Properties

Label 621.2.s.a.44.18
Level $621$
Weight $2$
Character 621.44
Analytic conductor $4.959$
Analytic rank $0$
Dimension $440$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [621,2,Mod(17,621)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("621.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(621, base_ring=CyclotomicField(66)) chi = DirichletCharacter(H, H._module([55, 21])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 621 = 3^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 621.s (of order \(66\), degree \(20\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.95870996552\)
Analytic rank: \(0\)
Dimension: \(440\)
Relative dimension: \(22\) over \(\Q(\zeta_{66})\)
Twist minimal: no (minimal twist has level 207)
Sato-Tate group: $\mathrm{SU}(2)[C_{66}]$

Embedding invariants

Embedding label 44.18
Character \(\chi\) \(=\) 621.44
Dual form 621.2.s.a.494.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.82640 + 0.0870020i) q^{2} +(1.33722 + 0.127689i) q^{4} +(0.497778 - 0.474630i) q^{5} +(0.727727 - 3.77580i) q^{7} +(-1.18854 - 0.170886i) q^{8} +(0.950434 - 0.823555i) q^{10} +(3.80876 + 1.96355i) q^{11} +(0.691689 - 0.133312i) q^{13} +(1.65762 - 6.83281i) q^{14} +(-4.79392 - 0.923952i) q^{16} +(3.30816 - 7.24386i) q^{17} +(-1.89153 + 0.863831i) q^{19} +(0.726241 - 0.571122i) q^{20} +(6.78547 + 3.91760i) q^{22} +(4.04740 + 2.57265i) q^{23} +(-0.215401 + 4.52182i) q^{25} +(1.27490 - 0.183303i) q^{26} +(1.45525 - 4.95614i) q^{28} +(0.711492 + 7.45108i) q^{29} +(-3.93002 - 3.09060i) q^{31} +(-6.34139 - 1.53841i) q^{32} +(6.67225 - 12.9424i) q^{34} +(-1.42986 - 2.22491i) q^{35} +(-0.969499 - 3.30181i) q^{37} +(-3.52983 + 1.41313i) q^{38} +(-0.672735 + 0.479052i) q^{40} +(-0.863301 - 0.905404i) q^{41} +(1.04122 + 1.32402i) q^{43} +(4.84241 + 3.11203i) q^{44} +(7.16834 + 5.05081i) q^{46} +(-0.172200 + 0.0994197i) q^{47} +(-7.22854 - 2.89387i) q^{49} +(-0.786815 + 8.23989i) q^{50} +(0.941960 - 0.0899462i) q^{52} +(-7.10983 + 8.20518i) q^{53} +(2.82787 - 0.830339i) q^{55} +(-1.51016 + 4.36333i) q^{56} +(0.651208 + 13.6705i) q^{58} +(1.40276 + 7.27823i) q^{59} +(3.81925 + 9.54002i) q^{61} +(-6.90889 - 5.98659i) q^{62} +(-2.07929 - 0.610536i) q^{64} +(0.281033 - 0.394656i) q^{65} +(1.99939 + 3.87827i) q^{67} +(5.34868 - 9.26419i) q^{68} +(-2.41793 - 4.18797i) q^{70} +(-0.172587 + 0.268551i) q^{71} +(-4.97498 - 10.8937i) q^{73} +(-1.48343 - 6.11477i) q^{74} +(-2.63968 + 0.913602i) q^{76} +(10.1857 - 12.9522i) q^{77} +(-15.2755 - 5.28691i) q^{79} +(-2.82484 + 1.81542i) q^{80} +(-1.49796 - 1.72874i) q^{82} +(2.43239 + 2.31928i) q^{83} +(-1.79143 - 5.17599i) q^{85} +(1.78649 + 2.50877i) q^{86} +(-4.19131 - 2.98462i) q^{88} +(1.65318 + 11.4981i) q^{89} -2.70870i q^{91} +(5.08375 + 3.95699i) q^{92} +(-0.323155 + 0.166598i) q^{94} +(-0.531559 + 1.32777i) q^{95} +(-4.69126 + 1.13809i) q^{97} +(-12.9504 - 5.91426i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 440 q + 27 q^{2} - 29 q^{4} + 33 q^{5} - 11 q^{7} - 44 q^{10} + 33 q^{11} - 9 q^{13} + 33 q^{14} + 3 q^{16} - 44 q^{19} + 33 q^{20} + 27 q^{23} + 11 q^{25} - 44 q^{28} - 27 q^{29} - 3 q^{31} + 33 q^{32}+ \cdots + 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/621\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(461\)
\(\chi(n)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.82640 + 0.0870020i 1.29146 + 0.0615197i 0.682032 0.731323i \(-0.261097\pi\)
0.609427 + 0.792842i \(0.291400\pi\)
\(3\) 0 0
\(4\) 1.33722 + 0.127689i 0.668608 + 0.0638443i
\(5\) 0.497778 0.474630i 0.222613 0.212261i −0.570563 0.821254i \(-0.693275\pi\)
0.793175 + 0.608993i \(0.208426\pi\)
\(6\) 0 0
\(7\) 0.727727 3.77580i 0.275055 1.42712i −0.537021 0.843569i \(-0.680451\pi\)
0.812076 0.583551i \(-0.198337\pi\)
\(8\) −1.18854 0.170886i −0.420211 0.0604173i
\(9\) 0 0
\(10\) 0.950434 0.823555i 0.300553 0.260431i
\(11\) 3.80876 + 1.96355i 1.14838 + 0.592033i 0.923972 0.382461i \(-0.124923\pi\)
0.224412 + 0.974494i \(0.427954\pi\)
\(12\) 0 0
\(13\) 0.691689 0.133312i 0.191840 0.0369741i −0.0924261 0.995720i \(-0.529462\pi\)
0.284266 + 0.958745i \(0.408250\pi\)
\(14\) 1.65762 6.83281i 0.443018 1.82614i
\(15\) 0 0
\(16\) −4.79392 0.923952i −1.19848 0.230988i
\(17\) 3.30816 7.24386i 0.802347 1.75689i 0.165037 0.986287i \(-0.447226\pi\)
0.637310 0.770607i \(-0.280047\pi\)
\(18\) 0 0
\(19\) −1.89153 + 0.863831i −0.433946 + 0.198176i −0.620397 0.784288i \(-0.713029\pi\)
0.186451 + 0.982464i \(0.440301\pi\)
\(20\) 0.726241 0.571122i 0.162392 0.127707i
\(21\) 0 0
\(22\) 6.78547 + 3.91760i 1.44667 + 0.835234i
\(23\) 4.04740 + 2.57265i 0.843942 + 0.536434i
\(24\) 0 0
\(25\) −0.215401 + 4.52182i −0.0430801 + 0.904363i
\(26\) 1.27490 0.183303i 0.250028 0.0359486i
\(27\) 0 0
\(28\) 1.45525 4.95614i 0.275017 0.936623i
\(29\) 0.711492 + 7.45108i 0.132121 + 1.38363i 0.781851 + 0.623465i \(0.214276\pi\)
−0.649730 + 0.760165i \(0.725118\pi\)
\(30\) 0 0
\(31\) −3.93002 3.09060i −0.705853 0.555089i 0.199423 0.979914i \(-0.436093\pi\)
−0.905276 + 0.424825i \(0.860336\pi\)
\(32\) −6.34139 1.53841i −1.12101 0.271954i
\(33\) 0 0
\(34\) 6.67225 12.9424i 1.14428 2.21960i
\(35\) −1.42986 2.22491i −0.241691 0.376079i
\(36\) 0 0
\(37\) −0.969499 3.30181i −0.159385 0.542814i −0.999999 0.00118053i \(-0.999624\pi\)
0.840615 0.541634i \(-0.182194\pi\)
\(38\) −3.52983 + 1.41313i −0.572615 + 0.229240i
\(39\) 0 0
\(40\) −0.672735 + 0.479052i −0.106369 + 0.0757448i
\(41\) −0.863301 0.905404i −0.134825 0.141400i 0.652860 0.757479i \(-0.273569\pi\)
−0.787685 + 0.616078i \(0.788720\pi\)
\(42\) 0 0
\(43\) 1.04122 + 1.32402i 0.158785 + 0.201911i 0.858935 0.512084i \(-0.171126\pi\)
−0.700151 + 0.713995i \(0.746884\pi\)
\(44\) 4.84241 + 3.11203i 0.730020 + 0.469156i
\(45\) 0 0
\(46\) 7.16834 + 5.05081i 1.05691 + 0.744702i
\(47\) −0.172200 + 0.0994197i −0.0251179 + 0.0145018i −0.512506 0.858683i \(-0.671283\pi\)
0.487388 + 0.873185i \(0.337950\pi\)
\(48\) 0 0
\(49\) −7.22854 2.89387i −1.03265 0.413410i
\(50\) −0.786815 + 8.23989i −0.111272 + 1.16530i
\(51\) 0 0
\(52\) 0.941960 0.0899462i 0.130626 0.0124733i
\(53\) −7.10983 + 8.20518i −0.976610 + 1.12707i 0.0152691 + 0.999883i \(0.495139\pi\)
−0.991879 + 0.127185i \(0.959406\pi\)
\(54\) 0 0
\(55\) 2.82787 0.830339i 0.381311 0.111963i
\(56\) −1.51016 + 4.36333i −0.201804 + 0.583074i
\(57\) 0 0
\(58\) 0.651208 + 13.6705i 0.0855078 + 1.79503i
\(59\) 1.40276 + 7.27823i 0.182624 + 0.947545i 0.951384 + 0.308007i \(0.0996620\pi\)
−0.768760 + 0.639538i \(0.779126\pi\)
