231 + 0.687056i 0.819176 + 0.0390222i
\(311\) 8.84883 + 0.421522i 0.501771 + 0.0239023i 0.296942 0.954895i \(-0.404033\pi\)
0.204829 + 0.978798i \(0.434336\pi\)
\(312\) 0 0
\(313\) −1.56228 1.63847i −0.0883052 0.0926118i 0.678099 0.734971i \(-0.262804\pi\)
−0.766404 + 0.642359i \(0.777956\pi\)
\(314\) 0.347184 + 2.41472i 0.0195927 + 0.136270i
\(315\) 0 0
\(316\) 14.9074 6.80797i 0.838606 0.382979i
\(317\) −20.3384 4.93404i −1.14232 0.277124i −0.380416 0.924815i \(-0.624219\pi\)
−0.761902 + 0.647692i \(0.775734\pi\)
\(318\) 0 0
\(319\) 2.17562 + 5.43445i 0.121812 + 0.304271i
\(320\) 14.5306 + 7.49106i 0.812286 + 0.418763i
\(321\) 0 0
\(322\) −5.62671 0.418680i −0.313565 0.0233321i
\(323\) 13.1791i 0.733303i
\(324\) 0 0
\(325\) −3.61745 + 25.1599i −0.200660 + 1.39562i
\(326\) −4.76626 + 3.39404i −0.263978 + 0.187978i
\(327\) 0 0
\(328\) −5.13661 + 7.21336i −0.283622 + 0.398291i
\(329\) −3.25392 + 9.40157i −0.179394 + 0.518325i
\(330\) 0 0
\(331\) −19.6691 + 18.7544i −1.08111 + 1.03084i −0.0816955 + 0.996657i \(0.526033\pi\)
−0.999416 + 0.0341801i \(0.989118\pi\)
\(332\) 15.8889 18.3368i 0.872019 1.00636i
\(333\) 0 0
\(334\) 0.194587 + 0.125053i 0.0106473 + 0.00684261i
\(335\) 35.4323 12.2632i 1.93587 0.670012i
\(336\) 0 0
\(337\) 8.98979 + 11.4314i 0.489705 + 0.622711i 0.966612 0.256243i \(-0.0824847\pi\)
−0.476907 + 0.878954i \(0.658242\pi\)
\(338\) −2.62822 0.909637i −0.142957 0.0494778i
\(339\) 0 0
\(340\) −8.88809 + 36.6372i −0.482024 + 1.98693i
\(341\) −7.08657 + 15.5174i −0.383759 + 0.840315i
\(342\) 0 0
\(343\) 9.04917 + 14.0808i 0.488609 + 0.760291i
\(344\) 1.26570 2.19226i 0.0682422 0.118199i
\(345\) 0 0
\(346\) 0.0118458 + 0.0205175i 0.000636833 + 0.00110303i
\(347\) 11.4236 22.1587i 0.613252 1.18954i −0.353886 0.935289i \(-0.615140\pi\)
0.967138 0.254254i \(-0.0818298\pi\)
\(348\) 0 0
\(349\) −9.09034 12.7656i −0.486595 0.683327i 0.496162 0.868230i \(-0.334742\pi\)
−0.982757 + 0.184903i \(0.940803\pi\)
\(350\) −11.4685 + 3.36745i −0.613017 + 0.179998i
\(351\) 0 0
\(352\) 6.31352 5.47070i 0.336512 0.291589i
\(353\) 12.5218 31.2779i 0.666467 1.66476i −0.0778800 0.996963i \(-0.524815\pi\)
0.744347 0.667793i \(-0.232761\pi\)
\(354\) 0 0
\(355\) 0.521698 2.70683i 0.0276889 0.143664i
\(356\) 1.49329 31.3479i 0.0791440 1.66144i
\(357\) 0 0
\(358\) −0.0151386 0.0437401i −0.000800100 0.00231174i
\(359\) −22.5665 6.62612i −1.19101 0.349713i −0.374604 0.927185i \(-0.622221\pi\)
−0.816411 + 0.577472i \(0.804039\pi\)
\(360\) 0 0
\(361\) −8.38069 9.67183i −0.441089 0.509044i
\(362\) 6.21984 + 0.593922i 0.326907 + 0.0312159i
\(363\) 0 0
\(364\) −1.24075 12.9937i −0.0650329 0.681055i
\(365\) 13.1619 5.26923i 0.688925 0.275804i
\(366\) 0 0
\(367\) 3.18377 + 1.83815i 0.166192 + 0.0959508i 0.580789 0.814054i \(-0.302744\pi\)
−0.414597 + 0.910005i \(0.636078\pi\)
\(368\) −1.75344 + 14.3162i −0.0914043 + 0.746283i
\(369\) 0 0
\(370\) −7.13073 + 4.58264i −0.370709 + 0.238240i
\(371\) −12.6053 + 16.0289i −0.654432 + 0.832178i
\(372\) 0 0
\(373\) −6.53697 + 6.85578i −0.338471 + 0.354979i −0.870868 0.491516i \(-0.836443\pi\)
0.532397 + 0.846495i \(0.321291\pi\)
\(374\) 3.37593 + 2.40399i 0.174565 + 0.124307i
\(375\) 0 0
\(376\) −5.11889 2.04930i −0.263987 0.105684i
\(377\) −2.17395 + 7.40380i −0.111964 + 0.381315i
\(378\) 0 0
\(379\) −10.7972 + 16.8008i −0.554614 + 0.862997i −0.999468 0.0326062i \(-0.989619\pi\)
0.444854 + 0.895603i \(0.353256\pi\)
\(380\) 8.13001 + 15.7700i 0.417061 + 0.808985i
\(381\) 0 0
\(382\) −1.24357 + 0.301686i −0.0636264 + 0.0154356i
\(383\) 5.59403 4.39920i 0.285842 0.224788i −0.464934 0.885345i \(-0.653922\pi\)
0.750776 + 0.660557i \(0.229680\pi\)
\(384\) 0 0
\(385\) 2.00290 20.9753i 0.102077 1.06900i
\(386\) −1.15243 3.92481i −0.0586571 0.199768i
\(387\) 0 0
\(388\) −32.5071 4.67381i −1.65030 0.237277i
\(389\) 0.0213200 + 0.447561i 0.00108097 + 0.0226923i 0.999343 0.0362327i \(-0.0115358\pi\)
−0.998262 + 0.0589250i \(0.981233\pi\)
\(390\) 0 0
\(391\) −25.2079 + 2.94055i −1.27482 + 0.148710i
\(392\) 1.54596 0.892560i 0.0780827 0.0450811i
\(393\) 0 0
\(394\) −7.88810 6.20327i −0.397397 0.312516i
\(395\) 31.7216 + 14.4868i 1.59609 + 0.728908i
