Properties

Label 621.2.s.a.44.11
Level $621$
Weight $2$
Character 621.44
Analytic conductor $4.959$
Analytic rank $0$
Dimension $440$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [621,2,Mod(17,621)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("621.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(621, base_ring=CyclotomicField(66)) chi = DirichletCharacter(H, H._module([55, 21])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 621 = 3^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 621.s (of order \(66\), degree \(20\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.95870996552\)
Analytic rank: \(0\)
Dimension: \(440\)
Relative dimension: \(22\) over \(\Q(\zeta_{66})\)
Twist minimal: no (minimal twist has level 207)
Sato-Tate group: $\mathrm{SU}(2)[C_{66}]$

Embedding invariants

Embedding label 44.11
Character \(\chi\) \(=\) 621.44
Dual form 621.2.s.a.494.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.261583 + 0.0124607i) q^{2} +(-1.92267 - 0.183593i) q^{4} +(3.04369 - 2.90215i) q^{5} +(-0.702638 + 3.64563i) q^{7} +(-1.01908 - 0.146521i) q^{8} +(0.832339 - 0.721226i) q^{10} +(3.45977 + 1.78363i) q^{11} +(0.259083 - 0.0499342i) q^{13} +(-0.229225 + 0.944880i) q^{14} +(3.52828 + 0.680021i) q^{16} +(1.22006 - 2.67157i) q^{17} +(1.48734 - 0.679244i) q^{19} +(-6.38483 + 5.02109i) q^{20} +(0.882791 + 0.509680i) q^{22} +(3.98136 - 2.67373i) q^{23} +(0.603648 - 12.6721i) q^{25} +(0.0683940 - 0.00983357i) q^{26} +(2.02026 - 6.88036i) q^{28} +(-0.234074 - 2.45134i) q^{29} +(0.601339 + 0.472898i) q^{31} +(2.91554 + 0.707302i) q^{32} +(0.352437 - 0.683633i) q^{34} +(8.44156 + 13.1353i) q^{35} +(1.05184 + 3.58222i) q^{37} +(0.397526 - 0.159145i) q^{38} +(-3.52698 + 2.51155i) q^{40} +(-2.75661 - 2.89105i) q^{41} +(-4.40550 - 5.60205i) q^{43} +(-6.32454 - 4.06454i) q^{44} +(1.07477 - 0.649790i) q^{46} +(4.75835 - 2.74724i) q^{47} +(-6.29837 - 2.52149i) q^{49} +(0.315808 - 3.30729i) q^{50} +(-0.507300 + 0.0484413i) q^{52} +(-1.42625 + 1.64598i) q^{53} +(15.7068 - 4.61194i) q^{55} +(1.25021 - 3.61224i) q^{56} +(-0.0306844 - 0.644144i) q^{58} +(1.82992 + 9.49452i) q^{59} +(1.51839 + 3.79277i) q^{61} +(0.151407 + 0.131195i) q^{62} +(-6.14149 - 1.80331i) q^{64} +(0.643652 - 0.903883i) q^{65} +(6.13936 + 11.9087i) q^{67} +(-2.83626 + 4.91255i) q^{68} +(2.04449 + 3.54117i) q^{70} +(0.327930 - 0.510270i) q^{71} +(6.89379 + 15.0953i) q^{73} +(0.230505 + 0.950155i) q^{74} +(-2.98437 + 1.03290i) q^{76} +(-8.93345 + 11.3598i) q^{77} +(1.99885 + 0.691809i) q^{79} +(12.7125 - 8.16984i) q^{80} +(-0.685057 - 0.790598i) q^{82} +(-8.75158 - 8.34461i) q^{83} +(-4.03979 - 11.6722i) q^{85} +(-1.08260 - 1.52030i) q^{86} +(-3.26444 - 2.32459i) q^{88} +(-1.15305 - 8.01966i) q^{89} +0.979609i q^{91} +(-8.14572 + 4.40975i) q^{92} +(1.27894 - 0.659337i) q^{94} +(2.55572 - 6.38388i) q^{95} +(-5.87423 + 1.42507i) q^{97} +(-1.61613 - 0.738060i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 440 q + 27 q^{2} - 29 q^{4} + 33 q^{5} - 11 q^{7} - 44 q^{10} + 33 q^{11} - 9 q^{13} + 33 q^{14} + 3 q^{16} - 44 q^{19} + 33 q^{20} + 27 q^{23} + 11 q^{25} - 44 q^{28} - 27 q^{29} - 3 q^{31} + 33 q^{32}+ \cdots + 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/621\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(461\)
\(\chi(n)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.261583 + 0.0124607i 0.184967 + 0.00881107i 0.139861 0.990171i \(-0.455334\pi\)
0.0451060 + 0.998982i \(0.485637\pi\)
\(3\) 0 0
\(4\) −1.92267 0.183593i −0.961337 0.0917965i
\(5\) 3.04369 2.90215i 1.36118 1.29788i 0.445886 0.895090i \(-0.352889\pi\)
0.915292 0.402791i \(-0.131960\pi\)
\(6\) 0 0
\(7\) −0.702638 + 3.64563i −0.265572 + 1.37792i 0.566869 + 0.823808i \(0.308154\pi\)
−0.832442 + 0.554113i \(0.813058\pi\)
\(8\) −1.01908 0.146521i −0.360299 0.0518031i
\(9\) 0 0
\(10\) 0.832339 0.721226i 0.263209 0.228072i
\(11\) 3.45977 + 1.78363i 1.04316 + 0.537786i 0.892616 0.450817i \(-0.148867\pi\)
0.150543 + 0.988603i \(0.451898\pi\)
\(12\) 0 0
\(13\) 0.259083 0.0499342i 0.0718568 0.0138493i −0.153196 0.988196i \(-0.548957\pi\)
0.225053 + 0.974347i \(0.427744\pi\)
\(14\) −0.229225 + 0.944880i −0.0612631 + 0.252530i
\(15\) 0 0
\(16\) 3.52828 + 0.680021i 0.882071 + 0.170005i
\(17\) 1.22006 2.67157i 0.295909 0.647950i −0.702028 0.712149i \(-0.747722\pi\)
0.997937 + 0.0641992i \(0.0204493\pi\)
\(18\) 0 0
\(19\) 1.48734 0.679244i 0.341218 0.155829i −0.237434 0.971404i \(-0.576306\pi\)
0.578652 + 0.815575i \(0.303579\pi\)
\(20\) −6.38483 + 5.02109i −1.42769 + 1.12275i
\(21\) 0 0
\(22\) 0.882791 + 0.509680i 0.188212 + 0.108664i
\(23\) 3.98136 2.67373i 0.830170 0.557510i
\(24\) 0 0
\(25\) 0.603648 12.6721i 0.120730 2.53443i
\(26\) 0.0683940 0.00983357i 0.0134132 0.00192852i
\(27\) 0 0
\(28\) 2.02026 6.88036i 0.381793 1.30027i
\(29\) −0.234074 2.45134i −0.0434665 0.455201i −0.990837 0.135063i \(-0.956876\pi\)
0.947371 0.320139i \(-0.103730\pi\)
\(30\) 0 0
\(31\) 0.601339 + 0.472898i 0.108004 + 0.0849350i 0.670700 0.741728i \(-0.265994\pi\)
−0.562697 + 0.826663i \(0.690236\pi\)
\(32\) 2.91554 + 0.707302i 0.515399 + 0.125035i
\(33\) 0 0
\(34\) 0.352437 0.683633i 0.0604425 0.117242i
\(35\) 8.44156 + 13.1353i 1.42688 + 2.22028i
\(36\) 0 0
\(37\) 1.05184 + 3.58222i 0.172921 + 0.588914i 0.999654 + 0.0263193i \(0.00837867\pi\)
−0.826733 + 0.562595i \(0.809803\pi\)
\(38\) 0.397526 0.159145i 0.0644872 0.0258168i
\(39\) 0 0
\(40\) −3.52698 + 2.51155i −0.557665 + 0.397111i
\(41\) −2.75661 2.89105i −0.430510 0.451506i 0.472369 0.881401i \(-0.343399\pi\)
−0.902879 + 0.429895i \(0.858550\pi\)
\(42\) 0 0
\(43\) −4.40550 5.60205i −0.671833 0.854305i 0.323947 0.946075i \(-0.394990\pi\)
−0.995780 + 0.0917702i \(0.970747\pi\)
\(44\) −6.32454 4.06454i −0.953461 0.612752i
\(45\) 0 0
\(46\) 1.07477 0.649790i 0.158466 0.0958064i
\(47\) 4.75835 2.74724i 0.694077 0.400726i −0.111061 0.993814i \(-0.535425\pi\)
0.805138 + 0.593088i \(0.202091\pi\)
\(48\) 0 0
\(49\) −6.29837 2.52149i −0.899767 0.360213i
\(50\) 0.315808 3.30729i 0.0446620 0.467721i
\(51\) 0 0
\(52\) −0.507300 + 0.0484413i −0.0703499 + 0.00671760i
\(53\) −1.42625 + 1.64598i −0.195910 + 0.226092i −0.845202 0.534447i \(-0.820520\pi\)
0.649292 + 0.760539i \(0.275065\pi\)
\(54\) 0 0
\(55\) 15.7068 4.61194i 2.11791 0.621874i
\(56\) 1.25021 3.61224i 0.167066 0.482705i
\(57\) 0 0
\(58\) −0.0306844 0.644144i −0.00402905 0.0845803i
\(59\) 1.82992 + 9.49452i 0.238235 + 1.23608i 0.882144 + 0.470979i \(0.156099\pi\)
−0.643909 + 0.765102i \(0.722689\pi\)
\(60\) 0 0