\(60\) 0 0
\(61\) 3.81925 + 9.54002i 0.489005 + 1.22147i 0.943693 + 0.330824i \(0.107327\pi\)
−0.454688 + 0.890651i \(0.650249\pi\)
\(62\) −6.90889 5.98659i −0.877430 0.760298i
\(63\) 0 0
\(64\) −2.07929 0.610536i −0.259912 0.0763170i
\(65\) 0.281033 0.394656i 0.0348579 0.0489511i
\(66\) 0 0
\(67\) 1.99939 + 3.87827i 0.244264 + 0.473807i 0.978815 0.204747i \(-0.0656373\pi\)
−0.734551 + 0.678554i \(0.762607\pi\)
\(68\) 5.34868 9.26419i 0.648623 1.12345i
\(69\) 0 0
\(70\) −2.41793 4.18797i −0.288998 0.500559i
\(71\) −0.172587 + 0.268551i −0.0204823 + 0.0318711i −0.851344 0.524608i \(-0.824212\pi\)
0.830861 + 0.556479i \(0.187848\pi\)
\(72\) 0 0
\(73\) −4.97498 10.8937i −0.582277 1.27501i −0.939998 0.341181i \(-0.889173\pi\)
0.357721 0.933829i \(-0.383554\pi\)
\(74\) −1.48343 6.11477i −0.172445 0.710827i
\(75\) 0 0
\(76\) −2.63968 + 0.913602i −0.302792 + 0.104797i
\(77\) 10.1857 12.9522i 1.16077 1.47604i
\(78\) 0 0
\(79\) −15.2755 5.28691i −1.71863 0.594823i −0.723228 0.690610i \(-0.757342\pi\)
−0.995402 + 0.0957862i \(0.969463\pi\)
\(80\) −2.82484 + 1.81542i −0.315827 + 0.202970i
\(81\) 0 0
\(82\) −1.49796 1.72874i −0.165422 0.190907i
\(83\) 2.43239 + 2.31928i 0.266990 + 0.254574i 0.811733 0.584029i \(-0.198524\pi\)
−0.544743 + 0.838603i \(0.683373\pi\)
\(84\) 0 0
\(85\) −1.79143 5.17599i −0.194307 0.561414i
\(86\) 1.78649 + 2.50877i 0.192642 + 0.270528i
\(87\) 0 0
\(88\) −4.19131 2.98462i −0.446795 0.318161i
\(89\) 1.65318 + 11.4981i 0.175237 + 1.21880i 0.867604 + 0.497256i \(0.165659\pi\)
−0.692367 + 0.721546i \(0.743432\pi\)
\(90\) 0 0
\(91\) 2.70870i 0.283949i
\(92\) 5.08375 + 3.95699i 0.530018 + 0.412545i
\(93\) 0 0
\(94\) −0.323155 + 0.166598i −0.0333309 + 0.0171833i
\(95\) −0.531559 + 1.32777i −0.0545368 + 0.136226i
\(96\) 0 0
\(97\) −4.69126 + 1.13809i −0.476326 + 0.115555i −0.466732 0.884399i \(-0.654569\pi\)
−0.00959340 + 0.999954i \(0.503054\pi\)
\(98\) −12.9504 5.91426i −1.30819 0.597430i
\(99\) 0 0
\(100\) −0.865421 + 6.01914i −0.0865421 + 0.601914i
\(101\) −1.99639 + 2.09375i −0.198648 + 0.208336i −0.815522 0.578726i \(-0.803550\pi\)
0.616874 + 0.787062i \(0.288399\pi\)
\(102\) 0 0
\(103\) 6.92991 0.330112i 0.682824 0.0325269i 0.296696 0.954972i \(-0.404115\pi\)
0.386128 + 0.922445i \(0.373812\pi\)
\(104\) −0.844880 + 0.0402466i −0.0828473 + 0.00394650i
\(105\) 0 0
\(106\) −13.6992 + 14.3673i −1.33059 + 1.39548i
\(107\) 1.45241 10.1017i 0.140410 0.976572i −0.790796 0.612079i \(-0.790333\pi\)
0.931206 0.364493i \(-0.118758\pi\)
\(108\) 0 0
\(109\) −2.47709 1.13125i −0.237262 0.108354i 0.293236 0.956040i \(-0.405268\pi\)
−0.530498 + 0.847686i \(0.677995\pi\)
\(110\) 5.23706 1.27050i 0.499335 0.121137i
\(111\) 0 0
\(112\) −6.97733 + 17.4285i −0.659295 + 1.64684i
\(113\) −0.523879 + 0.270079i −0.0492824 + 0.0254069i −0.482692 0.875790i \(-0.660341\pi\)
0.433409 + 0.901197i \(0.357310\pi\)
\(114\) 0 0
\(115\) 3.23576 0.640412i 0.301736 0.0597187i
\(116\) 10.0545i 0.933541i
\(117\) 0 0
\(118\) 1.92878 + 13.4150i 0.177559 + 1.23495i
\(119\) −24.9440 17.7625i −2.28661 1.62829i
\(120\) 0 0
\(121\) 4.27048 + 5.99705i 0.388225 + 0.545186i
\(122\) 6.14547 + 17.7562i 0.556384 + 1.60757i
\(123\) 0 0
\(124\) −4.86065 4.63462i −0.436499 0.416201i
\(125\) 4.29100 + 4.95208i 0.383799 + 0.442928i
\(126\) 0 0
\(127\) 13.9757 8.98161i 1.24014 0.796989i 0.254701 0.967020i \(-0.418023\pi\)
0.985439 + 0.170031i \(0.0543866\pi\)
\(128\) 8.58839 + 2.97247i 0.759114 + 0.262732i
\(129\) 0 0
\(130\) 0.547615 0.696349i 0.0480290 0.0610738i
\(131\) −5.39981 + 1.86889i −0.471783 + 0.163286i −0.552606 0.833443i \(-0.686367\pi\)
0.0808225 + 0.996729i \(0.474245\pi\)
\(132\) 0 0
\(133\) 1.88514 + 7.77066i 0.163463 + 0.673802i
\(134\) 3.31426 + 7.25722i 0.286309 + 0.626929i
\(135\) 0 0
\(136\) −5.16975 + 8.04428i −0.443302 + 0.689792i
\(137\) −0.705864 1.22259i −0.0603060 0.104453i 0.834296 0.551317i \(-0.185874\pi\)
−0.894602 + 0.446863i \(0.852541\pi\)
\(138\) 0 0
\(139\) 7.64739 13.2457i 0.648643 1.12348i −0.334804 0.942288i \(-0.608670\pi\)
0.983447 0.181196i \(-0.0579967\pi\)
\(140\) −1.62794 3.15776i −0.137586 0.266880i
\(141\) 0 0
\(142\) −0.338577 + 0.475466i −0.0284128 + 0.0399002i
\(143\) 2.89624 + 0.850413i 0.242196 + 0.0711151i
\(144\) 0 0
\(145\) 3.89067 + 3.37128i 0.323102 + 0.279970i
\(146\) −8.13852 20.3290i −0.673548 1.68244i
\(147\) 0 0
\(148\) −0.874825 4.53902i −0.0719102 0.373105i
\(149\) 0.364633 + 7.65459i 0.0298719 + 0.627089i 0.963317 + 0.268367i \(0.0864841\pi\)
−0.933445 + 0.358721i \(0.883213\pi\)
\(150\) 0 0
\(151\) −3.21483 + 9.28863i −0.261619 + 0.755898i 0.735320 + 0.677720i \(0.237032\pi\)
−0.996939 + 0.0781786i \(0.975090\pi\)
\(152\) 2.39577 0.703460i 0.194322 0.0570582i
\(153\) 0 0
\(154\) 19.7300 22.7697i 1.58989 1.83483i
\(155\) −3.42317 + 0.326873i −0.274956 + 0.0262551i
\(156\) 0 0
\(157\) −0.657534 + 6.88601i −0.0524770 + 0.549564i 0.930558 + 0.366145i \(0.119322\pi\)
−0.983035 + 0.183419i \(0.941284\pi\)
\(158\) −27.4392 10.9850i −2.18294 0.873919i
\(159\) 0 0
\(160\) −3.88678 + 2.24403i −0.307277 + 0.177406i
\(161\) 12.6592 13.4100i 0.997687 1.05686i
\(162\) 0 0
\(163\) 7.94124 + 5.10352i 0.622006 + 0.399739i 0.813342 0.581786i \(-0.197646\pi\)
−0.191336 + 0.981525i \(0.561282\pi\)
\(164\) −1.03881 1.32095i −0.0811174 0.103149i
\(165\) 0 0
\(166\) 4.24073 + 4.44755i 0.329145 + 0.345197i
\(167\) −6.05282 + 4.31020i −0.468382 + 0.333533i −0.789758 0.613419i \(-0.789794\pi\)
0.321376 + 0.946952i \(0.395855\pi\)
\(168\) 0 0
\(169\) −11.6081 + 4.64719i −0.892932 + 0.357476i
\(170\) −2.82153 9.60926i −0.216402 0.736997i
\(171\) 0 0
\(172\) 1.22327 + 1.90345i 0.0932737 + 0.145137i
\(173\) −4.76457 + 9.24197i −0.362243 + 0.702654i −0.997576 0.0695845i \(-0.977833\pi\)
0.635333 + 0.772239i \(0.280863\pi\)
\(174\) 0 0
\(175\) 16.9167 + 4.10396i 1.27879 + 0.310230i
\(176\) −16.4447 12.9322i −1.23956 0.974803i
\(177\) 0 0
\(178\) 2.01901 + 21.1440i 0.151331 + 1.58481i
\(179\) 2.75416 9.37982i 0.205856 0.701080i −0.790240 0.612798i \(-0.790044\pi\)
0.996095 0.0882825i \(-0.0281378\pi\)
\(180\) 0 0
\(181\) 4.57265 0.657447i 0.339882 0.0488677i 0.0297394 0.999558i \(-0.490532\pi\)
0.310143 + 0.950690i \(0.399623\pi\)
\(182\) 0.235662 4.94716i 0.0174684 0.366708i
\(183\) 0 0
\(184\) −4.37086 3.74933i −0.322224 0.276405i
\(185\) −2.04973 1.18341i −0.150699 0.0870063i
\(186\) 0 0
\(187\) 26.8237 21.0944i 1.96154 1.54257i
\(188\) −0.242963 + 0.110958i −0.0177199 + 0.00809241i
\(189\) 0 0