\(396\) 0 0
\(397\) −1.36108 2.98036i −0.0683108 0.149580i 0.872397 0.488798i \(-0.162565\pi\)
−0.940708 + 0.339219i \(0.889837\pi\)
\(398\) −2.73159 + 0.526471i −0.136922 + 0.0263896i
\(399\) 0 0
\(400\) 7.20343 + 29.6930i 0.360172 + 1.48465i
\(401\) −23.8778 4.60208i −1.19240 0.229817i −0.445828 0.895119i \(-0.647091\pi\)
−0.746574 + 0.665302i \(0.768303\pi\)
\(402\) 0 0
\(403\) −19.9872 + 10.3041i −0.995635 + 0.513286i
\(404\) 13.7930 + 11.9517i 0.686229 + 0.594621i
\(405\) 0 0
\(406\) −3.59155 + 0.516386i −0.178245 + 0.0256278i
\(407\) −1.89518 9.83310i −0.0939403 0.487409i
\(408\) 0 0
\(409\) −11.1809 10.6610i −0.552860 0.527151i 0.361329 0.932438i \(-0.382323\pi\)
−0.914189 + 0.405287i \(0.867172\pi\)
\(410\) −8.96208 + 0.855775i −0.442606 + 0.0422637i
\(411\) 0 0
\(412\) 9.88401 0.470834i 0.486950 0.0231963i
\(413\) 5.80812 0.285799
\(414\) 0 0
\(415\) 51.6297 2.53440
\(416\) 10.9997 0.523978i 0.539303 0.0256902i
\(417\) 0 0
\(418\) 1.94161 0.185401i 0.0949671 0.00906826i
\(419\) 6.46416 + 6.16356i 0.315795 + 0.301110i 0.831353 0.555745i \(-0.187567\pi\)
−0.515558 + 0.856855i \(0.672415\pi\)
\(420\) 0 0
\(421\) −2.53056 13.1298i −0.123332 0.639906i −0.990005 0.141030i \(-0.954959\pi\)
0.866674 0.498876i \(-0.166254\pi\)
\(422\) 10.0401 1.44354i 0.488742 0.0702705i
\(423\) 0 0
\(424\) −8.54116 7.40096i −0.414795 0.359422i
\(425\) −47.7863 + 24.6355i −2.31797 + 1.19500i
\(426\) 0 0
\(427\) 38.4983 + 7.41994i 1.86306 + 0.359076i
\(428\) 0.950908 + 3.91970i 0.0459639 + 0.189466i
\(429\) 0 0
\(430\) 2.52706 0.487051i 0.121866 0.0234877i
\(431\) −2.98287 6.53158i −0.143680 0.314615i 0.824087 0.566464i \(-0.191689\pi\)
−0.967767 + 0.251848i \(0.918962\pi\)
\(432\) 0 0
\(433\) 22.6057 + 10.3237i 1.08636 + 0.496124i 0.876399 0.481586i \(-0.159939\pi\)
0.209961 + 0.977710i \(0.432666\pi\)
\(434\) −8.31180 6.53647i −0.398979 0.313761i
\(435\) 0 0
\(436\) −3.33511 + 1.92552i −0.159723 + 0.0922159i
\(437\) −8.05946 + 8.81470i −0.385536 + 0.421664i
\(438\) 0 0
\(439\) −1.19517 25.0897i −0.0570424 1.19747i −0.828055 0.560648i \(-0.810552\pi\)
0.771012 0.636821i \(-0.219751\pi\)
\(440\) 11.5591 + 1.66195i 0.551059 + 0.0792303i
\(441\) 0 0
\(442\) 1.53913 + 5.24181i 0.0732092 + 0.249328i
\(443\) 1.59548 16.7087i 0.0758038 0.793853i −0.875013 0.484099i \(-0.839147\pi\)
0.950817 0.309754i \(-0.100247\pi\)
\(444\) 0 0
\(445\) 52.4936 41.2814i 2.48843 1.95693i
\(446\) −5.35121 + 1.29819i −0.253387 + 0.0614710i
\(447\) 0 0
\(448\) −5.48575 10.6409i −0.259177 0.502734i
\(449\) −0.530935 + 0.826150i −0.0250563 + 0.0389884i −0.853556 0.521001i \(-0.825559\pi\)
0.828499 + 0.559990i \(0.189195\pi\)
\(450\) 0 0
\(451\) 2.99654 10.2053i 0.141102 0.480548i
\(452\) −15.2902 6.12127i −0.719190 0.287920i
\(453\) 0 0
\(454\) 1.40263 + 0.998806i 0.0658285 + 0.0468763i
\(455\) 19.1671 20.1019i 0.898567 0.942390i
\(456\) 0 0
\(457\) 12.3735 15.7342i 0.578808 0.736015i −0.405182 0.914236i \(-0.632792\pi\)
0.983990 + 0.178221i \(0.0570343\pi\)
\(458\) 0.0541816 0.0348204i 0.00253174 0.00162705i
\(459\) 0 0
\(460\) −28.3496 + 19.0691i −1.32181 + 0.889100i
\(461\) 25.6915 + 14.8330i 1.19657 + 0.690842i 0.959790 0.280720i \(-0.0905733\pi\)
0.236784 + 0.971562i \(0.423907\pi\)
\(462\) 0 0
\(463\) −7.88481 + 3.15660i −0.366438 + 0.146700i −0.547572 0.836759i \(-0.684448\pi\)
0.181134 + 0.983459i \(0.442023\pi\)
\(464\) 0.881680 + 9.23337i 0.0409310 + 0.428649i
\(465\) 0 0
\(466\) 4.25898 + 0.406684i 0.197294 + 0.0188393i
\(467\) −0.996120 1.14958i −0.0460949 0.0531964i 0.732234 0.681053i \(-0.238478\pi\)
−0.778329 + 0.627857i \(0.783932\pi\)
\(468\) 0 0
\(469\) −26.3452 7.73565i −1.21651 0.357199i
\(470\) −1.83344 5.29739i −0.0845704 0.244350i
\(471\) 0 0
\(472\) −0.153167 + 3.21537i −0.00705008 + 0.147999i
\(473\) −0.575411 + 2.98552i −0.0264574 + 0.137274i
\(474\) 0 0
\(475\) −9.40375 + 23.4894i −0.431474 + 1.07777i
\(476\) 20.8646 18.0793i 0.956329 0.828664i
\(477\) 0 0
\(478\) −3.48223 + 1.02247i −0.159273 + 0.0467669i
\(479\) 7.76122 + 10.8991i 0.354619 + 0.497993i 0.952896 0.303296i \(-0.0980872\pi\)
−0.598277 + 0.801289i \(0.704148\pi\)
\(480\) 0 0