\(61\) 1.51839 + 3.79277i 0.194411 + 0.485614i 0.993259 0.115919i \(-0.0369812\pi\)
−0.798848 + 0.601533i \(0.794557\pi\)
\(62\) 0.151407 + 0.131195i 0.0192287 + 0.0166618i
\(63\) 0 0
\(64\) −6.14149 1.80331i −0.767687 0.225413i
\(65\) 0.643652 0.903883i 0.0798352 0.112113i
\(66\) 0 0
\(67\) 6.13936 + 11.9087i 0.750042 + 1.45488i 0.885766 + 0.464132i \(0.153634\pi\)
−0.135724 + 0.990747i \(0.543336\pi\)
\(68\) −2.83626 + 4.91255i −0.343948 + 0.595735i
\(69\) 0 0
\(70\) 2.04449 + 3.54117i 0.244364 + 0.423250i
\(71\) 0.327930 0.510270i 0.0389182 0.0605579i −0.821249 0.570569i \(-0.806723\pi\)
0.860168 + 0.510012i \(0.170359\pi\)
\(72\) 0 0
\(73\) 6.89379 + 15.0953i 0.806857 + 1.76677i 0.620365 + 0.784313i \(0.286984\pi\)
0.186492 + 0.982457i \(0.440288\pi\)
\(74\) 0.230505 + 0.950155i 0.0267957 + 0.110453i
\(75\) 0 0
\(76\) −2.98437 + 1.03290i −0.342330 + 0.118482i
\(77\) −8.93345 + 11.3598i −1.01806 + 1.29457i
\(78\) 0 0
\(79\) 1.99885 + 0.691809i 0.224888 + 0.0778346i 0.437189 0.899370i \(-0.355974\pi\)
−0.212300 + 0.977205i \(0.568095\pi\)
\(80\) 12.7125 8.16984i 1.42130 0.913415i
\(81\) 0 0
\(82\) −0.685057 0.790598i −0.0756519 0.0873069i
\(83\) −8.75158 8.34461i −0.960611 0.915940i 0.0359043 0.999355i \(-0.488569\pi\)
−0.996515 + 0.0834149i \(0.973417\pi\)
\(84\) 0 0
\(85\) −4.03979 11.6722i −0.438177 1.26603i
\(86\) −1.08260 1.52030i −0.116740 0.163938i
\(87\) 0 0
\(88\) −3.26444 2.32459i −0.347990 0.247803i
\(89\) −1.15305 8.01966i −0.122223 0.850082i −0.955028 0.296515i \(-0.904175\pi\)
0.832805 0.553567i \(-0.186734\pi\)
\(90\) 0 0
\(91\) 0.979609i 0.102691i
\(92\) −8.14572 + 4.40975i −0.849250 + 0.459749i
\(93\) 0 0
\(94\) 1.27894 0.659337i 0.131912 0.0680055i
\(95\) 2.55572 6.38388i 0.262211 0.654972i
\(96\) 0 0
\(97\) −5.87423 + 1.42507i −0.596438 + 0.144694i −0.522603 0.852576i \(-0.675039\pi\)
−0.0738351 + 0.997270i \(0.523524\pi\)
\(98\) −1.61613 0.738060i −0.163253 0.0745554i
\(99\) 0 0
\(100\) −3.48713 + 24.2535i −0.348713 + 2.42535i
\(101\) −0.493298 + 0.517356i −0.0490850 + 0.0514789i −0.747819 0.663903i \(-0.768899\pi\)
0.698734 + 0.715382i \(0.253747\pi\)
\(102\) 0 0
\(103\) −16.2006 + 0.771732i −1.59630 + 0.0760410i −0.826758 0.562558i \(-0.809817\pi\)
−0.769539 + 0.638599i \(0.779514\pi\)
\(104\) −0.271343 + 0.0129257i −0.0266074 + 0.00126746i
\(105\) 0 0
\(106\) −0.393592 + 0.412787i −0.0382290 + 0.0400934i
\(107\) −1.68209 + 11.6992i −0.162614 + 1.13100i 0.731069 + 0.682304i \(0.239022\pi\)
−0.893683 + 0.448700i \(0.851887\pi\)
\(108\) 0 0
\(109\) −18.0521 8.24414i −1.72908 0.789645i −0.993710 0.111981i \(-0.964280\pi\)
−0.735372 0.677664i \(-0.762992\pi\)
\(110\) 4.16611 1.01069i 0.397223 0.0963651i
\(111\) 0 0
\(112\) −4.95822 + 12.3850i −0.468507 + 1.17027i
\(113\) −0.270422 + 0.139412i −0.0254392 + 0.0131148i −0.470899 0.882187i \(-0.656070\pi\)
0.445460 + 0.895302i \(0.353040\pi\)
\(114\) 0 0
\(115\) 4.35844 19.6925i 0.406427 1.83633i
\(116\) 4.75609i 0.441592i
\(117\) 0 0
\(118\) 0.360367 + 2.50641i 0.0331745 + 0.230733i
\(119\) 8.88229 + 6.32505i 0.814238 + 0.579816i
\(120\) 0 0
\(121\) 2.40802 + 3.38159i 0.218911 + 0.307418i
\(122\) 0.349926 + 1.01104i 0.0316808 + 0.0915356i
\(123\) 0 0
\(124\) −1.06936 1.01963i −0.0960311 0.0915655i
\(125\) −21.1689 24.4302i −1.89340 2.18510i
\(126\) 0 0
\(127\) 1.05634 0.678868i 0.0937349 0.0602398i −0.492934 0.870067i \(-0.664075\pi\)
0.586669 + 0.809827i \(0.300439\pi\)
\(128\) −7.25425 2.51072i −0.641191 0.221918i
\(129\) 0 0
\(130\) 0.179631 0.228420i 0.0157547 0.0200338i
\(131\) −6.63876 + 2.29770i −0.580031 + 0.200751i −0.601300 0.799023i \(-0.705350\pi\)
0.0212693 + 0.999774i \(0.493229\pi\)
\(132\) 0 0
\(133\) 1.43121 + 5.89955i 0.124102 + 0.511556i
\(134\) 1.45756 + 3.19161i 0.125914 + 0.275713i
\(135\) 0 0
\(136\) −1.63478 + 2.54377i −0.140181 + 0.218127i
\(137\) −0.000589825 0.00102161i −5.03921e−5 8.72817e-5i 0.866000 0.500044i \(-0.166683\pi\)
−0.866051 + 0.499956i \(0.833349\pi\)
\(138\) 0 0
\(139\) 4.03809 6.99418i 0.342507 0.593239i −0.642391 0.766377i \(-0.722057\pi\)
0.984898 + 0.173138i \(0.0553908\pi\)
\(140\) −13.8188 26.8048i −1.16790 2.26542i
\(141\) 0 0
\(142\) 0.0921393 0.129392i 0.00773216 0.0108583i
\(143\) 0.985433 + 0.289349i 0.0824061 + 0.0241966i
\(144\) 0 0
\(145\) −7.82659 6.78178i −0.649963 0.563196i
\(146\) 1.61520 + 4.03457i 0.133675 + 0.333903i
\(147\) 0 0
\(148\) −1.36467 7.08056i −0.112175 0.582018i
\(149\) 0.132687 + 2.78545i 0.0108702 + 0.228193i 0.997765 + 0.0668258i \(0.0212872\pi\)
−0.986895 + 0.161367i \(0.948410\pi\)
\(150\) 0 0
\(151\) −3.05152 + 8.81680i −0.248329 + 0.717501i 0.750092 + 0.661334i \(0.230009\pi\)
−0.998421 + 0.0561671i \(0.982112\pi\)
\(152\) −1.61524 + 0.474276i −0.131013 + 0.0384689i
\(153\) 0 0
\(154\) −2.47839 + 2.86021i −0.199714 + 0.230482i
\(155\) 3.20271 0.305821i 0.257248 0.0245642i
\(156\) 0 0
\(157\) 0.421650 4.41572i 0.0336514 0.352413i −0.962927 0.269761i \(-0.913055\pi\)
0.996579 0.0826514i \(-0.0263388\pi\)
\(158\) 0.514245 + 0.205873i 0.0409111 + 0.0163784i
\(159\) 0 0
\(160\) 10.9267 6.30852i 0.863830 0.498732i
\(161\) 6.94997 + 16.3932i 0.547735 + 1.29197i
\(162\) 0 0
\(163\) 0.905001 + 0.581609i 0.0708852 + 0.0455551i 0.575603 0.817729i \(-0.304767\pi\)
−0.504718 + 0.863284i \(0.668404\pi\)
\(164\) 4.76928 + 6.06463i 0.372418 + 0.473568i
\(165\) 0 0
\(166\) −2.18528 2.29186i −0.169611 0.177883i
\(167\) −12.8153 + 9.12572i −0.991676 + 0.706169i −0.956052 0.293196i \(-0.905281\pi\)
−0.0356238 + 0.999365i \(0.511342\pi\)
\(168\) 0 0
\(169\) −12.0042 + 4.80574i −0.923396 + 0.369672i
\(170\) −0.911296 3.10359i −0.0698932 0.238035i
\(171\) 0 0
\(172\) 7.44184 + 11.5797i 0.567435 + 0.882947i
\(173\) 8.04110 15.5976i 0.611353 1.18586i −0.356488 0.934300i \(-0.616026\pi\)
0.967842 0.251560i \(-0.0809437\pi\)
\(174\) 0 0
\(175\) 45.7738 + 11.1046i 3.46017 + 0.839429i
\(176\) 10.9941 + 8.64589i 0.828714 + 0.651708i
\(177\) 0 0
\(178\) −0.201688 2.11217i −0.0151172 0.158314i
\(179\) 4.41110 15.0228i 0.329701 1.12286i −0.613239 0.789898i \(-0.710134\pi\)
0.942940 0.332962i \(-0.108048\pi\)
\(180\) 0 0
\(181\) −2.90054 + 0.417035i −0.215596 + 0.0309980i −0.249266 0.968435i \(-0.580189\pi\)
0.0336705 + 0.999433i \(0.489280\pi\)
\(182\) −0.0122066 + 0.256249i −0.000904817 + 0.0189944i
\(183\) 0 0
\(184\) −4.44907 + 2.14138i −0.327990 + 0.157865i
\(185\) 13.5976 + 7.85058i 0.999716 + 0.577186i
\(186\) 0 0
\(187\) 8.98623 7.06685i 0.657139 0.516779i
\(188\) −9.65313 + 4.40844i −0.704027 + 0.321518i
\(189\) 0 0