\(190\) −1.08636 + 2.37879i −0.0788126 + 0.172576i
\(191\) 20.6911 + 3.98788i 1.49715 + 0.288553i 0.871053 0.491189i \(-0.163438\pi\)
0.626101 + 0.779742i \(0.284650\pi\)
\(192\) 0 0
\(193\) 3.01877 12.4435i 0.217296 0.895706i −0.753817 0.657084i \(-0.771789\pi\)
0.971113 0.238621i \(-0.0766954\pi\)
\(194\) −8.66713 + 1.67045i −0.622264 + 0.119932i
\(195\) 0 0
\(196\) −9.29660 4.79273i −0.664043 0.342338i
\(197\) −12.7308 + 11.0313i −0.907034 + 0.785950i −0.977362 0.211574i \(-0.932141\pi\)
0.0703277 + 0.997524i \(0.477596\pi\)
\(198\) 0 0
\(199\) −4.85097 0.697464i −0.343876 0.0494419i −0.0317868 0.999495i \(-0.510120\pi\)
−0.312089 + 0.950053i \(0.601029\pi\)
\(200\) 1.02873 5.33754i 0.0727419 0.377421i
\(201\) 0 0
\(202\) −3.82836 + 3.65033i −0.269362 + 0.256836i
\(203\) 28.6516 + 2.73589i 2.01095 + 0.192022i
\(204\) 0 0
\(205\) −0.859464 0.0409413i −0.0600275 0.00285946i
\(206\) 12.6855 0.883840
\(207\) 0 0
\(208\) −3.43908 −0.238457
\(209\) −8.90054 0.423985i −0.615663 0.0293277i
\(210\) 0 0
\(211\) −21.0335 2.00845i −1.44800 0.138268i −0.658763 0.752351i \(-0.728920\pi\)
−0.789241 + 0.614083i \(0.789526\pi\)
\(212\) −10.5551 + 10.0642i −0.724926 + 0.691215i
\(213\) 0 0
\(214\) 3.53155 18.3234i 0.241412 1.25256i
\(215\) 1.14672 + 0.164873i 0.0782053 + 0.0112442i
\(216\) 0 0
\(217\) −14.5295 + 12.5899i −0.986326 + 0.854657i
\(218\) −4.42573 2.28162i −0.299749 0.154531i
\(219\) 0 0
\(220\) 3.88750 0.749255i 0.262095 0.0505147i
\(221\) 1.32252 5.45152i 0.0889626 0.366709i
\(222\) 0 0
\(223\) 20.0900 + 3.87204i 1.34533 + 0.259291i 0.810534 0.585691i \(-0.199177\pi\)
0.534794 + 0.844982i \(0.320389\pi\)
\(224\) −10.4235 + 22.8243i −0.696451 + 1.52501i
\(225\) 0 0
\(226\) −0.980310 + 0.447692i −0.0652092 + 0.0297801i
\(227\) 2.07842 1.63448i 0.137949 0.108485i −0.546800 0.837263i \(-0.684154\pi\)
0.684749 + 0.728779i \(0.259912\pi\)
\(228\) 0 0
\(229\) 5.44939 + 3.14621i 0.360106 + 0.207907i 0.669127 0.743148i \(-0.266668\pi\)
−0.309021 + 0.951055i \(0.600001\pi\)
\(230\) 5.96551 0.888129i 0.393354 0.0585615i
\(231\) 0 0
\(232\) 0.427649 8.97747i 0.0280766 0.589400i
\(233\) 15.1039 2.17161i 0.989488 0.142267i 0.371482 0.928440i \(-0.378850\pi\)
0.618006 + 0.786173i \(0.287941\pi\)
\(234\) 0 0
\(235\) −0.0385297 + 0.131220i −0.00251340 + 0.00855986i
\(236\) 0.946450 + 9.91167i 0.0616087 + 0.645195i
\(237\) 0 0
\(238\) −44.0122 34.6116i −2.85289 2.24354i
\(239\) 10.1974 + 2.47386i 0.659614 + 0.160021i 0.551574 0.834126i \(-0.314027\pi\)
0.108040 + 0.994147i \(0.465543\pi\)
\(240\) 0 0
\(241\) 3.34809 6.49439i 0.215669 0.418340i −0.756038 0.654527i \(-0.772868\pi\)
0.971708 + 0.236187i \(0.0758979\pi\)
\(242\) 7.27784 + 11.3245i 0.467837 + 0.727969i
\(243\) 0 0
\(244\) 3.88901 + 13.2447i 0.248968 + 0.847907i
\(245\) −4.97172 + 1.99038i −0.317632 + 0.127161i
\(246\) 0 0
\(247\) −1.19319 + 0.849666i −0.0759208 + 0.0540629i
\(248\) 4.14284 + 4.34488i 0.263070 + 0.275900i
\(249\) 0 0
\(250\) 7.40624 + 9.41780i 0.468412 + 0.595634i
\(251\) −2.09511 1.34645i −0.132242 0.0849871i 0.472847 0.881145i \(-0.343226\pi\)
−0.605089 + 0.796157i \(0.706863\pi\)
\(252\) 0 0
\(253\) 10.3641 + 17.7459i 0.651582 + 1.11567i
\(254\) 26.3065 15.1881i 1.65062 0.952985i
\(255\) 0 0
\(256\) 19.4509 + 7.78696i 1.21568 + 0.486685i
\(257\) 1.93438 20.2578i 0.120663 1.26364i −0.708931 0.705278i \(-0.750822\pi\)
0.829594 0.558366i \(-0.188572\pi\)
\(258\) 0 0
\(259\) −13.1725 + 1.25782i −0.818500 + 0.0781573i
\(260\) 0.426195 0.491856i 0.0264315 0.0305036i
\(261\) 0 0
\(262\) −10.0248 + 2.94354i −0.619334 + 0.181853i
\(263\) 3.97236 11.4774i 0.244946 0.707726i −0.753773 0.657135i \(-0.771768\pi\)
0.998719 0.0505910i \(-0.0161105\pi\)
\(264\) 0 0
\(265\) 0.355311 + 7.45889i 0.0218266 + 0.458196i
\(266\) 2.76696 + 14.3563i 0.169653 + 0.880243i
\(267\) 0 0
\(268\) 2.17840 + 5.44139i 0.133067 + 0.332386i
\(269\) −9.86711 8.54990i −0.601609 0.521297i 0.299949 0.953955i \(-0.403030\pi\)
−0.901558 + 0.432658i \(0.857576\pi\)
\(270\) 0 0
\(271\) −9.43054 2.76906i −0.572864 0.168208i −0.0175461 0.999846i \(-0.505585\pi\)
−0.555318 + 0.831638i \(0.687404\pi\)
\(272\) −22.5520 + 31.6699i −1.36742 + 1.92027i
\(273\) 0 0
\(274\) −1.18282 2.29435i −0.0714568 0.138607i
\(275\) −9.69923 + 16.7996i −0.584885 + 1.01305i
\(276\) 0 0
\(277\) −4.91170 8.50732i −0.295116 0.511155i 0.679896 0.733308i \(-0.262025\pi\)
−0.975012 + 0.222153i \(0.928692\pi\)
\(278\) 15.1196 23.5265i 0.906812 1.41103i
\(279\) 0 0
\(280\) 1.31924 + 2.88873i 0.0788397 + 0.172635i
\(281\) −3.71993 15.3338i −0.221912 0.914735i −0.968413 0.249351i \(-0.919783\pi\)
0.746501 0.665384i \(-0.231732\pi\)
\(282\) 0 0
\(283\) 18.8674 6.53008i 1.12155 0.388173i 0.297520 0.954716i \(-0.403840\pi\)
0.824033 + 0.566542i \(0.191719\pi\)
\(284\) −0.265077 + 0.337073i −0.0157294 + 0.0200016i
\(285\) 0 0
\(286\) 5.21570 + 1.80517i 0.308411 + 0.106742i
\(287\) −4.04687 + 2.60077i −0.238879 + 0.153519i
\(288\) 0 0
\(289\) −30.3970 35.0800i −1.78806 2.06353i
\(290\) 6.81260 + 6.49580i 0.400050 + 0.381447i
\(291\) 0 0
\(292\) −5.26162 15.2024i −0.307913 0.889656i
\(293\) 2.67432 + 3.75555i 0.156235 + 0.219402i 0.885273 0.465072i \(-0.153972\pi\)
−0.729038 + 0.684474i \(0.760032\pi\)
\(294\) 0 0
\(295\) 4.15273 + 2.95715i 0.241781 + 0.172172i
\(296\) 0.588053 + 4.09000i 0.0341799 + 0.237726i
\(297\) 0 0
\(298\) 14.0121i 0.811696i
\(299\) 3.14251 + 1.23991i 0.181736 + 0.0717056i
\(300\) 0 0
\(301\) 5.75696 2.96792i 0.331826 0.171068i
\(302\) −6.67968 + 16.6850i −0.384373 + 0.960116i
\(303\) 0 0
\(304\) 9.86596 2.39346i 0.565852 0.137274i
\(305\) 6.42912 + 2.93608i 0.368130 + 0.168119i
\(306\) 0 0
\(307\) 3.22232 22.4117i 0.183908 1.27910i −0.663506 0.748171i \(-0.730932\pi\)
0.847413 0.530934i \(-0.178159\pi\)
\(308\) 15.2743 16.0193i 0.870337 0.912783i
\(309\) 0 0
\(310\) −6.28051 + 0.299177i −0.356709 + 0.0169921i
\(311\) 21.5965 1.02877i 1.22462 0.0583361i 0.574719 0.818351i \(-0.305111\pi\)
0.649906 + 0.760015i \(0.274808\pi\)
\(312\) 0 0
\(313\) 12.9438 13.5750i 0.731624 0.767305i −0.247867 0.968794i \(-0.579730\pi\)
0.979491 + 0.201489i \(0.0645780\pi\)
\(314\) −1.80002 + 12.5194i −0.101581 + 0.706510i
\(315\) 0 0
\(316\) −19.7516 9.02024i −1.11111 0.507428i
\(317\) −27.7410 + 6.72988i −1.55809 + 0.377988i −0.919982 0.391961i \(-0.871797\pi\)
−0.638106 + 0.769949i \(0.720282\pi\)
\(318\) 0 0
\(319\) −11.9207 + 29.7764i −0.667430 + 1.66716i
\(320\) −1.32480 + 0.682984i −0.0740588 + 0.0381800i
\(321\) 0 0