\(481\) 6.04879 11.7330i 0.275801 0.534979i
\(482\) 4.50554 + 7.80383i 0.205222 + 0.355455i
\(483\) 0 0
\(484\) 6.76778 11.7221i 0.307626 0.532824i
\(485\) −37.7819 58.7897i −1.71559 2.66950i
\(486\) 0 0
\(487\) 13.8495 30.3262i 0.627580 1.37421i −0.282295 0.959328i \(-0.591096\pi\)
0.909875 0.414882i \(-0.136177\pi\)
\(488\) −5.12292 + 21.1169i −0.231903 + 0.955919i
\(489\) 0 0
\(490\) 1.71504 + 0.593580i 0.0774774 + 0.0268152i
\(491\) 22.9830 + 29.2253i 1.03721 + 1.31892i 0.946381 + 0.323053i \(0.104709\pi\)
0.0908291 + 0.995866i \(0.471048\pi\)
\(492\) 0 0
\(493\) −15.4232 + 5.33802i −0.694625 + 0.240412i
\(494\) 2.16290 + 1.39001i 0.0973136 + 0.0625396i
\(495\) 0 0
\(496\) −17.7010 + 20.4281i −0.794800 + 0.917248i
\(497\) −1.46101 + 1.39307i −0.0655351 + 0.0624876i
\(498\) 0 0
\(499\) 6.52021 18.8389i 0.291885 0.843346i −0.699764 0.714375i \(-0.746711\pi\)
0.991648 0.128971i \(-0.0411675\pi\)
\(500\) −21.3214 + 29.9417i −0.953522 + 1.33903i
\(501\) 0 0
\(502\) 7.97925 5.68200i 0.356132 0.253600i
\(503\) 1.17664 8.18371i 0.0524638 0.364894i −0.946630 0.322323i \(-0.895536\pi\)
0.999093 0.0425704i \(-0.0135547\pi\)
\(504\) 0 0
\(505\) 38.8360i 1.72818i
\(506\) 0.787836 + 3.67238i 0.0350236 + 0.163257i
\(507\) 0 0
\(508\) −25.1252 12.9530i −1.11475 0.574695i
\(509\) −1.81341 4.52968i −0.0803780 0.200775i 0.882735 0.469870i \(-0.155699\pi\)
−0.963113 + 0.269096i \(0.913275\pi\)
\(510\) 0 0
\(511\) −10.0896 2.44771i −0.446337 0.108280i
\(512\) 20.6868 9.44736i 0.914237 0.417518i
\(513\) 0 0
\(514\) −1.25290 8.71409i −0.0552629 0.384362i
\(515\) 14.5304 + 15.2391i 0.640286 + 0.671513i
\(516\) 0 0
\(517\) 6.61517 + 0.315119i 0.290935 + 0.0138589i
\(518\) 6.20023 + 0.295353i 0.272422 + 0.0129771i
\(519\) 0 0
\(520\) 10.6229 + 11.1410i 0.465846 + 0.488565i
\(521\) 3.73147 + 25.9530i 0.163479 + 1.13702i 0.892013 + 0.452010i \(0.149293\pi\)
−0.728534 + 0.685009i \(0.759798\pi\)
\(522\) 0 0
\(523\) 31.7130 14.4828i 1.38671 0.633290i 0.424459 0.905447i \(-0.360464\pi\)
0.962253 + 0.272157i \(0.0877370\pi\)
\(524\) −15.4585 3.75019i −0.675308 0.163828i
\(525\) 0 0
\(526\) −0.00486585 0.0121543i −0.000212161 0.000529953i
\(527\) −42.2748 21.7942i −1.84152 0.949369i
\(528\) 0 0
\(529\) −18.6583 13.4487i −0.811230 0.584727i
\(530\) 11.4898i 0.499085i
\(531\) 0 0
\(532\) 1.84907 12.8606i 0.0801674 0.557577i
\(533\) 11.4207 8.13264i 0.494685 0.352264i
\(534\) 0 0
\(535\) −4.97845 + 6.99126i −0.215237 + 0.302258i
\(536\) 4.97720 14.3807i 0.214982 0.621151i
\(537\) 0 0
\(538\) 2.47065 2.35576i 0.106517 0.101564i
\(539\) −1.40409 + 1.62040i −0.0604782 + 0.0697956i
\(540\) 0 0
\(541\) 0.354224 + 0.227646i 0.0152293 + 0.00978727i 0.548233 0.836325i \(-0.315301\pi\)
−0.533004 + 0.846113i \(0.678937\pi\)
\(542\) 8.43930 2.92087i 0.362499 0.125462i
\(543\) 0 0
\(544\) 14.3979 + 18.3085i 0.617307 + 0.784970i
\(545\) −7.74399 2.68022i −0.331716 0.114808i
\(546\) 0 0
\(547\) 1.80228 7.42910i 0.0770599 0.317645i −0.920216 0.391412i \(-0.871987\pi\)
0.997276 + 0.0737665i \(0.0235020\pi\)
\(548\) −5.57665 + 12.2112i −0.238223 + 0.521635i
\(549\) 0 0
\(550\) 4.30168 + 6.69354i 0.183424 + 0.285414i
\(551\) −3.84045 + 6.65186i −0.163609 + 0.283379i
\(552\) 0 0
\(553\) −12.7689 22.1163i −0.542987 0.940481i
\(554\) −4.79203 + 9.29524i −0.203594 + 0.394917i
\(555\) 0 0
\(556\) 10.7809 + 15.1397i 0.457213 + 0.642065i
\(557\) 5.83299 1.71272i 0.247152 0.0725702i −0.155810 0.987787i \(-0.549799\pi\)
0.402962 + 0.915217i \(0.367981\pi\)
\(558\) 0 0
\(559\) −3.02897 + 2.62462i −0.128112 + 0.111010i
\(560\) 12.4087 30.9953i 0.524361 1.30979i
\(561\) 0 0
\(562\) 0.665439 3.45263i 0.0280699 0.145640i
\(563\) −1.09539 + 22.9951i −0.0461653 + 0.969128i 0.850378 + 0.526172i \(0.176373\pi\)
−0.896543 + 0.442956i \(0.853930\pi\)
\(564\) 0 0
\(565\) −11.4626 33.1191i −0.482236 1.39333i
\(566\) 7.37813 + 2.16641i 0.310126 + 0.0910612i
\(567\) 0 0
\(568\) −0.732673 0.845549i −0.0307423 0.0354785i
\(569\) −41.1183 3.92633i −1.72377 0.164600i −0.814321 0.580415i \(-0.802891\pi\)
−0.909450 + 0.415814i \(0.863497\pi\)
\(570\) 0 0
\(571\) −0.640264 6.70515i −0.0267942 0.280602i −0.998933 0.0461937i \(-0.985291\pi\)