\(190\) 0.748080 1.63807i 0.0542714 0.118838i
\(191\) 14.4137 + 2.77802i 1.04294 + 0.201010i 0.681829 0.731512i \(-0.261185\pi\)
0.361112 + 0.932522i \(0.382397\pi\)
\(192\) 0 0
\(193\) −2.84923 + 11.7447i −0.205092 + 0.845400i 0.772521 + 0.634989i \(0.218995\pi\)
−0.977613 + 0.210411i \(0.932520\pi\)
\(194\) −1.55436 + 0.299578i −0.111596 + 0.0215084i
\(195\) 0 0
\(196\) 11.6468 + 6.00433i 0.831913 + 0.428881i
\(197\) −3.10535 + 2.69081i −0.221247 + 0.191712i −0.758431 0.651753i \(-0.774034\pi\)
0.537184 + 0.843465i \(0.319488\pi\)
\(198\) 0 0
\(199\) 16.4077 + 2.35908i 1.16311 + 0.167230i 0.696717 0.717346i \(-0.254643\pi\)
0.466396 + 0.884576i \(0.345552\pi\)
\(200\) −2.47190 + 12.8254i −0.174790 + 0.906896i
\(201\) 0 0
\(202\) −0.135485 + 0.129185i −0.00953269 + 0.00908940i
\(203\) 9.10114 + 0.869054i 0.638775 + 0.0609956i
\(204\) 0 0
\(205\) −16.7805 0.799353i −1.17200 0.0558293i
\(206\) −4.24743 −0.295932
\(207\) 0 0
\(208\) 0.948076 0.0657373
\(209\) 6.35736 + 0.302839i 0.439748 + 0.0209478i
\(210\) 0 0
\(211\) 10.2841 + 0.982017i 0.707990 + 0.0676048i 0.442838 0.896602i \(-0.353972\pi\)
0.265152 + 0.964207i \(0.414578\pi\)
\(212\) 3.04440 2.90283i 0.209090 0.199367i
\(213\) 0 0
\(214\) −0.585786 + 3.03935i −0.0400435 + 0.207766i
\(215\) −29.6670 4.26546i −2.02327 0.290902i
\(216\) 0 0
\(217\) −2.14654 + 1.85998i −0.145716 + 0.126264i
\(218\) −4.61941 2.38147i −0.312866 0.161293i
\(219\) 0 0
\(220\) −31.0458 + 5.98359i −2.09311 + 0.403414i
\(221\) 0.182696 0.753081i 0.0122894 0.0506577i
\(222\) 0 0
\(223\) −17.6050 3.39309i −1.17892 0.227218i −0.438102 0.898925i \(-0.644349\pi\)
−0.740817 + 0.671707i \(0.765561\pi\)
\(224\) −4.62713 + 10.1320i −0.309163 + 0.676973i
\(225\) 0 0
\(226\) −0.0724749 + 0.0330982i −0.00482096 + 0.00220166i
\(227\) −14.9425 + 11.7509i −0.991767 + 0.779935i −0.975515 0.219933i \(-0.929416\pi\)
−0.0162526 + 0.999868i \(0.505174\pi\)
\(228\) 0 0
\(229\) −13.9991 8.08237i −0.925085 0.534098i −0.0398315 0.999206i \(-0.512682\pi\)
−0.885254 + 0.465108i \(0.846015\pi\)
\(230\) 1.38548 5.09690i 0.0913557 0.336080i
\(231\) 0 0
\(232\) −0.120633 + 2.53240i −0.00791995 + 0.166260i
\(233\) 12.5681 1.80702i 0.823363 0.118382i 0.282260 0.959338i \(-0.408916\pi\)
0.541103 + 0.840956i \(0.318007\pi\)
\(234\) 0 0
\(235\) 6.51004 22.1712i 0.424668 1.44629i
\(236\) −1.77521 18.5908i −0.115556 1.21016i
\(237\) 0 0
\(238\) 2.24464 + 1.76520i 0.145498 + 0.114421i
\(239\) −5.16143 1.25215i −0.333865 0.0809948i 0.0653221 0.997864i \(-0.479193\pi\)
−0.399187 + 0.916869i \(0.630708\pi\)
\(240\) 0 0
\(241\) 2.66476 5.16892i 0.171653 0.332959i −0.787279 0.616597i \(-0.788511\pi\)
0.958932 + 0.283637i \(0.0915412\pi\)
\(242\) 0.587760 + 0.914573i 0.0377826 + 0.0587910i
\(243\) 0 0
\(244\) −2.22305 7.57102i −0.142316 0.484685i
\(245\) −26.4880 + 10.6042i −1.69226 + 0.677477i
\(246\) 0 0
\(247\) 0.351427 0.250250i 0.0223607 0.0159230i
\(248\) −0.543522 0.570029i −0.0345137 0.0361969i
\(249\) 0 0
\(250\) −5.23300 6.65431i −0.330964 0.420855i
\(251\) 9.76049 + 6.27268i 0.616076 + 0.395928i 0.811131 0.584864i \(-0.198852\pi\)
−0.195055 + 0.980792i \(0.562488\pi\)
\(252\) 0 0
\(253\) 18.5435 2.14919i 1.16582 0.135118i
\(254\) 0.284779 0.164417i 0.0178686 0.0103165i
\(255\) 0 0
\(256\) 10.0182 + 4.01070i 0.626140 + 0.250669i
\(257\) 0.105383 1.10362i 0.00657362 0.0688421i −0.991590 0.129420i \(-0.958688\pi\)
0.998163 + 0.0605782i \(0.0192944\pi\)
\(258\) 0 0
\(259\) −13.7985 + 1.31760i −0.857400 + 0.0818717i
\(260\) −1.40348 + 1.61970i −0.0870401 + 0.100450i
\(261\) 0 0
\(262\) −1.76522 + 0.518314i −0.109055 + 0.0320216i
\(263\) −4.49143 + 12.9771i −0.276953 + 0.800204i 0.717646 + 0.696409i \(0.245220\pi\)
−0.994599 + 0.103795i \(0.966901\pi\)
\(264\) 0 0
\(265\) 0.435821 + 9.14902i 0.0267723 + 0.562020i
\(266\) 0.300869 + 1.56105i 0.0184474 + 0.0957144i
\(267\) 0 0
\(268\) −9.61763 24.0237i −0.587490 1.46748i
\(269\) 9.11016 + 7.89400i 0.555456 + 0.481305i 0.886767 0.462216i \(-0.152946\pi\)
−0.331311 + 0.943522i \(0.607491\pi\)
\(270\) 0 0
\(271\) −16.1529 4.74293i −0.981222 0.288113i −0.248493 0.968634i \(-0.579935\pi\)
−0.732729 + 0.680521i \(0.761754\pi\)
\(272\) 6.12145 8.59637i 0.371167 0.521232i
\(273\) 0 0
\(274\) −0.000141558 0 0.000274584i −8.55184e−6 0 1.65883e-5i
\(275\) 24.6909 42.7659i 1.48892 2.57888i
\(276\) 0 0
\(277\) 14.1883 + 24.5748i 0.852490 + 1.47656i 0.878954 + 0.476907i \(0.158242\pi\)
−0.0264633 + 0.999650i \(0.508425\pi\)
\(278\) 1.14345 1.77924i 0.0685795 0.106712i
\(279\) 0 0
\(280\) −6.67801 14.6228i −0.399087 0.873880i
\(281\) −0.433611 1.78737i −0.0258671 0.106625i 0.957415 0.288717i \(-0.0932285\pi\)
−0.983282 + 0.182091i \(0.941713\pi\)
\(282\) 0 0
\(283\) −11.9314 + 4.12950i −0.709249 + 0.245473i −0.657790 0.753202i \(-0.728508\pi\)
−0.0514592 + 0.998675i \(0.516387\pi\)
\(284\) −0.724185 + 0.920876i −0.0429725 + 0.0546439i
\(285\) 0 0
\(286\) 0.254167 + 0.0879681i 0.0150292 + 0.00520166i
\(287\) 12.4766 8.01822i 0.736470 0.473301i
\(288\) 0 0
\(289\) 5.48392 + 6.32878i 0.322584 + 0.372281i
\(290\) −1.96280 1.87152i −0.115259 0.109900i
\(291\) 0 0
\(292\) −10.4831 30.2890i −0.613478 1.77253i
\(293\) −0.137444 0.193013i −0.00802954 0.0112759i 0.810542 0.585681i \(-0.199173\pi\)
−0.818571 + 0.574405i \(0.805233\pi\)
\(294\) 0 0
\(295\) 33.1242 + 23.5876i 1.92857 + 1.37333i
\(296\) −0.547031 3.80469i −0.0317955 0.221143i
\(297\) 0 0
\(298\) 0.730278i 0.0423039i
\(299\) 0.897993 0.891524i 0.0519323 0.0515582i
\(300\) 0 0
\(301\) 23.5185 12.1246i 1.35558 0.698852i
\(302\) −0.908090 + 2.26830i −0.0522547 + 0.130526i
\(303\) 0 0
\(304\) 5.70964 1.38514i 0.327471 0.0794435i
\(305\) 15.6287 + 7.13739i 0.894896 + 0.408686i
\(306\) 0 0
\(307\) 3.74628 26.0559i 0.213811 1.48709i −0.546460 0.837485i \(-0.684025\pi\)
0.760271 0.649606i \(-0.225066\pi\)
\(308\) 19.2617 20.2011i 1.09754 1.15106i
\(309\) 0 0
\(310\) 0.841584 0.0400896i 0.0477988 0.00227694i
\(311\) −14.1350 + 0.673333i −0.801522 + 0.0381812i −0.444345 0.895856i \(-0.646564\pi\)
−0.357177 + 0.934037i \(0.616261\pi\)
\(312\) 0 0
\(313\) −1.05571 + 1.10720i −0.0596722 + 0.0625824i −0.752893 0.658143i \(-0.771342\pi\)
0.693221 + 0.720725i \(0.256191\pi\)
\(314\) 0.165320 1.14982i 0.00932952 0.0648883i
\(315\) 0 0
\(316\) −3.71613 1.69710i −0.209049 0.0954693i
\(317\) −18.2374 + 4.42435i −1.02432 + 0.248496i −0.712520 0.701652i \(-0.752446\pi\)
−0.311797 + 0.950149i \(0.600931\pi\)
\(318\) 0 0
\(319\) 3.56244 8.89856i 0.199459 0.498223i
\(320\) −23.9262 + 12.3348i −1.33752 + 0.689538i