\(322\) 24.2875 23.3907i 1.35349 1.30351i
\(323\) 16.5596i 0.921403i
\(324\) 0 0
\(325\) 0.453823 + 3.15641i 0.0251736 + 0.175086i
\(326\) 14.0598 + 10.0120i 0.778703 + 0.554512i
\(327\) 0 0
\(328\) 0.871344 + 1.22363i 0.0481119 + 0.0675638i
\(329\) 0.250075 + 0.722544i 0.0137871 + 0.0398351i
\(330\) 0 0
\(331\) 14.8418 + 14.1516i 0.815779 + 0.777844i 0.977932 0.208922i \(-0.0669955\pi\)
−0.162153 + 0.986766i \(0.551844\pi\)
\(332\) 2.95648 + 3.41197i 0.162258 + 0.187256i
\(333\) 0 0
\(334\) −11.4299 + 7.34552i −0.625414 + 0.401929i
\(335\) 2.83600 + 0.981548i 0.154947 + 0.0536277i
\(336\) 0 0
\(337\) −15.5934 + 19.8286i −0.849424 + 1.08013i 0.146435 + 0.989220i \(0.453220\pi\)
−0.995859 + 0.0909103i \(0.971022\pi\)
\(338\) −21.6054 + 7.47769i −1.17518 + 0.406733i
\(339\) 0 0
\(340\) −1.73461 7.15015i −0.0940723 0.387771i
\(341\) −8.89994 19.4882i −0.481959 1.05534i
\(342\) 0 0
\(343\) −1.63463 + 2.54353i −0.0882617 + 0.137338i
\(344\) −1.01127 1.75158i −0.0545242 0.0944387i
\(345\) 0 0
\(346\) −9.50607 + 16.4650i −0.511049 + 0.885163i
\(347\) −10.3882 20.1503i −0.557669 1.08173i −0.984168 0.177238i \(-0.943284\pi\)
0.426499 0.904488i \(-0.359747\pi\)
\(348\) 0 0
\(349\) −5.02038 + 7.05014i −0.268735 + 0.377386i −0.926787 0.375587i \(-0.877441\pi\)
0.658052 + 0.752972i \(0.271381\pi\)
\(350\) 30.5396 + 8.96725i 1.63241 + 0.479320i
\(351\) 0 0
\(352\) −21.1321 18.3111i −1.12634 0.975983i
\(353\) −8.65884 21.6287i −0.460864 1.15118i −0.958829 0.283985i \(-0.908343\pi\)
0.497965 0.867197i \(-0.334081\pi\)
\(354\) 0 0
\(355\) 0.0415523 + 0.215594i 0.00220537 + 0.0114425i
\(356\) 0.742481 + 15.5866i 0.0393514 + 0.826088i
\(357\) 0 0
\(358\) 5.84626 16.8917i 0.308984 0.892752i
\(359\) 11.1076 3.26148i 0.586235 0.172134i 0.0248533 0.999691i \(-0.492088\pi\)
0.561382 + 0.827557i \(0.310270\pi\)
\(360\) 0 0
\(361\) −9.61069 + 11.0913i −0.505826 + 0.583754i
\(362\) 8.40867 0.802930i 0.441950 0.0422011i
\(363\) 0 0
\(364\) 0.345870 3.62211i 0.0181285 0.189850i
\(365\) −7.64690 3.06136i −0.400257 0.160239i
\(366\) 0 0
\(367\) −18.6842 + 10.7873i −0.975308 + 0.563094i −0.900850 0.434130i \(-0.857056\pi\)
−0.0744577 + 0.997224i \(0.523723\pi\)
\(368\) −17.0259 16.0727i −0.887538 0.837846i
\(369\) 0 0
\(370\) −3.64067 2.33971i −0.189269 0.121636i
\(371\) 25.8071 + 32.8164i 1.33984 + 1.70375i
\(372\) 0 0
\(373\) −24.2002 25.3805i −1.25304 1.31415i −0.929905 0.367799i \(-0.880111\pi\)
−0.323136 0.946352i \(-0.604737\pi\)
\(374\) 50.8260 36.1930i 2.62815 1.87150i
\(375\) 0 0
\(376\) 0.221655 0.0887374i 0.0114310 0.00457628i
\(377\) 1.48545 + 5.05898i 0.0765046 + 0.260551i
\(378\) 0 0
\(379\) 6.54282 + 10.1808i 0.336082 + 0.522954i 0.967627 0.252386i \(-0.0812152\pi\)
−0.631545 + 0.775339i \(0.717579\pi\)
\(380\) −0.880350 + 1.70764i −0.0451610 + 0.0876001i
\(381\) 0 0
\(382\) 37.4432 + 9.08362i 1.91576 + 0.464758i
\(383\) −12.6744 9.96723i −0.647630 0.509302i 0.239455 0.970907i \(-0.423031\pi\)
−0.887085 + 0.461606i \(0.847274\pi\)
\(384\) 0 0
\(385\) −1.07728 11.2818i −0.0549032 0.574972i
\(386\) 6.59609 22.4642i 0.335732 1.14340i
\(387\) 0 0
\(388\) −6.41855 + 0.922848i −0.325853 + 0.0468505i
\(389\) −0.533965 + 11.2093i −0.0270731 + 0.568335i 0.944057 + 0.329783i \(0.106976\pi\)
−0.971130 + 0.238551i \(0.923327\pi\)
\(390\) 0 0
\(391\) 32.0254 20.8081i 1.61959 1.05231i
\(392\) 8.09687 + 4.67473i 0.408954 + 0.236109i
\(393\) 0 0
\(394\) −24.2113 + 19.0400i −1.21975 + 0.959221i
\(395\) −10.1131 + 4.61851i −0.508847 + 0.232383i
\(396\) 0 0
\(397\) 0.386564 0.846457i 0.0194011 0.0424825i −0.899683 0.436543i \(-0.856203\pi\)
0.919085 + 0.394060i \(0.128930\pi\)
\(398\) −8.79912 1.69589i −0.441060 0.0850074i
\(399\) 0 0
\(400\) 5.21056 21.4782i 0.260528 1.07391i
\(401\) −23.7964 + 4.58639i −1.18834 + 0.229033i −0.744841 0.667243i \(-0.767474\pi\)
−0.443497 + 0.896276i \(0.646262\pi\)
\(402\) 0 0
\(403\) −3.13037 1.61382i −0.155935 0.0803899i
\(404\) −2.93695 + 2.54488i −0.146119 + 0.126613i
\(405\) 0 0
\(406\) 52.0912 + 7.48958i 2.58524 + 0.371702i
\(407\) 2.79069 14.4795i 0.138329 0.717720i
\(408\) 0 0
\(409\) 16.3095 15.5511i 0.806453 0.768952i −0.169824 0.985474i \(-0.554320\pi\)
0.976278 + 0.216523i \(0.0694715\pi\)
\(410\) −1.56616 0.149550i −0.0773471 0.00738576i
\(411\) 0 0
\(412\) 9.30893 + 0.443439i 0.458618 + 0.0218467i
\(413\) 28.5020 1.40249
\(414\) 0 0
\(415\) 2.31159 0.113471
\(416\) −4.59136 0.218714i −0.225110 0.0107233i
\(417\) 0 0
\(418\) −16.2190 1.54873i −0.793299 0.0757509i
\(419\) 12.3790 11.8033i 0.604752 0.576630i −0.324588 0.945856i \(-0.605226\pi\)
0.929340 + 0.369226i \(0.120377\pi\)
\(420\) 0 0
\(421\) −6.89914 + 35.7961i −0.336243 + 1.74460i 0.282744 + 0.959196i \(0.408755\pi\)
−0.618987 + 0.785401i \(0.712457\pi\)
\(422\) −38.2407 5.49819i −1.86153 0.267648i
\(423\) 0 0
\(424\) 9.85244 8.53719i 0.478477 0.414603i
\(425\) 32.0428 + 16.5192i 1.55431 + 0.801300i
\(426\) 0 0
\(427\) 38.8006 7.47821i 1.87769 0.361896i
\(428\) 3.23206 13.3227i 0.156228 0.643979i
\(429\) 0 0
\(430\) 2.08001 + 0.400890i 0.100307 + 0.0193326i
\(431\) −1.29293 + 2.83113i −0.0622783 + 0.136371i −0.938212 0.346061i \(-0.887519\pi\)
0.875934 + 0.482432i \(0.160246\pi\)
\(432\) 0 0
\(433\) −28.0657 + 12.8172i −1.34875 + 0.615954i −0.953158 0.302471i \(-0.902188\pi\)
−0.395593 + 0.918426i \(0.629461\pi\)
\(434\) −27.6320 + 21.7300i −1.32638 + 1.04307i
\(435\) 0 0
\(436\) −3.16796 1.82902i −0.151718 0.0875942i
\(437\) −9.87810 1.36996i −0.472534 0.0655341i
\(438\) 0 0
\(439\) 0.407501 8.55450i 0.0194490 0.408284i −0.968060 0.250720i \(-0.919333\pi\)
0.987509 0.157564i \(-0.0503642\pi\)
\(440\) −3.50293 + 0.503645i −0.166996 + 0.0240103i
\(441\) 0 0
\(442\) 2.88975 9.84158i 0.137451 0.468116i
\(443\) 1.77405 + 18.5787i 0.0842877 + 0.882701i 0.934430 + 0.356148i \(0.115910\pi\)
−0.850142 + 0.526554i \(0.823484\pi\)
\(444\) 0 0
\(445\) 6.28028 + 4.93887i 0.297714 + 0.234125i
\(446\) 36.3555 + 8.81976i 1.72148 + 0.417628i
\(447\) 0 0
\(448\) −3.81842 + 7.40670i −0.180403 + 0.349934i
\(449\) −21.5862 33.5888i −1.01872 1.58515i −0.791370 0.611338i \(-0.790632\pi\)
−0.227346 0.973814i \(-0.573005\pi\)
\(450\) 0 0
\(451\) −1.51030 5.14360i −0.0711171 0.242203i
\(452\) −0.735026 + 0.294260i −0.0345727 + 0.0138408i
\(453\) 0 0
\(454\) 3.93822 2.80439i 0.184830 0.131617i
\(455\) −1.28563 1.34833i −0.0602712 0.0632106i
\(456\) 0 0
\(457\) 7.10588 + 9.03586i 0.332399 + 0.422680i 0.923309 0.384058i \(-0.125474\pi\)
−0.590910 + 0.806737i \(0.701231\pi\)