0.972138 0.234408i \(-0.0753152\pi\)
\(572\) −8.06657 + 3.22937i −0.337280 + 0.135027i
\(573\) 0 0
\(574\) 5.70957 + 3.29642i 0.238313 + 0.137590i
\(575\) −47.0269 12.7457i −1.96116 0.531533i
\(576\) 0 0
\(577\) −6.71023 + 4.31240i −0.279350 + 0.179528i −0.672812 0.739813i \(-0.734914\pi\)
0.393462 + 0.919341i \(0.371277\pi\)
\(578\) −2.80666 + 3.56896i −0.116742 + 0.148449i
\(579\) 0 0
\(580\) −15.1623 + 15.9018i −0.629582 + 0.660287i
\(581\) −30.7981 21.9312i −1.27772 0.909861i
\(582\) 0 0
\(583\) 12.6019 + 5.04504i 0.521918 + 0.208944i
\(584\) 1.62112 5.52104i 0.0670825 0.228462i
\(585\) 0 0
\(586\) −2.02336 + 3.14841i −0.0835843 + 0.130060i
\(587\) 3.92604 + 7.61546i 0.162045 + 0.314324i 0.955853 0.293845i \(-0.0949348\pi\)
−0.793808 + 0.608168i \(0.791905\pi\)
\(588\) 0 0
\(589\) −21.7527 + 5.27714i −0.896304 + 0.217441i
\(590\) −2.57246 + 2.02301i −0.105907 + 0.0832858i
\(591\) 0 0
\(592\) 1.50830 15.7956i 0.0619906 0.649195i
\(593\) −6.00060 20.4362i −0.246415 0.839212i −0.986085 0.166242i \(-0.946837\pi\)
0.739670 0.672970i \(-0.234982\pi\)
\(594\) 0 0
\(595\) 58.1491 + 8.36058i 2.38388 + 0.342750i
\(596\) −0.0348878 0.732384i −0.00142906 0.0299996i
\(597\) 0 0
\(598\) −2.17611 + 4.44717i −0.0889879 + 0.181858i
\(599\) −28.0149 + 16.1744i −1.14466 + 0.660868i −0.947580 0.319520i \(-0.896478\pi\)
−0.197077 + 0.980388i \(0.563145\pi\)
\(600\) 0 0
\(601\) −22.2969 17.5345i −0.909510 0.715246i 0.0494537 0.998776i \(-0.484252\pi\)
−0.958963 + 0.283530i \(0.908494\pi\)
\(602\) −1.71433 0.782909i −0.0698709 0.0319090i
\(603\) 0 0
\(604\) 6.63645 + 14.5318i 0.270033 + 0.591291i
\(605\) 28.2820 5.45090i 1.14982 0.221611i
\(606\) 0 0
\(607\) −4.11960 16.9812i −0.167210 0.689247i −0.992259 0.124186i \(-0.960368\pi\)
0.825049 0.565061i \(-0.191147\pi\)
\(608\) 10.7634 + 2.07448i 0.436515 + 0.0841313i
\(609\) 0 0
\(610\) −19.6356 + 10.1229i −0.795022 + 0.409862i
\(611\) 6.59764 + 5.71689i 0.266912 + 0.231281i
\(612\) 0 0
\(613\) −40.2352 + 5.78495i −1.62508 + 0.233652i −0.893815 0.448436i \(-0.851981\pi\)
−0.731270 + 0.682088i \(0.761072\pi\)
\(614\) −0.210590 1.09264i −0.00849871 0.0440955i
\(615\) 0 0
\(616\) −6.18927 5.90145i −0.249373 0.237776i
\(617\) 29.3860 2.80602i 1.18303 0.112966i 0.515062 0.857153i \(-0.327769\pi\)
0.667972 + 0.744187i \(0.267163\pi\)
\(618\) 0 0
\(619\) 17.4812 0.832733i 0.702630 0.0334704i 0.306773 0.951783i \(-0.400751\pi\)
0.395857 + 0.918312i \(0.370448\pi\)
\(620\) −64.0304 −2.57152
\(621\) 0 0
\(622\) 3.65538 0.146567
\(623\) −48.8489 + 2.32696i −1.95709 + 0.0932277i
\(624\) 0 0
\(625\) −27.2946 + 2.60632i −1.09178 + 0.104253i
\(626\) −0.676071 0.644633i −0.0270212 0.0257647i
\(627\) 0 0
\(628\) −2.04731 10.6225i −0.0816966 0.423882i
\(629\) 27.6359 3.97345i 1.10192 0.158432i
\(630\) 0 0
\(631\) 0.744832 + 0.645401i 0.0296513 + 0.0256930i 0.669560 0.742758i \(-0.266483\pi\)
−0.639909 + 0.768451i \(0.721028\pi\)
\(632\) 12.5803 6.48559i 0.500417 0.257983i
\(633\) 0 0
\(634\) −8.47947 1.63428i −0.336763 0.0649057i
\(635\) −14.1811 58.4553i −0.562760 2.31973i
\(636\) 0 0
\(637\) −2.77525 + 0.534886i −0.109959 + 0.0211929i
\(638\) 1.00339 + 2.19713i 0.0397247 + 0.0869851i
\(639\) 0 0
\(640\) 37.3128 + 17.0402i 1.47492 + 0.673572i
\(641\) 3.84013 + 3.01991i 0.151676 + 0.119279i 0.691113 0.722747i \(-0.257121\pi\)
−0.539437 + 0.842026i \(0.681363\pi\)
\(642\) 0 0
\(643\) 5.96974 3.44663i 0.235424 0.135922i −0.377648 0.925949i \(-0.623267\pi\)
0.613072 + 0.790027i \(0.289934\pi\)
\(644\) 25.0112 + 0.667273i 0.985581 + 0.0262942i
\(645\) 0 0
\(646\) 0.258750 + 5.43184i 0.0101804 + 0.213713i
\(647\) −37.3999 5.37729i −1.47034 0.211403i −0.639878 0.768477i \(-0.721015\pi\)
−0.830463 + 0.557074i \(0.811924\pi\)
\(648\) 0 0
\(649\) −1.08927 3.70973i −0.0427578 0.145620i
\(650\) −0.996980 + 10.4409i −0.0391048 + 0.409524i
\(651\) 0 0
\(652\) 20.3955 16.0392i 0.798748 0.628142i
\(653\) 23.8169 5.77791i 0.932026 0.226107i 0.259128 0.965843i \(-0.416565\pi\)
0.672897 + 0.739736i \(0.265050\pi\)
\(654\) 0 0
\(655\) −15.5103 30.0857i −0.606036 1.17555i
\(656\) 9.11147 14.1777i 0.355743 0.553547i