\(321\) 0 0
\(322\) 1.61372 + 4.37479i 0.0899293 + 0.243797i
\(323\) 4.80224i 0.267204i
\(324\) 0 0
\(325\) −0.476378 3.31328i −0.0264247 0.183788i
\(326\) 0.229486 + 0.163416i 0.0127100 + 0.00905077i
\(327\) 0 0
\(328\) 2.38560 + 3.35011i 0.131723 + 0.184979i
\(329\) 6.67202 + 19.2775i 0.367840 + 1.06280i
\(330\) 0 0
\(331\) −13.7642 13.1242i −0.756552 0.721370i 0.210040 0.977693i \(-0.432641\pi\)
−0.966591 + 0.256322i \(0.917489\pi\)
\(332\) 15.2944 + 17.6507i 0.839390 + 0.968708i
\(333\) 0 0
\(334\) −3.46597 + 2.22744i −0.189650 + 0.121880i
\(335\) 53.2471 + 18.4290i 2.90920 + 1.00688i
\(336\) 0 0
\(337\) −6.80507 + 8.65335i −0.370696 + 0.471378i −0.935235 0.354028i \(-0.884812\pi\)
0.564539 + 0.825407i \(0.309054\pi\)
\(338\) −3.19996 + 1.10752i −0.174055 + 0.0602411i
\(339\) 0 0
\(340\) 5.62426 + 23.1835i 0.305019 + 1.25730i
\(341\) 1.23702 + 2.70869i 0.0669882 + 0.146684i
\(342\) 0 0
\(343\) −0.432867 + 0.673554i −0.0233726 + 0.0363685i
\(344\) 3.66873 + 6.35443i 0.197805 + 0.342608i
\(345\) 0 0
\(346\) 2.29777 3.97986i 0.123529 0.213958i
\(347\) −5.98854 11.6161i −0.321482 0.623588i 0.671613 0.740902i \(-0.265602\pi\)
−0.993095 + 0.117315i \(0.962571\pi\)
\(348\) 0 0
\(349\) −1.25044 + 1.75600i −0.0669348 + 0.0939967i −0.846686 0.532092i \(-0.821406\pi\)
0.779752 + 0.626089i \(0.215345\pi\)
\(350\) 11.8353 + 3.47515i 0.632622 + 0.185755i
\(351\) 0 0
\(352\) 8.82552 + 7.64736i 0.470402 + 0.407605i
\(353\) −8.79217 21.9618i −0.467960 1.16891i −0.955285 0.295687i \(-0.904452\pi\)
0.487325 0.873221i \(-0.337973\pi\)
\(354\) 0 0
\(355\) −0.482761 2.50480i −0.0256223 0.132941i
\(356\) 0.744591 + 15.6309i 0.0394632 + 0.828435i
\(357\) 0 0
\(358\) 1.34106 3.87475i 0.0708775 0.204787i
\(359\) 31.0308 9.11147i 1.63774 0.480885i 0.672037 0.740518i \(-0.265420\pi\)
0.965707 + 0.259633i \(0.0836015\pi\)
\(360\) 0 0
\(361\) −10.6916 + 12.3387i −0.562714 + 0.649406i
\(362\) −0.763929 + 0.0729464i −0.0401512 + 0.00383398i
\(363\) 0 0
\(364\) 0.179849 1.88347i 0.00942667 0.0987206i
\(365\) 64.7913 + 25.9385i 3.39133 + 1.35768i
\(366\) 0 0
\(367\) 11.6368 6.71851i 0.607436 0.350703i −0.164525 0.986373i \(-0.552609\pi\)
0.771961 + 0.635670i \(0.219276\pi\)
\(368\) 15.8655 6.72626i 0.827048 0.350631i
\(369\) 0 0
\(370\) 3.45908 + 2.22301i 0.179829 + 0.115569i
\(371\) −4.99849 6.35610i −0.259509 0.329992i
\(372\) 0 0
\(373\) 18.5467 + 19.4512i 0.960311 + 1.00714i 0.999969 + 0.00793156i \(0.00252472\pi\)
−0.0396578 + 0.999213i \(0.512627\pi\)
\(374\) 2.43870 1.73659i 0.126102 0.0897971i
\(375\) 0 0
\(376\) −5.25166 + 2.10245i −0.270834 + 0.108426i
\(377\) −0.183050 0.623412i −0.00942757 0.0321074i
\(378\) 0 0
\(379\) −10.4054 16.1911i −0.534487 0.831679i 0.464046 0.885811i \(-0.346397\pi\)
−0.998534 + 0.0541323i \(0.982761\pi\)
\(380\) −6.08585 + 11.8049i −0.312197 + 0.605578i
\(381\) 0 0
\(382\) 3.73577 + 0.906288i 0.191139 + 0.0463697i
\(383\) −14.9063 11.7224i −0.761674 0.598987i 0.159926 0.987129i \(-0.448875\pi\)
−0.921600 + 0.388142i \(0.873117\pi\)
\(384\) 0 0
\(385\) 5.77723 + 60.5019i 0.294435 + 3.08346i
\(386\) −0.891656 + 3.03670i −0.0453841 + 0.154564i
\(387\) 0 0
\(388\) 11.5559 1.66148i 0.586660 0.0843490i
\(389\) 1.65809 34.8077i 0.0840687 1.76482i −0.426035 0.904707i \(-0.640090\pi\)
0.510104 0.860113i \(-0.329607\pi\)
\(390\) 0 0
\(391\) −2.28553 13.8986i −0.115584 0.702881i
\(392\) 6.04908 + 3.49244i 0.305525 + 0.176395i
\(393\) 0 0
\(394\) −0.845837 + 0.665174i −0.0426127 + 0.0335110i
\(395\) 8.09161 3.69532i 0.407133 0.185932i
\(396\) 0 0
\(397\) 10.4790 22.9457i 0.525924 1.15161i −0.441224 0.897397i \(-0.645456\pi\)
0.967148 0.254215i \(-0.0818172\pi\)
\(398\) 4.26259 + 0.821546i 0.213664 + 0.0411804i
\(399\) 0 0
\(400\) 10.7472 44.3004i 0.537358 2.21502i
\(401\) −28.0713 + 5.41030i −1.40181 + 0.270177i −0.833447 0.552599i \(-0.813636\pi\)
−0.568365 + 0.822776i \(0.692424\pi\)
\(402\) 0 0
\(403\) 0.179411 + 0.0924927i 0.00893708 + 0.00460739i
\(404\) 1.04343 0.904141i 0.0519128 0.0449827i
\(405\) 0 0
\(406\) 2.36987 + 0.340736i 0.117615 + 0.0169105i
\(407\) −2.75027 + 14.2698i −0.136326 + 0.707326i
\(408\) 0 0
\(409\) 21.6521 20.6453i 1.07063 1.02084i 0.0709013 0.997483i \(-0.477412\pi\)
0.999727 0.0233589i \(-0.00743603\pi\)
\(410\) −4.37953 0.418194i −0.216290 0.0206532i
\(411\) 0 0
\(412\) 31.2902 + 1.49054i 1.54156 + 0.0734335i
\(413\) −35.8993 −1.76649
\(414\) 0 0
\(415\) −50.8544 −2.49634
\(416\) 0.790686 + 0.0376650i 0.0387666 + 0.00184668i
\(417\) 0 0
\(418\) 1.65920 + 0.158435i 0.0811543 + 0.00774930i
\(419\) −9.41010 + 8.97251i −0.459713 + 0.438336i −0.884207 0.467095i \(-0.845301\pi\)
0.424494 + 0.905431i \(0.360452\pi\)
\(420\) 0 0
\(421\) −0.793744 + 4.11834i −0.0386847 + 0.200715i −0.996129 0.0879025i \(-0.971984\pi\)
0.957444 + 0.288618i \(0.0931957\pi\)
\(422\) 2.67792 + 0.385027i 0.130359 + 0.0187428i
\(423\) 0 0
\(424\) 1.69463 1.46840i 0.0822984 0.0713120i
\(425\) −33.1179 17.0735i −1.60646 0.828185i
\(426\) 0 0
\(427\) −14.8939 + 2.87057i −0.720768 + 0.138917i
\(428\) 5.38200 22.1849i 0.260149 1.07235i
\(429\) 0 0
\(430\) −7.70722 1.48544i −0.371675 0.0716345i
\(431\) −8.23138 + 18.0242i −0.396491 + 0.868195i 0.601123 + 0.799157i \(0.294720\pi\)
−0.997614 + 0.0690383i \(0.978007\pi\)
\(432\) 0 0
\(433\) −2.39698 + 1.09467i −0.115192 + 0.0526063i −0.472177 0.881504i \(-0.656532\pi\)
0.356986 + 0.934110i \(0.383805\pi\)
\(434\) −0.584674 + 0.459793i −0.0280653 + 0.0220708i
\(435\) 0 0
\(436\) 33.1948 + 19.1650i 1.58974 + 0.917839i
\(437\) 4.10550 6.68104i 0.196393 0.319598i
\(438\) 0 0
\(439\) 0.281569 5.91086i 0.0134386 0.282110i −0.982138 0.188160i \(-0.939748\pi\)
0.995577 0.0939499i \(-0.0299494\pi\)
\(440\) −16.6822 + 2.39854i −0.795295 + 0.114346i
\(441\) 0 0
\(442\) 0.0571740 0.194717i 0.00271949 0.00926173i
\(443\) 0.906099 + 9.48910i 0.0430501 + 0.450841i 0.991138 + 0.132834i \(0.0424076\pi\)
−0.948088 + 0.318007i \(0.896986\pi\)
\(444\) 0 0
\(445\) −26.7838 21.0630i −1.26967 0.998482i
\(446\) −4.56289 1.10695i −0.216059 0.0524154i
\(447\) 0 0
\(448\) 10.8894 21.1226i 0.514478 0.997947i
\(449\) −7.65255 11.9076i −0.361146 0.561954i 0.612370 0.790571i \(-0.290216\pi\)
−0.973517 + 0.228617i \(0.926580\pi\)
\(450\) 0 0
\(451\) −4.38065 14.9191i −0.206277 0.702514i
\(452\) 0.545528 0.218396i 0.0256595 0.0102725i
\(453\) 0 0
\(454\) −4.05512 + 2.88764i −0.190316 + 0.135524i
\(455\) 2.84297 + 2.98162i 0.133281 + 0.139781i
\(456\) 0 0
\(457\) 21.1977 + 26.9551i 0.991586 + 1.26090i 0.965271 + 0.261251i \(0.0841350\pi\)