\(458\) 9.67902 + 6.22033i 0.452271 + 0.290657i
\(459\) 0 0
\(460\) 4.40869 0.443199i 0.205556 0.0206642i
\(461\) 1.94634 1.12372i 0.0906502 0.0523369i −0.453990 0.891007i \(-0.650000\pi\)
0.544640 + 0.838670i \(0.316666\pi\)
\(462\) 0 0
\(463\) −3.53910 1.41684i −0.164476 0.0658462i 0.287963 0.957641i \(-0.407022\pi\)
−0.452439 + 0.891795i \(0.649446\pi\)
\(464\) 3.47361 36.3773i 0.161258 1.68877i
\(465\) 0 0
\(466\) 27.7746 2.65215i 1.28663 0.122859i
\(467\) −5.27043 + 6.08240i −0.243886 + 0.281460i −0.864474 0.502677i \(-0.832349\pi\)
0.620588 + 0.784137i \(0.286894\pi\)
\(468\) 0 0
\(469\) 16.0986 4.72698i 0.743365 0.218272i
\(470\) −0.0817870 + 0.236308i −0.00377255 + 0.0109001i
\(471\) 0 0
\(472\) −0.423490 8.89016i −0.0194927 0.409203i
\(473\) 1.36598 + 7.08736i 0.0628077 + 0.325877i
\(474\) 0 0
\(475\) −3.49865 8.73920i −0.160529 0.400982i
\(476\) −31.0874 26.9374i −1.42489 1.23467i
\(477\) 0 0
\(478\) 18.4092 + 5.40544i 0.842019 + 0.247239i
\(479\) 6.51917 9.15489i 0.297868 0.418298i −0.638334 0.769760i \(-0.720376\pi\)
0.936202 + 0.351462i \(0.114315\pi\)
\(480\) 0 0
\(481\) −1.11076 2.15458i −0.0506464 0.0982404i
\(482\) 6.67997 11.5700i 0.304264 0.527001i
\(483\) 0 0
\(484\) 4.94479 + 8.56464i 0.224763 + 0.389302i
\(485\) −1.79504 + 2.79313i −0.0815084 + 0.126829i
\(486\) 0 0
\(487\) 11.1988 + 24.5219i 0.507466 + 1.11119i 0.973970 + 0.226676i \(0.0727858\pi\)
−0.466505 + 0.884519i \(0.654487\pi\)
\(488\) −2.90906 11.9913i −0.131687 0.542822i
\(489\) 0 0
\(490\) −9.25351 + 3.20267i −0.418031 + 0.144682i
\(491\) −1.80173 + 2.29108i −0.0813108 + 0.103395i −0.825007 0.565123i \(-0.808829\pi\)
0.743696 + 0.668518i \(0.233071\pi\)
\(492\) 0 0
\(493\) 56.3283 + 19.4954i 2.53690 + 0.878029i
\(494\) −2.25316 + 1.44802i −0.101374 + 0.0651494i
\(495\) 0 0
\(496\) 15.9846 + 18.4473i 0.717731 + 0.828306i
\(497\) 0.888400 + 0.847088i 0.0398502 + 0.0379971i
\(498\) 0 0
\(499\) −13.2568 38.3030i −0.593456 1.71468i −0.694215 0.719768i \(-0.744248\pi\)
0.100759 0.994911i \(-0.467873\pi\)
\(500\) 5.10567 + 7.16991i 0.228333 + 0.320648i
\(501\) 0 0
\(502\) −3.70937 2.64143i −0.165557 0.117893i
\(503\) 1.21107 + 8.42315i 0.0539988 + 0.375570i 0.998845 + 0.0480546i \(0.0153021\pi\)
−0.944846 + 0.327515i \(0.893789\pi\)
\(504\) 0 0
\(505\) 1.98977i 0.0885435i
\(506\) 17.3850 + 33.3127i 0.772855 + 1.48093i
\(507\) 0 0
\(508\) 19.8353 10.2258i 0.880050 0.453697i
\(509\) −9.97524 + 24.9169i −0.442145 + 1.10442i 0.525205 + 0.850976i \(0.323989\pi\)
−0.967349 + 0.253448i \(0.918435\pi\)
\(510\) 0 0
\(511\) −44.7528 + 10.8569i −1.97975 + 0.480282i
\(512\) 18.3137 + 8.36358i 0.809358 + 0.369621i
\(513\) 0 0
\(514\) 5.29542 36.8304i 0.233571 1.62452i
\(515\) 3.29287 3.45346i 0.145101 0.152178i
\(516\) 0 0
\(517\) −0.851083 + 0.0405421i −0.0374306 + 0.00178304i
\(518\) −24.1677 + 1.15125i −1.06187 + 0.0505830i
\(519\) 0 0
\(520\) −0.401460 + 0.421039i −0.0176052 + 0.0184638i
\(521\) 0.983411 6.83977i 0.0430840 0.299656i −0.956874 0.290503i \(-0.906177\pi\)
0.999958 0.00915296i \(-0.00291352\pi\)
\(522\) 0 0
\(523\) −39.2907 17.9435i −1.71806 0.784613i −0.995652 0.0931477i \(-0.970307\pi\)
−0.722410 0.691465i \(-0.756966\pi\)
\(524\) −7.45934 + 1.80962i −0.325863 + 0.0790535i
\(525\) 0 0
\(526\) 8.25366 20.6167i 0.359877 0.898929i
\(527\) −35.3891 + 18.2443i −1.54157 + 0.794735i
\(528\) 0 0
\(529\) 9.76295 + 20.8251i 0.424476 + 0.905439i
\(530\) 13.6538i 0.593084i
\(531\) 0 0
\(532\) 1.52862 + 10.6318i 0.0662739 + 0.460945i
\(533\) −0.717837 0.511169i −0.0310930 0.0221412i
\(534\) 0 0
\(535\) −4.07161 5.71778i −0.176031 0.247201i
\(536\) −1.71361 4.95114i −0.0740165 0.213857i
\(537\) 0 0
\(538\) −17.2774 16.4740i −0.744882 0.710244i
\(539\) −21.8495 25.2157i −0.941124 1.08612i
\(540\) 0 0
\(541\) −24.4970 + 15.7433i −1.05321 + 0.676855i −0.948219 0.317618i \(-0.897117\pi\)
−0.104989 + 0.994473i \(0.533481\pi\)
\(542\) −16.9830 5.87787i −0.729482 0.252476i
\(543\) 0 0
\(544\) −32.1224 + 40.8469i −1.37723 + 1.75130i
\(545\) −1.76997 + 0.612591i −0.0758170 + 0.0262405i
\(546\) 0 0
\(547\) −5.67335 23.3859i −0.242575 0.999907i −0.954633 0.297786i \(-0.903752\pi\)
0.712058 0.702121i \(-0.247763\pi\)
\(548\) −0.787781 1.72500i −0.0336523 0.0736883i
\(549\) 0 0
\(550\) −19.1762 + 29.8388i −0.817678 + 1.27233i
\(551\) −7.78228 13.4793i −0.331536 0.574237i
\(552\) 0 0
\(553\) −31.0787 + 53.8299i −1.32160 + 2.28908i
\(554\) −8.23057 15.9651i −0.349683 0.678291i
\(555\) 0 0
\(556\) 11.9175 16.7358i 0.505416 0.709757i
\(557\) −30.6458 8.99841i −1.29850 0.381275i −0.441813 0.897107i \(-0.645664\pi\)
−0.856689 + 0.515833i \(0.827483\pi\)
\(558\) 0 0
\(559\) 0.896709 + 0.777002i 0.0379267 + 0.0328637i
\(560\) 4.79894 + 11.9872i 0.202792 + 0.506551i
\(561\) 0 0
\(562\) −5.46000 28.3292i −0.230316 1.19499i
\(563\) −0.520129 10.9188i −0.0219208 0.460175i −0.982966 0.183785i \(-0.941165\pi\)
0.961046 0.276390i \(-0.0891380\pi\)
\(564\) 0 0
\(565\) −0.132588 + 0.383088i −0.00557802 + 0.0161166i
\(566\) 35.0276 10.2850i 1.47232 0.432312i
\(567\) 0 0
\(568\) 0.251018 0.289690i 0.0105325 0.0121551i
\(569\) −16.2143 + 1.54828i −0.679738 + 0.0649071i −0.429213 0.903203i \(-0.641209\pi\)
−0.250525 + 0.968110i \(0.580603\pi\)
\(570\) 0 0
\(571\) 0.370369 3.87867i 0.0154994 0.162317i −0.984408 0.175898i \(-0.943717\pi\)
0.999908 + 0.0135809i \(0.00432306\pi\)
\(572\) 3.76431 + 1.50700i 0.157394 + 0.0630109i
\(573\) 0 0
\(574\) −7.61747 + 4.39795i −0.317947 + 0.183567i
\(575\) −12.5049 + 17.7475i −0.521489 + 0.740120i
\(576\) 0 0
\(577\) 23.9241 + 15.3751i 0.995972 + 0.640072i 0.933726 0.357989i \(-0.116537\pi\)
0.0622458 + 0.998061i \(0.480174\pi\)
\(578\) −52.4650 66.7146i −2.18225 2.77496i
\(579\) 0 0
\(580\) 4.77219 + 5.00493i 0.198154 + 0.207818i
\(581\) 10.5273 7.49643i 0.436745 0.311004i
\(582\) 0 0
\(583\) −43.1909 + 17.2910i −1.78878 + 0.716121i
\(584\) 4.05137 + 13.7977i 0.167647 + 0.570953i
\(585\) 0 0
\(586\) 4.55762 + 7.09180i 0.188274 + 0.292960i
\(587\) −12.1250 + 23.5191i −0.500451 + 0.970739i 0.494385 + 0.869243i \(0.335393\pi\)
−0.994836 + 0.101496i \(0.967637\pi\)
\(588\) 0 0
\(589\) 10.1035 + 2.45108i 0.416307 + 0.100995i
\(590\) 7.32726 + 5.76222i 0.301658 + 0.237227i
\(591\) 0 0
\(592\) 1.59698 + 16.7244i 0.0656357 + 0.687368i
\(593\) −10.3740 + 35.3306i −0.426009 + 1.45085i 0.414995 + 0.909824i \(0.363783\pi\)
−0.841004 + 0.541029i \(0.818035\pi\)
\(594\) 0 0
\(595\) −20.8472 + 2.99737i −0.854651 + 0.122880i
\(596\) −0.489811 + 10.2824i −0.0200634 + 0.421183i