\(657\) 0 0
\(658\) −1.15654 + 3.93880i −0.0450865 + 0.153550i
\(659\) −27.7656 11.1157i −1.08159 0.433005i −0.238705 0.971092i \(-0.576723\pi\)
−0.842889 + 0.538088i \(0.819147\pi\)
\(660\) 0 0
\(661\) −13.3217 9.48635i −0.518155 0.368976i 0.290859 0.956766i \(-0.406059\pi\)
−0.809014 + 0.587790i \(0.799998\pi\)
\(662\) −7.73853 + 8.11593i −0.300766 + 0.315435i
\(663\) 0 0
\(664\) 12.9533 16.4714i 0.502685 0.639216i
\(665\) 23.2586 14.9474i 0.901930 0.579635i
\(666\) 0 0
\(667\) −13.5800 5.86153i −0.525821 0.226959i
\(668\) −0.888285 0.512852i −0.0343688 0.0198428i
\(669\) 0 0
\(670\) 14.3629 5.75002i 0.554886 0.222143i
\(671\) −2.48088 25.9810i −0.0957733 1.00298i
\(672\) 0 0
\(673\) 47.3961 + 4.52578i 1.82699 + 0.174456i 0.951268 0.308366i \(-0.0997823\pi\)
0.875718 + 0.482822i \(0.160388\pi\)
\(674\) 3.92964 + 4.53504i 0.151364 + 0.174683i
\(675\) 0 0
\(676\) 11.8334 + 3.47459i 0.455129 + 0.133638i
\(677\) 2.89337 + 8.35984i 0.111201 + 0.321295i 0.986847 0.161660i \(-0.0516848\pi\)
−0.875645 + 0.482955i \(0.839564\pi\)
\(678\) 0 0
\(679\) −2.43506 + 51.1181i −0.0934489 + 1.96173i
\(680\) −6.16187 + 31.9708i −0.236297 + 1.22603i
\(681\) 0 0
\(682\) −2.61611 + 6.53473i −0.100176 + 0.250228i
\(683\) 10.4612 9.06468i 0.400287 0.346850i −0.431336 0.902191i \(-0.641958\pi\)
0.831623 + 0.555341i \(0.187412\pi\)
\(684\) 0 0
\(685\) −27.4086 + 8.04788i −1.04723 + 0.307494i
\(686\) 4.00613 + 5.62582i 0.152955 + 0.214795i
\(687\) 0 0
\(688\) −2.20758 + 4.28210i −0.0841631 + 0.163254i
\(689\) 8.94672 + 15.4962i 0.340843 + 0.590357i
\(690\) 0 0
\(691\) −24.9509 + 43.2162i −0.949177 + 1.64402i −0.202013 + 0.979383i \(0.564748\pi\)
−0.747164 + 0.664639i \(0.768585\pi\)
\(692\) −0.0567986 0.0883804i −0.00215916 0.00335972i
\(693\) 0 0
\(694\) 4.27326 9.35714i 0.162211 0.355192i
\(695\) −9.32409 + 38.4344i −0.353683 + 1.45790i
\(696\) 0 0
\(697\) 28.0235 + 9.69902i 1.06146 + 0.367377i
\(698\) −3.99727 5.08295i −0.151299 0.192392i
\(699\) 0 0
\(700\) 50.0879 17.3356i 1.89314 0.655223i
\(701\) 29.6207 + 19.0361i 1.11876 + 0.718982i 0.963184 0.268842i \(-0.0866411\pi\)
0.155574 + 0.987824i \(0.450277\pi\)
\(702\) 0 0
\(703\) 8.60472 9.93037i 0.324533 0.374531i
\(704\) −5.76766 + 5.49945i −0.217377 + 0.207268i
\(705\) 0 0
\(706\) 4.54684 13.1372i 0.171123 0.494426i
\(707\) 16.4967 23.1664i 0.620424 0.871264i
\(708\) 0 0
\(709\) −6.12034 + 4.35828i −0.229854 + 0.163679i −0.689182 0.724588i \(-0.742030\pi\)
0.459327 + 0.888267i \(0.348090\pi\)
\(710\) 0.161877 1.12588i 0.00607513 0.0422535i
\(711\) 0 0
\(712\) 27.1041i 1.01577i
\(713\) −14.9472 40.4293i −0.559777 1.51409i
\(714\) 0 0
\(715\) −16.4340 8.47232i −0.614597 0.316847i
\(716\) 0.0762838 + 0.190548i 0.00285086 + 0.00712110i
\(717\) 0 0
\(718\) −9.43102 2.28794i −0.351963 0.0853852i
\(719\) 30.9786 14.1474i 1.15531 0.527610i 0.256753 0.966477i \(-0.417347\pi\)
0.898552 + 0.438867i \(0.144620\pi\)
\(720\) 0 0
\(721\) −2.19443 15.2626i −0.0817249 0.568409i
\(722\) −3.64404 3.82176i −0.135617 0.142231i
\(723\) 0 0
\(724\) −27.6754 1.31834i −1.02855 0.0489958i
\(725\) −31.2980 1.49091i −1.16238 0.0553710i
\(726\) 0 0
\(727\) 26.1822 + 27.4591i 0.971043 + 1.01840i 0.999823 + 0.0188149i \(0.00598933\pi\)
−0.0287799 + 0.999586i \(0.509162\pi\)
\(728\) −1.60431 11.1582i −0.0594596 0.413551i
\(729\) 0 0
\(730\) 5.32131 2.43016i 0.196950 0.0899442i
\(731\) −8.23812 1.99855i −0.304698 0.0739189i
\(732\) 0 0
\(733\) −2.91125 7.27196i −0.107530 0.268596i 0.864838 0.502051i \(-0.167421\pi\)
−0.972368 + 0.233455i \(0.924997\pi\)
\(734\) 1.34830 + 0.695097i 0.0497667 + 0.0256565i
\(735\) 0 0
\(736\) −1.56634 + 21.0503i −0.0577360 + 0.775924i
\(737\) 18.2778i 0.673272i
\(738\) 0 0
\(739\) 0.0759584 0.528302i 0.00279417 0.0194339i −0.988377 0.152025i \(-0.951421\pi\)
0.991171 + 0.132591i \(0.0423297\pi\)
\(740\) 30.6178 21.8029i 1.12553 0.801489i
\(741\) 0 0
\(742\) −4.88063 + 6.85389i −0.179174 + 0.251614i
\(743\) −13.0343 + 37.6600i −0.478181 + 1.38161i 0.405745 + 0.913986i \(0.367012\pi\)
−0.883926 + 0.467627i \(0.845109\pi\)
\(744\) 0 0
\(745\) 1.12918 1.07667i 0.0413700 0.0394462i
\(746\) −2.55965 + 2.95399i −0.0937155 + 0.108153i