0.0263154 + 0.999654i \(0.491623\pi\)
\(458\) −3.56121 2.28865i −0.166404 0.106942i
\(459\) 0 0
\(460\) −11.9953 + 37.0620i −0.559282 + 1.72803i
\(461\) −23.9595 + 13.8330i −1.11590 + 0.644267i −0.940352 0.340203i \(-0.889504\pi\)
−0.175551 + 0.984470i \(0.556171\pi\)
\(462\) 0 0
\(463\) 0.173922 + 0.0696279i 0.00808285 + 0.00323588i 0.375700 0.926741i \(-0.377402\pi\)
−0.367618 + 0.929977i \(0.619826\pi\)
\(464\) 0.841079 8.80818i 0.0390461 0.408910i
\(465\) 0 0
\(466\) 3.31012 0.316078i 0.153338 0.0146420i
\(467\) −18.8588 + 21.7643i −0.872683 + 1.00713i 0.127201 + 0.991877i \(0.459401\pi\)
−0.999884 + 0.0152530i \(0.995145\pi\)
\(468\) 0 0
\(469\) −47.7285 + 14.0143i −2.20390 + 0.647122i
\(470\) 1.97918 5.71848i 0.0912930 0.263774i
\(471\) 0 0
\(472\) −0.473681 9.94379i −0.0218029 0.457700i
\(473\) −5.25000 27.2396i −0.241395 1.25248i
\(474\) 0 0
\(475\) −7.70964 19.2577i −0.353742 0.883606i
\(476\) −15.9165 13.7917i −0.729532 0.632143i
\(477\) 0 0
\(478\) −1.33454 0.391856i −0.0610404 0.0179231i
\(479\) 8.11157 11.3911i 0.370627 0.520473i −0.586574 0.809895i \(-0.699524\pi\)
0.957201 + 0.289422i \(0.0934632\pi\)
\(480\) 0 0
\(481\) 0.451389 + 0.875572i 0.0205816 + 0.0399227i
\(482\) 0.761465 1.31890i 0.0346838 0.0600741i
\(483\) 0 0
\(484\) −4.00900 6.94379i −0.182227 0.315627i
\(485\) −13.7436 + 21.3854i −0.624062 + 0.971060i
\(486\) 0 0
\(487\) 5.80138 + 12.7033i 0.262886 + 0.575639i 0.994339 0.106252i \(-0.0338850\pi\)
−0.731454 + 0.681891i \(0.761158\pi\)
\(488\) −0.991643 4.08761i −0.0448895 0.185037i
\(489\) 0 0
\(490\) −7.06094 + 2.44382i −0.318981 + 0.110400i
\(491\) 8.31954 10.5792i 0.375455 0.477430i −0.561201 0.827679i \(-0.689661\pi\)
0.936657 + 0.350249i \(0.113903\pi\)
\(492\) 0 0
\(493\) −6.83449 2.36544i −0.307810 0.106534i
\(494\) 0.0950455 0.0610820i 0.00427630 0.00274821i
\(495\) 0 0
\(496\) 1.80011 + 2.07744i 0.0808275 + 0.0932799i
\(497\) 1.62984 + 1.55405i 0.0731083 + 0.0697086i
\(498\) 0 0
\(499\) −5.22670 15.1016i −0.233979 0.676039i −0.999469 0.0325903i \(-0.989624\pi\)
0.765490 0.643448i \(-0.222497\pi\)
\(500\) 36.2157 + 50.8578i 1.61961 + 2.27443i
\(501\) 0 0
\(502\) 2.47501 + 1.76245i 0.110465 + 0.0786620i
\(503\) 1.81756 + 12.6414i 0.0810410 + 0.563653i 0.989373 + 0.145402i \(0.0464476\pi\)
−0.908332 + 0.418251i \(0.862643\pi\)
\(504\) 0 0
\(505\) 3.00630i 0.133778i
\(506\) 4.87745 0.331126i 0.216829 0.0147203i
\(507\) 0 0
\(508\) −2.15563 + 1.11130i −0.0956406 + 0.0493062i
\(509\) 5.27664 13.1804i 0.233883 0.584211i −0.764274 0.644891i \(-0.776903\pi\)
0.998157 + 0.0606799i \(0.0193269\pi\)
\(510\) 0 0
\(511\) −59.8757 + 14.5257i −2.64875 + 0.642579i
\(512\) 16.5361 + 7.55178i 0.730799 + 0.333745i
\(513\) 0 0
\(514\) 0.0413184 0.287376i 0.00182248 0.0126756i
\(515\) −47.0700 + 49.3656i −2.07415 + 2.17531i
\(516\) 0 0
\(517\) 21.3629 1.01764i 0.939538 0.0447557i
\(518\) −3.62588 + 0.172722i −0.159312 + 0.00758897i
\(519\) 0 0
\(520\) −0.788370 + 0.826819i −0.0345723 + 0.0362584i
\(521\) 5.63432 39.1875i 0.246844 1.71684i −0.369390 0.929274i \(-0.620433\pi\)
0.616234 0.787563i \(-0.288657\pi\)
\(522\) 0 0
\(523\) 10.2065 + 4.66115i 0.446299 + 0.203818i 0.625870 0.779927i \(-0.284744\pi\)
−0.179572 + 0.983745i \(0.557471\pi\)
\(524\) 13.1860 3.19889i 0.576033 0.139744i
\(525\) 0 0
\(526\) −1.33658 + 3.33863i −0.0582779 + 0.145571i
\(527\) 1.99705 1.02955i 0.0869928 0.0448479i
\(528\) 0 0
\(529\) 8.70238 21.2901i 0.378364 0.925657i
\(530\) 2.39866i 0.104191i
\(531\) 0 0
\(532\) −1.66864 11.6057i −0.0723448 0.503169i
\(533\) −0.858553 0.611373i −0.0371881 0.0264815i
\(534\) 0 0
\(535\) 28.8330 + 40.4903i 1.24656 + 1.75055i
\(536\) −4.51161 13.0354i −0.194872 0.563045i
\(537\) 0 0
\(538\) 2.28470 + 2.17845i 0.0985003 + 0.0939198i
\(539\) −17.2935 19.9578i −0.744884 0.859642i
\(540\) 0 0
\(541\) −20.8576 + 13.4044i −0.896739 + 0.576299i −0.905822 0.423659i \(-0.860745\pi\)
0.00908220 + 0.999959i \(0.497109\pi\)
\(542\) −4.16624 1.44195i −0.178955 0.0619370i
\(543\) 0 0
\(544\) 5.44674 6.92610i 0.233527 0.296954i
\(545\) −78.8708 + 27.2974i −3.37845 + 1.16929i
\(546\) 0 0
\(547\) −6.92108 28.5291i −0.295924 1.21981i −0.904553 0.426360i \(-0.859796\pi\)
0.608630 0.793455i \(-0.291720\pi\)
\(548\) 0.000946481 0.00207250i 4.04316e−5 8.85330e-5i
\(549\) 0 0
\(550\) 6.99162 10.8792i 0.298124 0.463889i
\(551\) −2.01320 3.48697i −0.0857652 0.148550i
\(552\) 0 0
\(553\) −3.92655 + 6.80099i −0.166974 + 0.289208i
\(554\) 3.40519 + 6.60514i 0.144673 + 0.280626i
\(555\) 0 0
\(556\) −9.04802 + 12.7062i −0.383721 + 0.538861i
\(557\) −1.53026 0.449323i −0.0648390 0.0190384i 0.249152 0.968464i \(-0.419848\pi\)
−0.313991 + 0.949426i \(0.601666\pi\)
\(558\) 0 0
\(559\) −1.42113 1.23141i −0.0601073 0.0520832i
\(560\) 20.8519 + 52.0856i 0.881155 + 2.20102i
\(561\) 0 0
\(562\) −0.0911533 0.472948i −0.00384507 0.0199501i
\(563\) 1.02486 + 21.5145i 0.0431928 + 0.906728i 0.911651 + 0.410966i \(0.134808\pi\)
−0.868458 + 0.495763i \(0.834889\pi\)
\(564\) 0 0
\(565\) −0.418484 + 1.20913i −0.0176058 + 0.0508685i
\(566\) −3.17251 + 0.931533i −0.133351 + 0.0391553i
\(567\) 0 0
\(568\) −0.408952 + 0.471956i −0.0171593 + 0.0198028i
\(569\) 30.3144 2.89467i 1.27084 0.121351i 0.562250 0.826967i \(-0.309936\pi\)
0.708594 + 0.705616i \(0.249330\pi\)
\(570\) 0 0
\(571\) −2.97623 + 31.1685i −0.124551 + 1.30436i 0.689805 + 0.723996i \(0.257696\pi\)
−0.814356 + 0.580366i \(0.802910\pi\)
\(572\) −1.84154 0.737243i −0.0769988 0.0308257i
\(573\) 0 0
\(574\) 3.36358 1.94196i 0.140393 0.0810559i
\(575\) −31.4785 52.0662i −1.31274 2.17131i
\(576\) 0 0
\(577\) 26.1902 + 16.8314i 1.09031 + 0.700701i 0.956917 0.290362i \(-0.0937758\pi\)
0.133395 + 0.991063i \(0.457412\pi\)
\(578\) 1.35564 + 1.72384i 0.0563872 + 0.0717021i
\(579\) 0 0
\(580\) 13.8029 + 14.4761i 0.573134 + 0.601085i
\(581\) 36.5706 26.0418i 1.51720 1.08040i
\(582\) 0 0
\(583\) −7.87031 + 3.15080i −0.325955 + 0.130493i
\(584\) −4.81353 16.3934i −0.199185 0.678363i
\(585\) 0 0
\(586\) −0.0335478 0.0522014i −0.00138585 0.00215642i
\(587\) 10.3454 20.0672i 0.426999 0.828262i −0.572963 0.819581i \(-0.694206\pi\)
0.999962 0.00868140i \(-0.00276341\pi\)
\(588\) 0 0
\(589\) 1.21561 + 0.294903i 0.0500882 + 0.0121513i
\(590\) 8.37081 + 6.58288i 0.344621 + 0.271013i
\(591\) 0 0
\(592\) 1.27519 + 13.3544i 0.0524099 + 0.548861i
\(593\) 0.429753 1.46360i 0.0176478 0.0601030i −0.950198 0.311646i \(-0.899120\pi\)
0.967846 + 0.251543i \(0.0809379\pi\)
\(594\) 0 0
\(595\) 45.3911 6.52626i 1.86085 0.267551i