\(597\) 0 0
\(598\) 5.63160 + 2.53797i 0.230293 + 0.103785i
\(599\) 16.3246 + 9.42499i 0.667004 + 0.385095i 0.794940 0.606688i \(-0.207502\pi\)
−0.127937 + 0.991782i \(0.540835\pi\)
\(600\) 0 0
\(601\) 13.5827 10.6816i 0.554051 0.435711i −0.301472 0.953475i \(-0.597478\pi\)
0.855523 + 0.517764i \(0.173236\pi\)
\(602\) 10.7727 4.91973i 0.439063 0.200513i
\(603\) 0 0
\(604\) −5.48497 + 12.0104i −0.223180 + 0.488696i
\(605\) 4.97213 + 0.958299i 0.202146 + 0.0389604i
\(606\) 0 0
\(607\) −1.99971 + 8.24293i −0.0811658 + 0.334570i −0.997888 0.0649547i \(-0.979310\pi\)
0.916722 + 0.399525i \(0.130825\pi\)
\(608\) 13.3238 2.56796i 0.540353 0.104144i
\(609\) 0 0
\(610\) 11.4867 + 5.92179i 0.465082 + 0.239766i
\(611\) −0.105855 + 0.0917238i −0.00428243 + 0.00371075i
\(612\) 0 0
\(613\) −16.6964 2.40059i −0.674363 0.0969587i −0.203378 0.979100i \(-0.565192\pi\)
−0.470985 + 0.882141i \(0.656101\pi\)
\(614\) 7.83510 40.6524i 0.316199 1.64060i
\(615\) 0 0
\(616\) −14.3195 + 13.6536i −0.576947 + 0.550118i
\(617\) 45.2101 + 4.31704i 1.82009 + 0.173798i 0.948571 0.316563i \(-0.102529\pi\)
0.871520 + 0.490361i \(0.163135\pi\)
\(618\) 0 0
\(619\) 17.0176 + 0.810648i 0.683995 + 0.0325827i 0.386703 0.922204i \(-0.373614\pi\)
0.297291 + 0.954787i \(0.403917\pi\)
\(620\) −4.61925 −0.185514
\(621\) 0 0
\(622\) 39.5333 1.58514
\(623\) 44.6178 + 2.12541i 1.78758 + 0.0851527i
\(624\) 0 0
\(625\) −18.0459 1.72317i −0.721834 0.0689268i
\(626\) 24.8215 23.6672i 0.992066 0.945933i
\(627\) 0 0
\(628\) −1.75853 + 9.12412i −0.0701730 + 0.364092i
\(629\) −27.1251 3.90000i −1.08155 0.155503i
\(630\) 0 0
\(631\) −0.534040 + 0.462748i −0.0212598 + 0.0184217i −0.665426 0.746464i \(-0.731750\pi\)
0.644166 + 0.764886i \(0.277205\pi\)
\(632\) 17.2521 + 8.89406i 0.686250 + 0.353787i
\(633\) 0 0
\(634\) −51.2515 + 9.87793i −2.03546 + 0.392303i
\(635\) 2.69383 11.1041i 0.106901 0.440653i
\(636\) 0 0
\(637\) −5.38569 1.03801i −0.213389 0.0411273i
\(638\) −24.3625 + 53.3464i −0.964521 + 2.11201i
\(639\) 0 0
\(640\) 5.68593 2.59668i 0.224756 0.102643i
\(641\) −25.7812 + 20.2746i −1.01830 + 0.800797i −0.980106 0.198473i \(-0.936402\pi\)
−0.0381900 + 0.999270i \(0.512159\pi\)
\(642\) 0 0
\(643\) −14.4108 8.32011i −0.568308 0.328113i 0.188165 0.982137i \(-0.439746\pi\)
−0.756473 + 0.654024i \(0.773079\pi\)
\(644\) 18.6404 16.3156i 0.734535 0.642927i
\(645\) 0 0
\(646\) −1.44072 + 30.2445i −0.0566845 + 1.18995i
\(647\) −4.37389 + 0.628871i −0.171955 + 0.0247235i −0.227755 0.973719i \(-0.573138\pi\)
0.0557992 + 0.998442i \(0.482229\pi\)
\(648\) 0 0
\(649\) −8.94839 + 30.4754i −0.351255 + 1.19626i
\(650\) 0.554247 + 5.80434i 0.0217394 + 0.227665i
\(651\) 0 0
\(652\) 9.96749 + 7.83852i 0.390357 + 0.306980i
\(653\) −39.2063 9.51134i −1.53426 0.372208i −0.622397 0.782701i \(-0.713841\pi\)
−0.911863 + 0.410494i \(0.865356\pi\)
\(654\) 0 0
\(655\) −1.80087 + 3.49320i −0.0703659 + 0.136491i
\(656\) 3.30204 + 5.13808i 0.128923 + 0.200608i
\(657\) 0 0
\(658\) 0.393873 + 1.34141i 0.0153548 + 0.0522936i
\(659\) 15.6766 6.27595i 0.610672 0.244476i −0.0456496 0.998958i \(-0.514536\pi\)
0.656321 + 0.754481i \(0.272112\pi\)
\(660\) 0 0
\(661\) 4.72808 3.36685i 0.183901 0.130955i −0.484399 0.874847i \(-0.660962\pi\)
0.668300 + 0.743892i \(0.267022\pi\)
\(662\) 25.8758 + 27.1378i 1.00569 + 1.05474i
\(663\) 0 0
\(664\) −2.49466 3.17221i −0.0968114 0.123106i
\(665\) 4.62657 + 2.97332i 0.179411 + 0.115300i
\(666\) 0 0
\(667\) −16.2893 + 31.9879i −0.630725 + 1.23858i
\(668\) −8.64429 + 4.99078i −0.334458 + 0.193099i
\(669\) 0 0
\(670\) 5.09426 + 2.03943i 0.196808 + 0.0787902i
\(671\) −4.18573 + 43.8349i −0.161588 + 1.69223i
\(672\) 0 0
\(673\) −8.70790 + 0.831504i −0.335665 + 0.0320521i −0.261528 0.965196i \(-0.584226\pi\)
−0.0741371 + 0.997248i \(0.523620\pi\)
\(674\) −30.2048 + 34.8582i −1.16345 + 1.34269i
\(675\) 0 0
\(676\) −16.1160 + 4.73207i −0.619844 + 0.182003i
\(677\) −0.831292 + 2.40186i −0.0319491 + 0.0923110i −0.959848 0.280522i \(-0.909492\pi\)
0.927898 + 0.372833i \(0.121614\pi\)
\(678\) 0 0
\(679\) 0.883241 + 18.5415i 0.0338957 + 0.711558i
\(680\) 1.24467 + 6.45798i 0.0477311 + 0.247652i
\(681\) 0 0
\(682\) −14.5593 36.3674i −0.557505 1.39258i
\(683\) 24.5834 + 21.3017i 0.940659 + 0.815086i 0.982922 0.184021i \(-0.0589114\pi\)
−0.0422633 + 0.999107i \(0.513457\pi\)
\(684\) 0 0
\(685\) −0.931642 0.273555i −0.0355962 0.0104520i
\(686\) −3.20678 + 4.50329i −0.122435 + 0.171936i
\(687\) 0 0
\(688\) −3.76820 7.30928i −0.143661 0.278664i
\(689\) −3.82394 + 6.62326i −0.145681 + 0.252326i
\(690\) 0 0
\(691\) −16.1522 27.9765i −0.614460 1.06428i −0.990479 0.137663i \(-0.956041\pi\)
0.376019 0.926612i \(-0.377293\pi\)
\(692\) −7.55135 + 11.7501i −0.287059 + 0.446673i
\(693\) 0 0
\(694\) −17.2199 37.7063i −0.653658 1.43131i
\(695\) −2.48009 10.2231i −0.0940753 0.387784i
\(696\) 0 0
\(697\) −9.41456 + 3.25841i −0.356602 + 0.123421i
\(698\) −9.78260 + 12.4396i −0.370277 + 0.470845i
\(699\) 0 0
\(700\) 22.0973 + 7.64795i 0.835199 + 0.289065i
\(701\) 29.4895 18.9518i 1.11380 0.715798i 0.151685 0.988429i \(-0.451530\pi\)
0.962119 + 0.272630i \(0.0878936\pi\)
\(702\) 0 0
\(703\) 4.68604 + 5.40797i 0.176737 + 0.203966i
\(704\) −6.72071 6.40818i −0.253296 0.241517i
\(705\) 0 0
\(706\) −13.9327 40.2560i −0.524366 1.51506i
\(707\) 6.45277 + 9.06165i 0.242681 + 0.340798i
\(708\) 0 0
\(709\) 17.9176 + 12.7591i 0.672911 + 0.479178i 0.864720 0.502255i \(-0.167496\pi\)
−0.191809 + 0.981432i \(0.561435\pi\)
\(710\) 0.0571339 + 0.397375i 0.00214420 + 0.0149132i
\(711\) 0 0
\(712\) 13.9485i 0.522741i
\(713\) −7.95535 22.6195i −0.297930 0.847106i
\(714\) 0 0
\(715\) 1.84532 0.951326i 0.0690109 0.0355776i
\(716\) 4.88060 12.1912i 0.182397 0.455605i
\(717\) 0 0
\(718\) 20.5706 4.99037i 0.767688 0.186239i
\(719\) −34.9109 15.9433i −1.30196 0.594583i −0.360827 0.932633i \(-0.617505\pi\)
−0.941128 + 0.338050i \(0.890233\pi\)
\(720\) 0 0
\(721\) 3.79664 26.4062i 0.141394 0.983418i
\(722\) −18.5179 + 19.4210i −0.689165 + 0.722776i
\(723\) 0 0
\(724\) 6.19856 0.295274i 0.230368 0.0109738i
\(725\) −33.8457 + 1.61227i −1.25700 + 0.0598781i
\(726\) 0 0
\(727\) −28.4361 + 29.8230i −1.05464 + 1.10607i −0.0604761 + 0.998170i \(0.519262\pi\)
−0.994161 + 0.107902i \(0.965587\pi\)
\(728\) −0.462878 + 3.21939i −0.0171554 + 0.119318i
\(729\) 0 0
\(730\) −13.6999 6.25655i −0.507057 0.231565i
\(731\) 13.0355 3.16239i 0.482137 0.116965i
\(732\) 0 0
\(733\) −5.53644 + 13.8294i −0.204493 + 0.510799i −0.994792 0.101922i \(-0.967501\pi\)