\(747\) 0 0
\(748\) −15.4605 9.93588i −0.565293 0.363292i
\(749\) 5.93948 2.05568i 0.217024 0.0751127i
\(750\) 0 0
\(751\) −17.9707 22.8516i −0.655759 0.833866i 0.338488 0.940971i \(-0.390084\pi\)
−0.994248 + 0.107105i \(0.965842\pi\)
\(752\) 9.91657 + 3.43216i 0.361620 + 0.125158i
\(753\) 0 0
\(754\) −0.750646 + 3.09420i −0.0273369 + 0.112684i
\(755\) −14.1218 + 30.9224i −0.513944 + 1.12538i
\(756\) 0 0
\(757\) −15.4754 24.0802i −0.562463 0.875209i 0.437246 0.899342i \(-0.355954\pi\)
−0.999709 + 0.0241331i \(0.992317\pi\)
\(758\) −4.12027 + 7.13652i −0.149655 + 0.259210i
\(759\) 0 0
\(760\) 7.66151 + 13.2701i 0.277912 + 0.481358i
\(761\) −13.8824 + 26.9282i −0.503238 + 0.976146i 0.491222 + 0.871034i \(0.336550\pi\)
−0.994460 + 0.105111i \(0.966480\pi\)
\(762\) 0 0
\(763\) 3.48093 + 4.88829i 0.126018 + 0.176968i
\(764\) 5.44458 1.59867i 0.196978 0.0578379i
\(765\) 0 0
\(766\) 2.21924 1.92299i 0.0801846 0.0694803i
\(767\) 1.89420 4.73149i 0.0683957 0.170844i
\(768\) 0 0
\(769\) 3.14775 16.3321i 0.113511 0.588950i −0.879977 0.475016i \(-0.842442\pi\)
0.993488 0.113935i \(-0.0363454\pi\)
\(770\) 0.413691 8.68444i 0.0149084 0.312965i
\(771\) 0 0
\(772\) 5.93268 + 17.1414i 0.213522 + 0.616931i
\(773\) −1.21930 0.358019i −0.0438553 0.0128771i 0.259731 0.965681i \(-0.416366\pi\)
−0.303587 + 0.952804i \(0.598184\pi\)
\(774\) 0 0
\(775\) −59.7966 69.0090i −2.14796 2.47887i
\(776\) −28.2347 2.69609i −1.01357 0.0967840i
\(777\) 0 0
\(778\) 0.0175743 + 0.184047i 0.000630070 + 0.00659839i
\(779\) 12.9563 5.18691i 0.464207 0.185840i
\(780\) 0 0
\(781\) 1.16377 + 0.671906i 0.0416431 + 0.0240427i
\(782\) −10.3318 + 1.70688i −0.369466 + 0.0610379i
\(783\) 0 0
\(784\) −2.85804 + 1.83675i −0.102073 + 0.0655981i
\(785\) 14.2298 18.0947i 0.507883 0.645826i
\(786\) 0 0
\(787\) −12.1248 + 12.7161i −0.432202 + 0.453280i −0.903433 0.428730i \(-0.858961\pi\)
0.471231 + 0.882010i \(0.343810\pi\)
\(788\) 36.2483 + 25.8123i 1.29129 + 0.919525i
\(789\) 0 0
\(790\) 13.3587 + 5.34801i 0.475280 + 0.190273i
\(791\) −7.23062 + 24.6252i −0.257091 + 0.875573i
\(792\) 0 0
\(793\) 18.6000 28.9421i 0.660505 1.02777i
\(794\) −0.619494 1.20165i −0.0219850 0.0426450i
\(795\) 0 0
\(796\) 11.9882 2.90830i 0.424910 0.103082i
\(797\) 36.2559 28.5119i 1.28425 1.00995i 0.285581 0.958354i \(-0.407813\pi\)
0.998668 0.0515906i \(-0.0164291\pi\)
\(798\) 0 0
\(799\) −1.75517 + 18.3810i −0.0620935 + 0.650272i
\(800\) 12.5981 + 42.9052i 0.445410 + 1.51693i
\(801\) 0 0
\(802\) −9.93175 1.42797i −0.350702 0.0504234i
\(803\) 0.328850 + 6.90341i 0.0116049 + 0.243616i
\(804\) 0 0
\(805\) 33.7797 + 41.1521i 1.19058 + 1.45042i
\(806\) −8.03556 + 4.63933i −0.283040 + 0.163413i
\(807\) 0 0
\(808\) 12.3899 + 9.74351i 0.435875 + 0.342776i
\(809\) −7.99865 3.65286i −0.281218 0.128428i 0.269813 0.962913i \(-0.413038\pi\)
−0.551031 + 0.834485i \(0.685765\pi\)
\(810\) 0 0
\(811\) 10.4674 + 22.9204i 0.367560 + 0.804844i 0.999554 + 0.0298704i \(0.00950945\pi\)
−0.631994 + 0.774973i \(0.717763\pi\)
\(812\) 15.7994 3.04508i 0.554450 0.106861i
\(813\) 0 0
\(814\) −0.974166 4.01557i −0.0341445 0.140745i
\(815\) 54.2144 + 10.4490i 1.89905 + 0.366012i
\(816\) 0 0
\(817\) −3.54599 + 1.82809i −0.124059 + 0.0639567i
\(818\) −4.81759 4.17447i −0.168443 0.145957i
\(819\) 0 0
\(820\) 39.5160 5.68154i 1.37996 0.198408i
\(821\) −7.84044 40.6801i −0.273633 1.41974i −0.815245 0.579116i \(-0.803398\pi\)
0.541612 0.840629i \(-0.317814\pi\)
\(822\) 0 0
\(823\) −34.6777 33.0652i −1.20879 1.15258i −0.983999 0.178172i \(-0.942982\pi\)
−0.224791 0.974407i \(-0.572170\pi\)
\(824\) 8.50723 0.812342i 0.296363 0.0282993i
\(825\) 0 0
\(826\) 2.39385 0.114033i 0.0832928 0.00396772i
\(827\) −23.7876 −0.827177 −0.413588 0.910464i \(-0.635725\pi\)
−0.413588 + 0.910464i \(0.635725\pi\)
\(828\) 0 0
\(829\) 10.6534 0.370006 0.185003 0.982738i \(-0.440770\pi\)
0.185003 + 0.982738i \(0.440770\pi\)
\(830\) 21.2795 1.01367i 0.738622 0.0351849i
\(831\) 0 0
\(832\) −10.4575 + 0.998568i −0.362548 + 0.0346191i
\(833\) −4.32643 4.12525i −0.149902 0.142931i
\(834\) 0 0
\(835\) −0.413061 2.14316i −0.0142946 0.0741672i