\(596\) 0.256274 5.37986i 0.0104974 0.220368i
\(597\) 0 0
\(598\) 0.246009 0.222018i 0.0100600 0.00907898i
\(599\) −24.7668 14.2991i −1.01195 0.584247i −0.100185 0.994969i \(-0.531943\pi\)
−0.911761 + 0.410722i \(0.865277\pi\)
\(600\) 0 0
\(601\) −7.53928 + 5.92896i −0.307534 + 0.241847i −0.759983 0.649943i \(-0.774793\pi\)
0.452449 + 0.891790i \(0.350550\pi\)
\(602\) 6.30312 2.87854i 0.256896 0.117320i
\(603\) 0 0
\(604\) 7.48578 16.3916i 0.304592 0.666964i
\(605\) 17.1431 + 3.30407i 0.696968 + 0.134330i
\(606\) 0 0
\(607\) −9.90570 + 40.8318i −0.402060 + 1.65731i 0.306657 + 0.951820i \(0.400790\pi\)
−0.708717 + 0.705493i \(0.750726\pi\)
\(608\) 4.81682 0.928365i 0.195348 0.0376502i
\(609\) 0 0
\(610\) 3.99926 + 2.06176i 0.161925 + 0.0834783i
\(611\) 1.09563 0.949368i 0.0443244 0.0384073i
\(612\) 0 0
\(613\) −14.7166 2.11593i −0.594399 0.0854617i −0.161451 0.986881i \(-0.551618\pi\)
−0.432948 + 0.901419i \(0.642527\pi\)
\(614\) 1.30464 6.76911i 0.0526509 0.273179i
\(615\) 0 0
\(616\) 10.7683 10.2676i 0.433869 0.413693i
\(617\) 25.8710 + 2.47038i 1.04153 + 0.0994536i 0.601775 0.798666i \(-0.294461\pi\)
0.439751 + 0.898120i \(0.355067\pi\)
\(618\) 0 0
\(619\) 14.9413 + 0.711739i 0.600540 + 0.0286072i 0.345651 0.938363i \(-0.387658\pi\)
0.254889 + 0.966970i \(0.417961\pi\)
\(620\) −6.21391 −0.249557
\(621\) 0 0
\(622\) −3.70586 −0.148592
\(623\) 30.0469 + 1.43131i 1.20380 + 0.0573443i
\(624\) 0 0
\(625\) −72.1863 6.89296i −2.88745 0.275718i
\(626\) −0.289952 + 0.276469i −0.0115888 + 0.0110499i
\(627\) 0 0
\(628\) −1.62139 + 8.41258i −0.0647006 + 0.335698i
\(629\) 10.8535 + 1.56049i 0.432756 + 0.0622209i
\(630\) 0 0
\(631\) 1.81259 1.57062i 0.0721583 0.0625255i −0.618035 0.786151i \(-0.712071\pi\)
0.690193 + 0.723625i \(0.257526\pi\)
\(632\) −1.93562 0.997883i −0.0769949 0.0396937i
\(633\) 0 0
\(634\) −4.82573 + 0.930084i −0.191654 + 0.0369383i
\(635\) 1.24499 5.13191i 0.0494059 0.203654i
\(636\) 0 0
\(637\) −1.75771 0.338771i −0.0696431 0.0134226i
\(638\) 1.04276 2.28332i 0.0412831 0.0903975i
\(639\) 0 0
\(640\) −29.3661 + 13.4111i −1.16080 + 0.530119i
\(641\) 0.957930 0.753324i 0.0378360 0.0297545i −0.599062 0.800703i \(-0.704460\pi\)
0.636898 + 0.770948i \(0.280217\pi\)
\(642\) 0 0
\(643\) 14.1568 + 8.17341i 0.558288 + 0.322328i 0.752458 0.658640i \(-0.228868\pi\)
−0.194170 + 0.980968i \(0.562201\pi\)
\(644\) −10.3528 32.7948i −0.407959 1.29230i
\(645\) 0 0
\(646\) 0.0598394 1.25618i 0.00235435 0.0494239i
\(647\) 15.7972 2.27130i 0.621053 0.0892939i 0.175396 0.984498i \(-0.443879\pi\)
0.445657 + 0.895204i \(0.352970\pi\)
\(648\) 0 0
\(649\) −10.6037 + 36.1128i −0.416230 + 1.41755i
\(650\) −0.0833264 0.872634i −0.00326833 0.0342275i
\(651\) 0 0
\(652\) −1.63324 1.28440i −0.0639627 0.0503008i
\(653\) −30.0751 7.29613i −1.17693 0.285520i −0.400843 0.916147i \(-0.631283\pi\)
−0.776086 + 0.630627i \(0.782798\pi\)
\(654\) 0 0
\(655\) −13.5380 + 26.2601i −0.528975 + 1.02607i
\(656\) −7.76012 12.0750i −0.302982 0.471449i
\(657\) 0 0
\(658\) 1.50507 + 5.12581i 0.0586739 + 0.199825i
\(659\) 7.82109 3.13109i 0.304666 0.121970i −0.214292 0.976770i \(-0.568744\pi\)
0.518958 + 0.854800i \(0.326320\pi\)
\(660\) 0 0
\(661\) 9.30455 6.62574i 0.361905 0.257712i −0.384611 0.923079i \(-0.625664\pi\)
0.746516 + 0.665367i \(0.231725\pi\)
\(662\) −3.43696 3.60458i −0.133581 0.140096i
\(663\) 0 0
\(664\) 7.69588 + 9.78611i 0.298658 + 0.379775i
\(665\) 21.4775 + 13.8028i 0.832863 + 0.535249i
\(666\) 0 0
\(667\) −7.48613 9.13379i −0.289864 0.353662i
\(668\) 26.3150 15.1930i 1.01816 0.587834i
\(669\) 0 0
\(670\) 13.6989 + 5.48421i 0.529234 + 0.211873i
\(671\) −1.51162 + 15.8304i −0.0583553 + 0.611124i
\(672\) 0 0
\(673\) −18.6263 + 1.77859i −0.717990 + 0.0685598i −0.447655 0.894206i \(-0.647741\pi\)
−0.270335 + 0.962766i \(0.587135\pi\)
\(674\) −1.88792 + 2.17877i −0.0727199 + 0.0839232i
\(675\) 0 0
\(676\) 23.9624 7.03599i 0.921629 0.270615i
\(677\) −14.1329 + 40.8342i −0.543170 + 1.56939i 0.254992 + 0.966943i \(0.417927\pi\)
−0.798162 + 0.602443i \(0.794194\pi\)
\(678\) 0 0
\(679\) −1.06784 22.4166i −0.0409798 0.860271i
\(680\) 2.40664 + 12.4868i 0.0922903 + 0.478848i
\(681\) 0 0
\(682\) 0.289830 + 0.723960i 0.0110982 + 0.0277219i
\(683\) −21.8205 18.9076i −0.834940 0.723479i 0.128412 0.991721i \(-0.459012\pi\)
−0.963352 + 0.268241i \(0.913558\pi\)
\(684\) 0 0
\(685\) −0.00476010 0.00139769i −0.000181874 5.34030e-5i
\(686\) −0.121624 + 0.170796i −0.00464361 + 0.00652104i
\(687\) 0 0
\(688\) −11.7343 22.7615i −0.447368 0.867773i
\(689\) −0.287326 + 0.497664i −0.0109463 + 0.0189595i
\(690\) 0 0
\(691\) 7.76050 + 13.4416i 0.295223 + 0.511342i 0.975037 0.222043i \(-0.0712726\pi\)
−0.679813 + 0.733385i \(0.737939\pi\)
\(692\) −18.3240 + 28.5127i −0.696574 + 1.08389i
\(693\) 0 0
\(694\) −1.42175 3.11321i −0.0539691 0.118176i
\(695\) −8.00747 33.0072i −0.303741 1.25204i
\(696\) 0 0
\(697\) −11.0869 + 3.83720i −0.419945 + 0.145344i
\(698\) −0.348976 + 0.443759i −0.0132089 + 0.0167965i
\(699\) 0 0
\(700\) −85.9693 29.7543i −3.24933 1.12461i
\(701\) 9.56055 6.14419i 0.361097 0.232063i −0.347494 0.937682i \(-0.612967\pi\)
0.708591 + 0.705619i \(0.249331\pi\)
\(702\) 0 0
\(703\) 3.99764 + 4.61352i 0.150774 + 0.174002i
\(704\) −18.0317 17.1932i −0.679596 0.647993i
\(705\) 0 0
\(706\) −2.02622 5.85438i −0.0762578 0.220333i
\(707\) −1.53948 2.16190i −0.0578982 0.0813066i
\(708\) 0 0
\(709\) −12.2578 8.72875i −0.460352 0.327815i 0.326242 0.945286i \(-0.394218\pi\)
−0.786593 + 0.617471i \(0.788157\pi\)
\(710\) −0.0950704 0.661229i −0.00356793 0.0248155i
\(711\) 0 0
\(712\) 8.34161i 0.312615i
\(713\) 3.65854 + 0.274960i 0.137014 + 0.0102973i
\(714\) 0 0
\(715\) 3.83908 1.97919i 0.143574 0.0740173i
\(716\) −11.2392 + 28.0742i −0.420029 + 1.04918i
\(717\) 0 0
\(718\) 8.23067 1.99674i 0.307166 0.0745176i
\(719\) 16.0632 + 7.33582i 0.599057 + 0.273580i 0.691776 0.722112i \(-0.256829\pi\)
−0.0927192 + 0.995692i \(0.529556\pi\)
\(720\) 0 0
\(721\) 8.56974 59.6039i 0.319154 2.21976i
\(722\) −2.95048 + 3.09437i −0.109805 + 0.115161i
\(723\) 0 0
\(724\) 5.65336 0.269303i 0.210106 0.0100086i
\(725\) −31.2049 + 1.48647i −1.15892 + 0.0552063i
\(726\) 0 0
\(727\) 27.1060 28.4280i 1.00531 1.05433i 0.00678467 0.999977i \(-0.497840\pi\)
0.998522 0.0543578i \(-0.0173112\pi\)
\(728\) 0.143534 0.998299i 0.00531971 0.0369994i
\(729\) 0 0
\(730\) 16.6251 + 7.59242i 0.615322 + 0.281008i
\(731\) −20.3412 + 4.93473i −0.752348 + 0.182518i
\(732\) 0 0
\(733\) −7.02712 + 17.5529i −0.259553 + 0.648331i −0.999709 0.0241032i \(-0.992327\pi\)