0.790299 + 0.612721i \(0.209925\pi\)
\(734\) −35.0633 + 18.0764i −1.29421 + 0.667212i
\(735\) 0 0
\(736\) −21.7084 22.5407i −0.800182 0.830862i
\(737\) 18.6973i 0.688724i
\(738\) 0 0
\(739\) −1.85257 12.8849i −0.0681480 0.473979i −0.995106 0.0988142i \(-0.968495\pi\)
0.926958 0.375165i \(-0.122414\pi\)
\(740\) −2.58983 1.84421i −0.0952039 0.0677944i
\(741\) 0 0
\(742\) 44.2790 + 62.1812i 1.62553 + 2.28274i
\(743\) −4.62943 13.3759i −0.169837 0.490713i 0.827675 0.561208i \(-0.189663\pi\)
−0.997512 + 0.0704953i \(0.977542\pi\)
\(744\) 0 0
\(745\) 3.81460 + 3.63722i 0.139756 + 0.133257i
\(746\) −41.9911 48.4603i −1.53740 1.77426i
\(747\) 0 0
\(748\) 38.5625 24.7826i 1.40999 0.906143i
\(749\) −37.0852 12.8353i −1.35506 0.468992i
\(750\) 0 0
\(751\) 18.1504 23.0801i 0.662318 0.842206i −0.332581 0.943075i \(-0.607920\pi\)
0.994900 + 0.100868i \(0.0321620\pi\)
\(752\) 0.917372 0.317505i 0.0334531 0.0115782i
\(753\) 0 0
\(754\) 2.27288 + 9.36894i 0.0827735 + 0.341197i
\(755\) 2.80839 + 6.14953i 0.102208 + 0.223804i
\(756\) 0 0
\(757\) 13.7741 21.4329i 0.500628 0.778993i −0.495340 0.868699i \(-0.664957\pi\)
0.995968 + 0.0897066i \(0.0285929\pi\)
\(758\) 11.0640 + 19.1635i 0.401864 + 0.696049i
\(759\) 0 0
\(760\) 0.858675 1.48727i 0.0311474 0.0539489i
\(761\) 0.503166 + 0.976006i 0.0182398 + 0.0353802i 0.897779 0.440446i \(-0.145180\pi\)
−0.879540 + 0.475826i \(0.842149\pi\)
\(762\) 0 0
\(763\) −6.07402 + 8.52977i −0.219894 + 0.308799i
\(764\) 27.1592 + 7.97467i 0.982586 + 0.288513i
\(765\) 0 0
\(766\) −22.2813 19.3068i −0.805055 0.697584i
\(767\) 1.94055 + 4.84727i 0.0700693 + 0.175025i
\(768\) 0 0
\(769\) −4.25832 22.0942i −0.153559 0.796739i −0.974268 0.225393i \(-0.927633\pi\)
0.820709 0.571346i \(-0.193579\pi\)
\(770\) −0.986001 20.6987i −0.0355330 0.745930i
\(771\) 0 0
\(772\) 5.62564 16.2542i 0.202471 0.585002i
\(773\) 21.4593 6.30101i 0.771836 0.226632i 0.127979 0.991777i \(-0.459151\pi\)
0.643858 + 0.765145i \(0.277333\pi\)
\(774\) 0 0
\(775\) 14.8217 17.1051i 0.532410 0.614434i
\(776\) 5.77023 0.550990i 0.207139 0.0197794i
\(777\) 0 0
\(778\) −1.95047 + 20.4262i −0.0699276 + 0.732315i
\(779\) 2.41507 + 0.966849i 0.0865289 + 0.0346410i
\(780\) 0 0
\(781\) −1.18466 + 0.683962i −0.0423904 + 0.0244741i
\(782\) 60.3014 35.2176i 2.15637 1.25938i
\(783\) 0 0
\(784\) 31.9792 + 20.5518i 1.14212 + 0.733993i
\(785\) 2.94100 + 3.73979i 0.104969 + 0.133479i
\(786\) 0 0
\(787\) 8.31925 + 8.72498i 0.296549 + 0.311012i 0.855105 0.518455i \(-0.173493\pi\)
−0.558556 + 0.829467i \(0.688644\pi\)
\(788\) −18.4324 + 13.1257i −0.656628 + 0.467583i
\(789\) 0 0
\(790\) −18.8724 + 7.55538i −0.671451 + 0.268808i
\(791\) 0.638523 + 2.17461i 0.0227033 + 0.0773202i
\(792\) 0 0
\(793\) 3.91353 + 6.08958i 0.138974 + 0.216247i
\(794\) 0.779663 1.51234i 0.0276692 0.0536708i
\(795\) 0 0
\(796\) −6.39774 1.55207i −0.226762 0.0550118i
\(797\) 7.37897 + 5.80289i 0.261377 + 0.205549i 0.740244 0.672338i \(-0.234710\pi\)
−0.478867 + 0.877887i \(0.658952\pi\)
\(798\) 0 0
\(799\) 0.150517 + 1.57629i 0.00532492 + 0.0557651i
\(800\) 8.32233 28.3432i 0.294239 1.00209i
\(801\) 0 0
\(802\) −43.8608 + 6.30623i −1.54878 + 0.222681i
\(803\) 2.44182 51.2600i 0.0861698 1.80893i
\(804\) 0 0
\(805\) −0.0633193 12.6837i −0.00223171 0.447040i
\(806\) −5.57689 3.21982i −0.196438 0.113413i
\(807\) 0 0
\(808\) 2.73057 2.14735i 0.0960612 0.0755434i
\(809\) 7.44835 3.40155i 0.261870 0.119592i −0.280154 0.959955i \(-0.590385\pi\)
0.542024 + 0.840363i \(0.317658\pi\)
\(810\) 0 0
\(811\) 12.1769 26.6638i 0.427590 0.936291i −0.566122 0.824322i \(-0.691557\pi\)
0.993712 0.111970i \(-0.0357159\pi\)
\(812\) 37.9640 + 7.31696i 1.33228 + 0.256775i
\(813\) 0 0
\(814\) 6.35664 26.2024i 0.222800 0.918395i
\(815\) 6.37526 1.22873i 0.223316 0.0430405i
\(816\) 0 0
\(817\) −3.11322 1.60498i −0.108918 0.0561511i
\(818\) 31.1406 26.9835i 1.08881 0.943456i
\(819\) 0 0
\(820\) −1.14406 0.164491i −0.0399523 0.00574427i
\(821\) −6.03426 + 31.3087i −0.210597 + 1.09268i 0.710603 + 0.703593i \(0.248422\pi\)
−0.921200 + 0.389088i \(0.872790\pi\)
\(822\) 0 0
\(823\) 18.2680 17.4185i 0.636783 0.607171i −0.301322 0.953522i \(-0.597428\pi\)
0.938105 + 0.346351i \(0.112579\pi\)
\(824\) −8.29286 0.791872i −0.288896 0.0275862i
\(825\) 0 0
\(826\) 52.0560 + 2.47973i 1.81126 + 0.0862809i
\(827\) 11.5329 0.401037 0.200518 0.979690i \(-0.435737\pi\)
0.200518 + 0.979690i \(0.435737\pi\)
\(828\) 0 0
\(829\) 27.0765 0.940405 0.470203 0.882558i \(-0.344181\pi\)
0.470203 + 0.882558i \(0.344181\pi\)
\(830\) 4.22188 + 0.201113i 0.146544 + 0.00698073i
\(831\) 0 0
\(832\) −1.51962 0.145106i −0.0526832 0.00503064i
\(833\) −44.8760 + 42.7892i −1.55486 + 1.48256i
\(834\) 0 0
\(835\) −0.967212 + 5.01837i −0.0334717 + 0.173668i
\(836\) −11.8478 1.70346i −0.409765 0.0589153i
\(837\) 0 0
\(838\) 23.6358 20.4805i 0.816486 0.707489i
\(839\) −34.8493 17.9661i −1.20313 0.620257i −0.264235 0.964458i \(-0.585119\pi\)
−0.938896 + 0.344201i \(0.888150\pi\)
\(840\) 0 0
\(841\) −26.5364 + 5.11447i −0.915048 + 0.176361i
\(842\) −15.7149 + 64.7777i −0.541571 + 2.23239i
\(843\) 0 0
\(844\) −27.8698 5.37147i −0.959319 0.184894i
\(845\) −3.57257 + 7.82283i −0.122900 + 0.269114i
\(846\) 0 0
\(847\) 25.7514 11.7603i 0.884829 0.404088i
\(848\) 41.6651 32.7658i 1.43079 1.12518i
\(849\) 0 0
\(850\) 57.0858 + 32.9585i 1.95803 + 1.13047i
\(851\) 4.57044 15.8579i 0.156673 0.543603i
\(852\) 0 0
\(853\) 2.21807 46.5631i 0.0759454 1.59429i −0.563937 0.825817i \(-0.690714\pi\)
0.639883 0.768472i \(-0.278983\pi\)
\(854\) 71.5160 10.2824i 2.44723 0.351858i
\(855\) 0 0
\(856\) −3.45249 + 11.7581i −0.118004 + 0.401883i
\(857\) 1.70902 + 17.8977i 0.0583790 + 0.611372i 0.976565 + 0.215223i \(0.0690478\pi\)
−0.918186 + 0.396150i \(0.870346\pi\)
\(858\) 0 0
\(859\) 42.3897 + 33.3357i 1.44632 + 1.13740i 0.965444 + 0.260609i \(0.0839233\pi\)
0.480875 + 0.876789i \(0.340319\pi\)
\(860\) 1.51235 + 0.366893i 0.0515708 + 0.0125109i
\(861\) 0 0
\(862\) −2.60772 + 5.05827i −0.0888193 + 0.172285i
\(863\) 11.8456 + 18.4322i 0.403230 + 0.627438i 0.982184 0.187922i \(-0.0601752\pi\)
−0.578954 + 0.815360i \(0.696539\pi\)
\(864\) 0 0
\(865\) 2.01482 + 6.86185i 0.0685060 + 0.233310i
\(866\) −52.3743 + 20.9675i −1.77975 + 0.712504i
\(867\) 0 0
\(868\) −21.0366 + 14.9801i −0.714030 + 0.508459i
\(869\) −47.7996 50.1308i −1.62149 1.70057i
\(870\) 0 0
\(871\) 1.89998 + 2.41602i 0.0643783 + 0.0818636i
\(872\) 2.75080 + 1.76783i 0.0931539 + 0.0598664i
\(873\) 0 0