\(836\) −8.56101 + 1.23089i −0.296089 + 0.0425711i
\(837\) 0 0
\(838\) 2.78525 + 2.41344i 0.0962150 + 0.0833708i
\(839\) −14.9245 + 7.69412i −0.515252 + 0.265631i −0.696182 0.717865i \(-0.745119\pi\)
0.180931 + 0.983496i \(0.442089\pi\)
\(840\) 0 0
\(841\) 19.1359 + 3.68814i 0.659858 + 0.127177i
\(842\) −1.30077 5.36183i −0.0448274 0.184781i
\(843\) 0 0
\(844\) −44.1667 + 8.51244i −1.52028 + 0.293010i
\(845\) 10.9019 + 23.8718i 0.375036 + 0.821215i
\(846\) 0 0
\(847\) −19.1862 8.76202i −0.659244 0.301067i
\(848\) 16.9069 + 13.2957i 0.580586 + 0.456578i
\(849\) 0 0
\(850\) −19.2117 + 11.0919i −0.658957 + 0.380449i
\(851\) 20.9139 + 14.2427i 0.716920 + 0.488234i
\(852\) 0 0
\(853\) −0.880891 18.4922i −0.0301611 0.633160i −0.962452 0.271451i \(-0.912496\pi\)
0.932291 0.361709i \(-0.117807\pi\)
\(854\) 16.0130 + 2.30232i 0.547953 + 0.0787838i
\(855\) 0 0
\(856\) 0.981389 + 3.34230i 0.0335432 + 0.114238i
\(857\) 0.140114 1.46734i 0.00478621 0.0501235i −0.992763 0.120088i \(-0.961682\pi\)
0.997550 + 0.0699642i \(0.0222885\pi\)
\(858\) 0 0
\(859\) −27.9384 + 21.9710i −0.953245 + 0.749641i −0.968182 0.250248i \(-0.919488\pi\)
0.0149363 + 0.999888i \(0.495245\pi\)
\(860\) −11.0906 + 2.69054i −0.378185 + 0.0917468i
\(861\) 0 0
\(862\) −1.35765 2.63347i −0.0462416 0.0896963i
\(863\) −0.570000 + 0.886937i −0.0194030 + 0.0301917i −0.850820 0.525458i \(-0.823894\pi\)
0.831417 + 0.555650i \(0.187530\pi\)
\(864\) 0 0
\(865\) 0.0629825 0.214499i 0.00214147 0.00729317i
\(866\) 9.51976 + 3.81114i 0.323495 + 0.129508i
\(867\) 0 0
\(868\) 38.1953 + 27.1988i 1.29643 + 0.923187i
\(869\) −11.7313 + 12.3034i −0.397956 + 0.417365i
\(870\) 0 0
\(871\) −14.8937 + 18.9389i −0.504653 + 0.641719i
\(872\) −2.79795 + 1.79813i −0.0947505 + 0.0608924i
\(873\) 0 0
\(874\) −3.14869 + 3.79127i −0.106506 + 0.128242i
\(875\) 49.6046 + 28.6392i 1.67694 + 0.968182i
\(876\) 0 0
\(877\) −16.0329 + 6.41862i −0.541394 + 0.216741i −0.626209 0.779655i \(-0.715394\pi\)
0.0848150 + 0.996397i \(0.472970\pi\)
\(878\) −0.985195 10.3174i −0.0332487 0.348196i
\(879\) 0 0
\(880\) −22.1243 2.11261i −0.745810 0.0712162i
\(881\) 29.7522 + 34.3359i 1.00238 + 1.15681i 0.987612 + 0.156915i \(0.0501550\pi\)
0.0147663 + 0.999891i \(0.495300\pi\)
\(882\) 0 0
\(883\) −4.39522 1.29055i −0.147911 0.0434306i 0.206939 0.978354i \(-0.433650\pi\)
−0.354850 + 0.934923i \(0.615468\pi\)
\(884\) −7.92343 22.8933i −0.266494 0.769983i
\(885\) 0 0
\(886\) 0.329541 6.91791i 0.0110711 0.232412i
\(887\) 0.119055 0.617717i 0.00399748 0.0207409i −0.979875 0.199611i \(-0.936032\pi\)
0.983873 + 0.178870i \(0.0572442\pi\)
\(888\) 0 0
\(889\) −16.3713 + 40.8936i −0.549076 + 1.37153i
\(890\) 20.8251 18.0450i 0.698057 0.604870i
\(891\) 0 0
\(892\) 23.4286 6.87927i 0.784449 0.230335i
\(893\) 5.04058 + 7.07851i 0.168677 + 0.236873i
\(894\) 0 0
\(895\) −0.200132 + 0.388203i −0.00668969 + 0.0129762i
\(896\) −15.0195 26.0145i −0.501766 0.869083i
\(897\) 0 0
\(898\) −0.202608 + 0.350927i −0.00676111 + 0.0117106i
\(899\) −14.9864 23.3192i −0.499823 0.777740i
\(900\) 0 0
\(901\) −15.7219 + 34.4261i −0.523772 + 1.14690i
\(902\) 1.03468 4.26500i 0.0344510 0.142009i
\(903\) 0 0
\(904\) −13.4418 4.65226i −0.447069 0.154732i
\(905\) −36.4451 46.3437i −1.21148 1.54052i
\(906\) 0 0
\(907\) 8.02706 2.77819i 0.266534 0.0922484i −0.190532 0.981681i \(-0.561021\pi\)
0.457066 + 0.889433i \(0.348900\pi\)
\(908\) −6.42352 4.12815i −0.213172 0.136997i
\(909\) 0 0
\(910\) 7.50517 8.66143i 0.248794 0.287123i
\(911\) −15.7883 + 15.0541i −0.523090 + 0.498765i −0.904987 0.425440i \(-0.860119\pi\)
0.381897 + 0.924205i \(0.375271\pi\)
\(912\) 0 0
\(913\) −8.23181 + 23.7842i −0.272433 + 0.787143i
\(914\) 4.79090 6.72788i 0.158469 0.222539i
\(915\) 0 0
\(916\) −0.232644 + 0.165665i −0.00768678 + 0.00547373i
\(917\) −3.52762 + 24.5351i −0.116492 + 0.810221i
\(918\) 0 0
\(919\) 46.3980i 1.53053i 0.643715 + 0.765265i \(0.277392\pi\)
−0.643715 + 0.765265i \(0.722608\pi\)
\(920\) −23.6726 + 17.6152i −0.780462 + 0.580755i
\(921\) 0 0
\(922\) 10.8801 + 5.60910i 0.358318 + 0.184726i
\(923\) 0.658362 + 1.64451i 0.0216702 + 0.0541296i
\(924\) 0 0
\(925\) 52.0915 + 12.6373i 1.71276 + 0.415510i