0.740157 + 0.672434i \(0.234751\pi\)
\(734\) 3.12770 1.61244i 0.115446 0.0595164i
\(735\) 0 0
\(736\) 13.4989 4.97933i 0.497577 0.183541i
\(737\) 52.1517i 1.92103i
\(738\) 0 0
\(739\) 4.87676 + 33.9186i 0.179394 + 1.24772i 0.858169 + 0.513368i \(0.171602\pi\)
−0.678774 + 0.734347i \(0.737488\pi\)
\(740\) −24.7024 17.5905i −0.908080 0.646641i
\(741\) 0 0
\(742\) −1.22832 1.72493i −0.0450930 0.0633243i
\(743\) 15.0299 + 43.4262i 0.551395 + 1.59315i 0.784120 + 0.620609i \(0.213114\pi\)
−0.232725 + 0.972542i \(0.574764\pi\)
\(744\) 0 0
\(745\) 8.48764 + 8.09294i 0.310963 + 0.296503i
\(746\) 4.60912 + 5.31921i 0.168752 + 0.194750i
\(747\) 0 0
\(748\) −18.5750 + 11.9374i −0.679170 + 0.436476i
\(749\) −41.4691 14.3526i −1.51525 0.524432i
\(750\) 0 0
\(751\) −18.5579 + 23.5982i −0.677186 + 0.861112i −0.996241 0.0866245i \(-0.972392\pi\)
0.319055 + 0.947736i \(0.396634\pi\)
\(752\) 18.6570 6.45725i 0.680351 0.235472i
\(753\) 0 0
\(754\) −0.0401147 0.165355i −0.00146089 0.00602187i
\(755\) 16.2998 + 35.6915i 0.593210 + 1.29895i
\(756\) 0 0
\(757\) −5.75878 + 8.96084i −0.209306 + 0.325687i −0.929995 0.367572i \(-0.880189\pi\)
0.720689 + 0.693259i \(0.243826\pi\)
\(758\) −2.52011 4.36496i −0.0915346 0.158543i
\(759\) 0 0
\(760\) −3.53985 + 6.13121i −0.128404 + 0.222402i
\(761\) −15.4051 29.8818i −0.558435 1.08321i −0.983981 0.178276i \(-0.942948\pi\)
0.425545 0.904937i \(-0.360082\pi\)
\(762\) 0 0
\(763\) 42.7392 60.0189i 1.54726 2.17283i
\(764\) −27.2029 7.98749i −0.984166 0.288977i
\(765\) 0 0
\(766\) −3.75315 3.25212i −0.135607 0.117504i
\(767\) 0.948203 + 2.36850i 0.0342376 + 0.0855215i
\(768\) 0 0
\(769\) −3.75589 19.4874i −0.135441 0.702734i −0.984631 0.174647i \(-0.944122\pi\)
0.849190 0.528087i \(-0.177091\pi\)
\(770\) 0.757327 + 15.8982i 0.0272922 + 0.572933i
\(771\) 0 0
\(772\) 7.63437 22.0581i 0.274767 0.793887i
\(773\) 3.36480 0.987993i 0.121023 0.0355357i −0.220660 0.975351i \(-0.570821\pi\)
0.341683 + 0.939815i \(0.389003\pi\)
\(774\) 0 0
\(775\) 6.35562 7.33478i 0.228301 0.263473i
\(776\) 6.19511 0.591561i 0.222392 0.0212358i
\(777\) 0 0
\(778\) 0.867458 9.08443i 0.0310999 0.325693i
\(779\) −6.06373 2.42755i −0.217256 0.0869760i
\(780\) 0 0
\(781\) 2.04470 1.18051i 0.0731650 0.0422419i
\(782\) −0.424669 3.66411i −0.0151861 0.131028i
\(783\) 0 0
\(784\) −20.5078 13.1795i −0.732421 0.470698i
\(785\) −11.5317 14.6638i −0.411584 0.523372i
\(786\) 0 0
\(787\) 24.9445 + 26.1610i 0.889174 + 0.932539i 0.998106 0.0615100i \(-0.0195916\pi\)
−0.108932 + 0.994049i \(0.534743\pi\)
\(788\) 6.46460 4.60342i 0.230292 0.163990i
\(789\) 0 0
\(790\) 2.16267 0.865804i 0.0769445 0.0308039i
\(791\) −0.318237 1.08382i −0.0113152 0.0385360i
\(792\) 0 0
\(793\) 0.582780 + 0.906823i 0.0206951 + 0.0322022i
\(794\) 3.02704 5.87163i 0.107425 0.208376i
\(795\) 0 0
\(796\) −31.1136 7.54808i −1.10279 0.267534i
\(797\) −22.7868 17.9197i −0.807149 0.634749i 0.126892 0.991917i \(-0.459500\pi\)
−0.934040 + 0.357168i \(0.883742\pi\)
\(798\) 0 0
\(799\) −1.53393 16.0641i −0.0542666 0.568305i
\(800\) 10.7230 36.5191i 0.379115 1.29115i
\(801\) 0 0
\(802\) −7.41038 + 1.06545i −0.261670 + 0.0376224i
\(803\) −3.07357 + 64.5222i −0.108464 + 2.27694i
\(804\) 0 0
\(805\) 68.7291 + 29.7260i 2.42238 + 1.04770i
\(806\) 0.0457783 + 0.0264301i 0.00161247 + 0.000930960i
\(807\) 0 0
\(808\) 0.578514 0.454948i 0.0203520 0.0160050i
\(809\) −31.5971 + 14.4299i −1.11089 + 0.507328i −0.884422 0.466689i \(-0.845447\pi\)
−0.226473 + 0.974017i \(0.572719\pi\)
\(810\) 0 0
\(811\) −2.55975 + 5.60508i −0.0898851 + 0.196821i −0.949236 0.314566i \(-0.898141\pi\)
0.859350 + 0.511387i \(0.170868\pi\)
\(812\) −17.3390 3.34181i −0.608479 0.117275i
\(813\) 0 0
\(814\) −0.897236 + 3.69846i −0.0314481 + 0.129631i
\(815\) 4.44246 0.856213i 0.155612 0.0299918i
\(816\) 0 0
\(817\) −10.3576 5.33973i −0.362367 0.186813i
\(818\) 5.92108 5.13064i 0.207026 0.179389i
\(819\) 0 0
\(820\) 32.1167 + 4.61768i 1.12156 + 0.161256i
\(821\) 3.65776 18.9783i 0.127657 0.662346i −0.860568 0.509336i \(-0.829891\pi\)
0.988225 0.153010i \(-0.0488967\pi\)
\(822\) 0 0
\(823\) 4.72951 4.50958i 0.164860 0.157194i −0.603158 0.797622i \(-0.706091\pi\)
0.768019 + 0.640427i \(0.221243\pi\)
\(824\) 16.6228 + 1.58729i 0.579083 + 0.0552957i
\(825\) 0 0
\(826\) −9.39065 0.447332i −0.326742 0.0155647i
\(827\) 53.0645 1.84523 0.922616 0.385719i \(-0.126046\pi\)
0.922616 + 0.385719i \(0.126046\pi\)
\(828\) 0 0
\(829\) 50.4138 1.75094 0.875472 0.483269i \(-0.160551\pi\)
0.875472 + 0.483269i \(0.160551\pi\)
\(830\) −13.3026 0.633683i −0.461741 0.0219954i
\(831\) 0 0
\(832\) −1.68121 0.160536i −0.0582853 0.00556557i
\(833\) −14.4207 + 13.7501i −0.499649 + 0.476414i
\(834\) 0 0
\(835\) −12.5215 + 64.9677i −0.433324 + 2.24830i
\(836\) −12.1675 1.74943i −0.420823 0.0605052i
\(837\) 0 0
\(838\) −2.57333 + 2.22980i −0.0888941 + 0.0770271i
\(839\) −16.6000 8.55787i −0.573094 0.295451i 0.147214 0.989105i \(-0.452969\pi\)
−0.720308 + 0.693654i \(0.756000\pi\)
\(840\) 0 0
\(841\) 22.5217 4.34070i 0.776610 0.149679i
\(842\) −0.258947 + 1.06740i −0.00892392 + 0.0367849i
\(843\) 0 0
\(844\) −19.5928 3.77620i −0.674411 0.129982i
\(845\) −22.5899 + 49.4650i −0.777116 + 1.70165i
\(846\) 0 0
\(847\) −14.0200 + 6.40273i −0.481734 + 0.220000i
\(848\) −6.15150 + 4.83759i −0.211243 + 0.166124i
\(849\) 0 0
\(850\) −8.45034 4.87880i −0.289844 0.167342i
\(851\) 13.7656 + 11.4498i 0.471879 + 0.392494i
\(852\) 0 0
\(853\) 0.578891 12.1524i 0.0198208 0.416091i −0.967051 0.254584i \(-0.918062\pi\)
0.986872 0.161507i \(-0.0516354\pi\)
\(854\) −3.93177 + 0.565303i −0.134542 + 0.0193443i
\(855\) 0 0
\(856\) 3.42836 11.6759i 0.117179 0.399075i
\(857\) 2.51343 + 26.3218i 0.0858570 + 0.899136i 0.931103 + 0.364758i \(0.118848\pi\)
−0.845245 + 0.534378i \(0.820546\pi\)
\(858\) 0 0
\(859\) −17.6671 13.8936i −0.602794 0.474042i 0.269516 0.962996i \(-0.413136\pi\)
−0.872310 + 0.488954i \(0.837379\pi\)
\(860\) 56.2568 + 13.6477i 1.91834 + 0.465384i
\(861\) 0 0
\(862\) −2.37778 + 4.61225i −0.0809876 + 0.157094i
\(863\) 23.1000 + 35.9442i 0.786332 + 1.22356i 0.970604 + 0.240681i \(0.0773707\pi\)
−0.184273 + 0.982875i \(0.558993\pi\)
\(864\) 0 0
\(865\) −20.7918 70.8105i −0.706944 2.40763i
\(866\) −0.640651 + 0.256478i −0.0217702 + 0.00871547i
\(867\) 0 0
\(868\) 4.46857 3.18205i 0.151673 0.108006i
\(869\) 5.68163 + 5.95872i 0.192736 + 0.202136i
\(870\) 0 0
\(871\) 2.18526 + 2.77878i 0.0740446 + 0.0941554i
\(872\) 17.1886 + 11.0465i 0.582080 + 0.374080i
\(873\) 0 0