\(874\) −17.9222 3.36151i −0.606226 0.113705i
\(875\) 21.8208 12.5982i 0.737677 0.425898i
\(876\) 0 0
\(877\) −11.9736 4.79350i −0.404319 0.161865i 0.160584 0.987022i \(-0.448662\pi\)
−0.564903 + 0.825157i \(0.691086\pi\)
\(878\) 1.48852 15.5885i 0.0502351 0.526085i
\(879\) 0 0
\(880\) −14.3238 + 1.36776i −0.482855 + 0.0461071i
\(881\) −33.9904 + 39.2270i −1.14516 + 1.32159i −0.205831 + 0.978588i \(0.565990\pi\)
−0.939334 + 0.343003i \(0.888556\pi\)
\(882\) 0 0
\(883\) 5.75369 1.68944i 0.193627 0.0568540i −0.183481 0.983023i \(-0.558737\pi\)
0.377108 + 0.926169i \(0.376918\pi\)
\(884\) 2.46460 7.12098i 0.0828933 0.239505i
\(885\) 0 0
\(886\) 1.62374 + 34.0865i 0.0545505 + 1.14516i
\(887\) −2.04269 10.5985i −0.0685870 0.355863i 0.931380 0.364050i \(-0.118606\pi\)
−0.999966 + 0.00818669i \(0.997394\pi\)
\(888\) 0 0
\(889\) −23.7424 59.3055i −0.796293 1.98904i
\(890\) 11.0406 + 9.56674i 0.370082 + 0.320678i
\(891\) 0 0
\(892\) 26.3703 + 7.74302i 0.882943 + 0.259255i
\(893\) 0.239839 0.336806i 0.00802590 0.0112708i
\(894\) 0 0
\(895\) −3.08098 5.97627i −0.102986 0.199765i
\(896\) 17.4735 30.2649i 0.583748 1.01108i
\(897\) 0 0
\(898\) −36.5027 63.2245i −1.21811 2.10983i
\(899\) 20.2321 31.4818i 0.674780 1.04998i
\(900\) 0 0
\(901\) 35.9167 + 78.6467i 1.19656 + 2.62010i
\(902\) −2.31090 9.52566i −0.0769445 0.317170i
\(903\) 0 0
\(904\) 0.668803 0.231475i 0.0222441 0.00769874i
\(905\) 1.96412 2.49758i 0.0652894 0.0830223i
\(906\) 0 0
\(907\) −15.2489 5.27770i −0.506332 0.175243i 0.0619466 0.998079i \(-0.480269\pi\)
−0.568278 + 0.822836i \(0.692390\pi\)
\(908\) 2.98799 1.92027i 0.0991601 0.0637263i
\(909\) 0 0
\(910\) −2.23076 2.57444i −0.0739491 0.0853418i
\(911\) 12.3736 + 11.7982i 0.409956 + 0.390892i 0.866801 0.498654i \(-0.166172\pi\)
−0.456845 + 0.889546i \(0.651021\pi\)
\(912\) 0 0
\(913\) 4.71036 + 13.6097i 0.155890 + 0.450415i
\(914\) 12.1920 + 17.1213i 0.403276 + 0.566322i
\(915\) 0 0
\(916\) 6.88527 + 4.90298i 0.227496 + 0.161999i
\(917\) 3.12699 + 21.7487i 0.103262 + 0.718204i
\(918\) 0 0
\(919\) 32.0171i 1.05615i −0.849198 0.528074i \(-0.822914\pi\)
0.849198 0.528074i \(-0.177086\pi\)
\(920\) −3.95526 + 0.208207i −0.130401 + 0.00686439i
\(921\) 0 0
\(922\) 3.65256 1.88303i 0.120291 0.0620142i
\(923\) −0.0835756 + 0.208762i −0.00275093 + 0.00687148i
\(924\) 0 0
\(925\) 15.1390 3.67268i 0.497767 0.120757i
\(926\) −6.34054 2.89563i −0.208363 0.0951562i
\(927\) 0 0
\(928\) 6.95093 48.3448i 0.228175 1.58700i
\(929\) 23.6958 24.8515i 0.777435 0.815351i −0.209272 0.977857i \(-0.567109\pi\)
0.986707 + 0.162507i \(0.0519579\pi\)
\(930\) 0 0
\(931\) 16.1728 0.770405i 0.530042 0.0252490i
\(932\) 20.4744 0.975317i 0.670662 0.0319476i
\(933\) 0 0
\(934\) −10.1551 + 10.6503i −0.332284 + 0.348490i
\(935\) 3.34020 23.2316i 0.109236 0.759756i
\(936\) 0 0
\(937\) 16.6128 + 7.58683i 0.542718 + 0.247851i 0.667859 0.744288i \(-0.267211\pi\)
−0.125141 + 0.992139i \(0.539938\pi\)
\(938\) 29.8137 7.23273i 0.973453 0.236157i
\(939\) 0 0
\(940\) −0.0682778 + 0.170550i −0.00222698 + 0.00556272i
\(941\) 37.7729 19.4733i 1.23136 0.634811i 0.285188 0.958471i \(-0.407944\pi\)
0.946173 + 0.323660i \(0.104914\pi\)
\(942\) 0 0
\(943\) −1.16484 5.88550i −0.0379324 0.191658i
\(944\) 36.1873i 1.17780i
\(945\) 0 0
\(946\) 1.87820 + 13.0632i 0.0610656 + 0.424721i
\(947\) 18.0529 + 12.8554i 0.586640 + 0.417744i 0.834465 0.551060i \(-0.185777\pi\)
−0.247826 + 0.968805i \(0.579716\pi\)
\(948\) 0 0
\(949\) −4.89340 6.87182i −0.158846 0.223069i
\(950\) −5.62960 16.2656i −0.182648 0.527727i
\(951\) 0 0
\(952\) 26.6115 + 25.3740i 0.862483 + 0.822376i
\(953\) 12.7163 + 14.6754i 0.411921 + 0.475382i 0.923359 0.383938i \(-0.125433\pi\)
−0.511438 + 0.859320i \(0.670887\pi\)
\(954\) 0 0
\(955\) 12.1923 7.83553i 0.394534 0.253552i
\(956\) 13.3202 + 4.61017i 0.430806 + 0.149104i
\(957\) 0 0
\(958\) 12.7031 16.1533i 0.410418 0.521889i
\(959\) −5.12994 + 1.77549i −0.165655 + 0.0573336i
\(960\) 0 0
\(961\) −1.41529 5.83388i −0.0456544 0.188190i
\(962\) −1.84124 4.03176i −0.0593640 0.129989i
\(963\) 0 0
\(964\) 5.30637 8.25688i 0.170907 0.265936i
\(965\) −4.40340 7.62691i −0.141750 0.245519i
\(966\) 0 0
\(967\) −3.78066 + 6.54830i −0.121578 + 0.210579i −0.920390 0.391001i \(-0.872129\pi\)
0.798812 + 0.601581i \(0.205462\pi\)
\(968\) −4.05081 7.85748i −0.130198 0.252549i
\(969\) 0 0
\(970\) −3.52146 + 4.94519i −0.113067 + 0.158781i
\(971\) 47.2669 + 13.8788i 1.51687 + 0.445392i 0.931001 0.365016i \(-0.118936\pi\)
0.585866 + 0.810408i \(0.300755\pi\)
\(972\) 0 0
\(973\) −44.4479 38.5143i −1.42493 1.23471i
\(974\) 18.3200 + 45.7611i 0.587010 + 1.46628i
\(975\) 0 0
\(976\) −9.49465 49.2629i −0.303916 1.57687i
\(977\) 0.427563 + 8.97565i 0.0136789 + 0.287156i 0.995334 + 0.0964904i \(0.0307617\pi\)
−0.981655 + 0.190666i \(0.938935\pi\)
\(978\) 0 0
\(979\) −16.2806 + 47.0398i −0.520331 + 1.50340i
\(980\) −6.90241 + 2.02673i −0.220489 + 0.0647415i
\(981\) 0 0
\(982\) −3.49000 + 4.02767i −0.111370 + 0.128528i
\(983\) −29.9087 + 2.85594i −0.953940 + 0.0910902i −0.560404 0.828219i \(-0.689354\pi\)
−0.393536 + 0.919309i \(0.628748\pi\)
\(984\) 0 0
\(985\) −1.10132 + 11.5336i −0.0350911 + 0.367490i
\(986\) 101.182 + 40.5071i 3.22228 + 1.29001i
\(987\) 0 0
\(988\) −1.70404 + 0.983830i −0.0542128 + 0.0312998i
\(989\) 0.808002 + 8.03753i 0.0256930 + 0.255579i
\(990\) 0 0
\(991\) −18.6828 12.0067i −0.593478 0.381405i 0.209151 0.977883i \(-0.432930\pi\)
−0.802629 + 0.596478i \(0.796566\pi\)
\(992\) 20.1672 + 25.6447i 0.640310 + 0.814220i
\(993\) 0 0
\(994\) 1.54887 + 1.62441i 0.0491273 + 0.0515232i
\(995\) −2.74574 + 1.95523i −0.0870459 + 0.0619851i
\(996\) 0 0
\(997\) 45.0476 18.0343i 1.42667 0.571153i 0.475472 0.879731i \(-0.342277\pi\)
0.951199 + 0.308578i \(0.0998532\pi\)
\(998\) −20.8798 71.1099i −0.660937 2.25094i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 621.2.s.a.44.18 440
3.2 odd 2 207.2.o.a.113.5 yes 440
9.2 odd 6 inner 621.2.s.a.251.18 440
9.7 even 3 207.2.o.a.182.5 yes 440
23.11 odd 22 inner 621.2.s.a.287.18 440
69.11 even 22 207.2.o.a.149.5 yes 440
207.11 even 66 inner 621.2.s.a.494.18 440
207.34 odd 66 207.2.o.a.11.5 440
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
207.2.o.a.11.5 440 207.34 odd 66
207.2.o.a.113.5 yes 440 3.2 odd 2
207.2.o.a.149.5 yes 440 69.11 even 22
207.2.o.a.182.5 yes 440 9.7 even 3
621.2.s.a.44.18 440 1.1 even 1 trivial
621.2.s.a.251.18 440 9.2 odd 6 inner
621.2.s.a.287.18 440 23.11 odd 22 inner
621.2.s.a.494.18 440 207.11 even 66 inner