\(926\) −3.18780 + 1.45582i −0.104758 + 0.0478412i
\(927\) 0 0
\(928\) 1.93187 + 13.4365i 0.0634167 + 0.441073i
\(929\) 10.2684 + 10.7692i 0.336895 + 0.353325i 0.870289 0.492542i \(-0.163932\pi\)
−0.533394 + 0.845867i \(0.679084\pi\)
\(930\) 0 0
\(931\) −2.81015 0.133864i −0.0920989 0.00438721i
\(932\) −18.9505 0.902723i −0.620744 0.0295697i
\(933\) 0 0
\(934\) −0.433127 0.454251i −0.0141724 0.0148635i
\(935\) −5.56546 38.7086i −0.182010 1.26591i
\(936\) 0 0
\(937\) −7.36347 + 3.36278i −0.240554 + 0.109857i −0.532045 0.846716i \(-0.678576\pi\)
0.291490 + 0.956574i \(0.405849\pi\)
\(938\) −11.0102 2.67105i −0.359496 0.0872128i
\(939\) 0 0
\(940\) 9.23877 + 23.0773i 0.301335 + 0.752699i
\(941\) 7.56439 + 3.89972i 0.246592 + 0.127127i 0.577093 0.816679i \(-0.304187\pi\)
−0.330500 + 0.943806i \(0.607217\pi\)
\(942\) 0 0
\(943\) 12.8119 + 23.6244i 0.417214 + 0.769317i
\(944\) 6.12627i 0.199393i
\(945\) 0 0
\(946\) −0.178543 + 1.24180i −0.00580495 + 0.0403743i
\(947\) 34.6828 24.6975i 1.12704 0.802561i 0.144664 0.989481i \(-0.453790\pi\)
0.982375 + 0.186920i \(0.0598505\pi\)
\(948\) 0 0
\(949\) −5.28450 + 7.42105i −0.171542 + 0.240897i
\(950\) −3.41464 + 9.86594i −0.110785 + 0.320093i
\(951\) 0 0
\(952\) 17.2562 16.4538i 0.559277 0.533270i
\(953\) −13.6947 + 15.8045i −0.443615 + 0.511960i −0.932886 0.360173i \(-0.882718\pi\)
0.489270 + 0.872132i \(0.337263\pi\)
\(954\) 0 0
\(955\) 10.1579 + 6.52807i 0.328701 + 0.211243i
\(956\) 15.2084 5.26368i 0.491875 0.170239i
\(957\) 0 0
\(958\) 3.41282 + 4.33975i 0.110263 + 0.140211i
\(959\) 19.7683 + 6.84188i 0.638352 + 0.220936i
\(960\) 0 0
\(961\) 11.7362 48.3772i 0.378586 1.56055i
\(962\) 2.26269 4.95459i 0.0729520 0.159742i
\(963\) 0 0
\(964\) −21.6034 33.6155i −0.695798 1.08268i
\(965\) −19.2991 + 33.4270i −0.621259 + 1.07605i
\(966\) 0 0
\(967\) 16.7702 + 29.0469i 0.539295 + 0.934086i 0.998942 + 0.0459843i \(0.0146424\pi\)
−0.459648 + 0.888101i \(0.652024\pi\)
\(968\) 5.35661 10.3904i 0.172168 0.333959i
\(969\) 0 0
\(970\) −16.7263 23.4888i −0.537048 0.754179i
\(971\) −13.7785 + 4.04573i −0.442173 + 0.129834i −0.495238 0.868757i \(-0.664919\pi\)
0.0530649 + 0.998591i \(0.483101\pi\)
\(972\) 0 0
\(973\) 21.8882 18.9662i 0.701702 0.608028i
\(974\) 5.11275 12.7710i 0.163823 0.409210i
\(975\) 0 0
\(976\) 7.82638 40.6071i 0.250516 1.29980i
\(977\) 2.15010 45.1362i 0.0687878 1.44403i −0.655843 0.754897i \(-0.727687\pi\)
0.724631 0.689137i \(-0.242010\pi\)
\(978\) 0 0
\(979\) 10.6476 + 30.7641i 0.340297 + 0.983224i
\(980\) −7.72180 2.26733i −0.246664 0.0724271i
\(981\) 0 0
\(982\) 10.0464 + 11.5942i 0.320593 + 0.369984i
\(983\) 56.8866 + 5.43201i 1.81440 + 0.173254i 0.946333 0.323192i \(-0.104756\pi\)
0.868067 + 0.496447i \(0.165362\pi\)
\(984\) 0 0
\(985\) 9.00097 + 94.2624i 0.286795 + 3.00345i
\(986\) −6.25196 + 2.50291i −0.199103 + 0.0797088i
\(987\) 0 0
\(988\) −9.87362 5.70054i −0.314122 0.181358i
\(989\) −4.28781 6.37460i −0.136344 0.202701i
\(990\) 0 0
\(991\) 10.5824 6.80090i 0.336161 0.216038i −0.361659 0.932310i \(-0.617790\pi\)
0.697821 + 0.716273i \(0.254153\pi\)
\(992\) −24.4538 + 31.0955i −0.776409 + 0.987284i
\(993\) 0 0
\(994\) −0.574813 + 0.602846i −0.0182319 + 0.0191211i
\(995\) 21.3824 + 15.2263i 0.677867 + 0.482707i
\(996\) 0 0
\(997\) −9.81201 3.92814i −0.310749 0.124405i 0.211046 0.977476i \(-0.432313\pi\)
−0.521795 + 0.853071i \(0.674737\pi\)
\(998\) 2.31747 7.89259i 0.0733583 0.249836i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 621.2.s.a.494.12 440
3.2 odd 2 207.2.o.a.11.11 440
9.4 even 3 207.2.o.a.149.11 yes 440
9.5 odd 6 inner 621.2.s.a.287.12 440
23.21 odd 22 inner 621.2.s.a.251.12 440
69.44 even 22 207.2.o.a.182.11 yes 440
207.67 odd 66 207.2.o.a.113.11 yes 440
207.113 even 66 inner 621.2.s.a.44.12 440
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
207.2.o.a.11.11 440 3.2 odd 2
207.2.o.a.113.11 yes 440 207.67 odd 66
207.2.o.a.149.11 yes 440 9.4 even 3
207.2.o.a.182.11 yes 440 69.44 even 22
621.2.s.a.44.12 440 207.113 even 66 inner
621.2.s.a.251.12 440 23.21 odd 22 inner
621.2.s.a.287.12 440 9.5 odd 6 inner
621.2.s.a.494.12 440 1.1 even 1 trivial