\(874\) 1.15718 1.69649i 0.0391422 0.0573846i
\(875\) 103.938 60.0084i 3.51374 2.02866i
\(876\) 0 0
\(877\) −34.4711 13.8001i −1.16401 0.465998i −0.292444 0.956283i \(-0.594469\pi\)
−0.871562 + 0.490285i \(0.836893\pi\)
\(878\) 0.147307 1.54267i 0.00497138 0.0520627i
\(879\) 0 0
\(880\) 58.5544 5.59126i 1.97387 0.188481i
\(881\) 25.1322 29.0041i 0.846726 0.977174i −0.153213 0.988193i \(-0.548962\pi\)
0.999939 + 0.0110188i \(0.00350745\pi\)
\(882\) 0 0
\(883\) 8.16884 2.39859i 0.274903 0.0807189i −0.141375 0.989956i \(-0.545152\pi\)
0.416278 + 0.909237i \(0.363334\pi\)
\(884\) −0.489524 + 1.41439i −0.0164645 + 0.0475710i
\(885\) 0 0
\(886\) 0.118779 + 2.49348i 0.00399046 + 0.0837700i
\(887\) 1.60270 + 8.31561i 0.0538135 + 0.279211i 0.998861 0.0477233i \(-0.0151966\pi\)
−0.945047 + 0.326934i \(0.893984\pi\)
\(888\) 0 0
\(889\) 1.73268 + 4.32802i 0.0581122 + 0.145157i
\(890\) −6.74372 5.84347i −0.226050 0.195873i
\(891\) 0 0
\(892\) 33.2258 + 9.75596i 1.11248 + 0.326654i
\(893\) 5.21123 7.31814i 0.174387 0.244892i
\(894\) 0 0
\(895\) −30.1725 58.5265i −1.00856 1.95632i
\(896\) 14.2503 24.6822i 0.476068 0.824574i
\(897\) 0 0
\(898\) −1.85340 3.21018i −0.0618487 0.107125i
\(899\) 1.01847 1.58478i 0.0339680 0.0528552i
\(900\) 0 0
\(901\) 2.65722 + 5.81851i 0.0885249 + 0.193843i
\(902\) −0.960001 3.95718i −0.0319645 0.131760i
\(903\) 0 0
\(904\) 0.296008 0.102449i 0.00984508 0.00340742i
\(905\) −7.61805 + 9.68713i −0.253232 + 0.322011i
\(906\) 0 0
\(907\) 42.5015 + 14.7099i 1.41124 + 0.488435i 0.923178 0.384373i \(-0.125582\pi\)
0.488063 + 0.872808i \(0.337704\pi\)
\(908\) 30.8869 19.8498i 1.02502 0.658739i
\(909\) 0 0
\(910\) 0.706520 + 0.815367i 0.0234209 + 0.0270292i
\(911\) −25.6804 24.4862i −0.850829 0.811264i 0.132861 0.991135i \(-0.457584\pi\)
−0.983690 + 0.179871i \(0.942432\pi\)
\(912\) 0 0
\(913\) −15.3947 44.4801i −0.509490 1.47207i
\(914\) 5.20907 + 7.31512i 0.172301 + 0.241963i
\(915\) 0 0
\(916\) 25.4318 + 18.1099i 0.840290 + 0.598368i
\(917\) −3.71192 25.8169i −0.122578 0.852550i
\(918\) 0 0
\(919\) 34.2932i 1.13123i 0.824670 + 0.565614i \(0.191361\pi\)
−0.824670 + 0.565614i \(0.808639\pi\)
\(920\) −7.32697 + 19.4296i −0.241563 + 0.640574i
\(921\) 0 0
\(922\) −6.43975 + 3.31992i −0.212082 + 0.109336i
\(923\) 0.0594814 0.148577i 0.00195785 0.00489048i
\(924\) 0 0
\(925\) 46.0293 11.1666i 1.51344 0.367155i
\(926\) 0.0446274 + 0.0203807i 0.00146655 + 0.000669750i
\(927\) 0 0
\(928\) 1.05138 7.31252i 0.0345133 0.240045i
\(929\) 27.1433 28.4671i 0.890543 0.933974i −0.107643 0.994190i \(-0.534330\pi\)
0.998185 + 0.0602154i \(0.0191788\pi\)
\(930\) 0 0
\(931\) −11.0805 + 0.527829i −0.363149 + 0.0172989i
\(932\) −24.4961 + 1.16689i −0.802396 + 0.0382228i
\(933\) 0 0
\(934\) −5.20435 + 5.45816i −0.170292 + 0.178597i
\(935\) 6.84222 47.5887i 0.223764 1.55632i
\(936\) 0 0
\(937\) 31.2252 + 14.2601i 1.02008 + 0.465856i 0.854009 0.520258i \(-0.174164\pi\)
0.166072 + 0.986114i \(0.446891\pi\)
\(938\) −12.6596 + 3.07118i −0.413350 + 0.100278i
\(939\) 0 0
\(940\) −16.5872 + 41.4327i −0.541014 + 1.35139i
\(941\) 19.2162 9.90662i 0.626429 0.322947i −0.115619 0.993294i \(-0.536885\pi\)
0.742048 + 0.670347i \(0.233855\pi\)
\(942\) 0 0
\(943\) −18.7049 4.13987i −0.609115 0.134813i
\(944\) 34.7437i 1.13081i
\(945\) 0 0
\(946\) −1.03389 7.19084i −0.0336145 0.233794i
\(947\) 4.94905 + 3.52420i 0.160822 + 0.114521i 0.657635 0.753337i \(-0.271557\pi\)
−0.496813 + 0.867858i \(0.665496\pi\)
\(948\) 0 0
\(949\) 2.53984 + 3.56670i 0.0824466 + 0.115780i
\(950\) −1.77674 5.13356i −0.0576452 0.166555i
\(951\) 0 0
\(952\) −8.12500 7.74717i −0.263333 0.251087i
\(953\) 30.1429 + 34.7868i 0.976424 + 1.12685i 0.991906 + 0.126973i \(0.0405263\pi\)
−0.0154819 + 0.999880i \(0.504928\pi\)
\(954\) 0 0
\(955\) 51.9331 33.3754i 1.68052 1.08000i
\(956\) 9.69386 + 3.35508i 0.313522 + 0.108511i
\(957\) 0 0
\(958\) 2.26379 2.87864i 0.0731397 0.0930047i
\(959\) 0.00413884 0.00143247i 0.000133650 4.62567e-5i
\(960\) 0 0
\(961\) −7.17055 29.5574i −0.231308 0.953465i
\(962\) 0.107165 + 0.234659i 0.00345515 + 0.00756572i
\(963\) 0 0
\(964\) −6.07245 + 9.44891i −0.195580 + 0.304329i
\(965\) 25.4126 + 44.0160i 0.818062 + 1.41692i
\(966\) 0 0
\(967\) −21.3193 + 36.9261i −0.685583 + 1.18746i 0.287670 + 0.957729i \(0.407119\pi\)
−0.973253 + 0.229735i \(0.926214\pi\)
\(968\) −1.95849 3.79894i −0.0629482 0.122102i
\(969\) 0 0
\(970\) −3.86156 + 5.42280i −0.123987 + 0.174115i
\(971\) 37.9374 + 11.1394i 1.21747 + 0.357481i 0.826508 0.562925i \(-0.190324\pi\)
0.390962 + 0.920407i \(0.372142\pi\)
\(972\) 0 0
\(973\) 22.6609 + 19.6358i 0.726475 + 0.629494i
\(974\) 1.35925 + 3.39524i 0.0435532 + 0.108791i
\(975\) 0 0
\(976\) 2.77817 + 14.4145i 0.0889270 + 0.461397i
\(977\) −1.66021 34.8522i −0.0531149 1.11502i −0.855363 0.518029i \(-0.826666\pi\)
0.802248 0.596991i \(-0.203637\pi\)
\(978\) 0 0
\(979\) 10.3148 29.8028i 0.329664 0.952502i
\(980\) 52.8746 15.5254i 1.68902 0.495940i
\(981\) 0 0
\(982\) 2.30807 2.66366i 0.0736536 0.0850007i
\(983\) −6.80522 + 0.649820i −0.217053 + 0.0207260i −0.203016 0.979175i \(-0.565074\pi\)
−0.0140370 + 0.999901i \(0.504468\pi\)
\(984\) 0 0
\(985\) −1.64261 + 17.2022i −0.0523378 + 0.548107i
\(986\) −1.75831 0.703921i −0.0559960 0.0224174i
\(987\) 0 0
\(988\) −0.721623 + 0.416629i −0.0229579 + 0.0132547i
\(989\) −32.5182 10.5247i −1.03402 0.334664i
\(990\) 0 0
\(991\) −24.3623 15.6567i −0.773895 0.497352i 0.0931073 0.995656i \(-0.470320\pi\)
−0.867002 + 0.498304i \(0.833956\pi\)
\(992\) 1.41874 + 1.80408i 0.0450452 + 0.0572796i
\(993\) 0 0
\(994\) 0.406974 + 0.426822i 0.0129084 + 0.0135380i
\(995\) 56.7864 40.4374i 1.80025 1.28195i
\(996\) 0 0
\(997\) −25.2766 + 10.1192i −0.800517 + 0.320479i −0.735604 0.677412i \(-0.763101\pi\)
−0.0649137 + 0.997891i \(0.520677\pi\)
\(998\) −1.17904 4.01544i −0.0373218 0.127106i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 621.2.s.a.44.11 440
3.2 odd 2 207.2.o.a.113.12 yes 440
9.2 odd 6 inner 621.2.s.a.251.11 440
9.7 even 3 207.2.o.a.182.12 yes 440
23.11 odd 22 inner 621.2.s.a.287.11 440
69.11 even 22 207.2.o.a.149.12 yes 440
207.11 even 66 inner 621.2.s.a.494.11 440
207.34 odd 66 207.2.o.a.11.12 440
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
207.2.o.a.11.12 440 207.34 odd 66
207.2.o.a.113.12 yes 440 3.2 odd 2
207.2.o.a.149.12 yes 440 69.11 even 22
207.2.o.a.182.12 yes 440 9.7 even 3
621.2.s.a.44.11 440 1.1 even 1 trivial
621.2.s.a.251.11 440 9.2 odd 6 inner
621.2.s.a.287.11 440 23.11 odd 22 inner
621.2.s.a.494.11 440 207.11 even 66 inner