Properties

Label 621.2.s.a.287.11
Level $621$
Weight $2$
Character 621.287
Analytic conductor $4.959$
Analytic rank $0$
Dimension $440$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [621,2,Mod(17,621)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("621.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(621, base_ring=CyclotomicField(66)) chi = DirichletCharacter(H, H._module([55, 21])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 621 = 3^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 621.s (of order \(66\), degree \(20\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.95870996552\)
Analytic rank: \(0\)
Dimension: \(440\)
Relative dimension: \(22\) over \(\Q(\zeta_{66})\)
Twist minimal: no (minimal twist has level 207)
Sato-Tate group: $\mathrm{SU}(2)[C_{66}]$

Embedding invariants

Embedding label 287.11
Character \(\chi\) \(=\) 621.287
Dual form 621.2.s.a.251.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.120000 - 0.232768i) q^{2} +(1.12033 + 1.57329i) q^{4} +(-0.991492 + 4.08698i) q^{5} +(3.50853 + 1.21431i) q^{7} +(1.01908 - 0.146521i) q^{8} +(0.832339 + 0.721226i) q^{10} +(0.185211 - 3.88807i) q^{11} +(-0.0862974 - 0.249340i) q^{13} +(0.703678 - 0.670955i) q^{14} +(-1.17523 + 3.39559i) q^{16} +(-1.22006 - 2.67157i) q^{17} +(1.48734 + 0.679244i) q^{19} +(-7.54080 + 3.01888i) q^{20} +(-0.882791 - 0.509680i) q^{22} +(-0.324837 + 4.78482i) q^{23} +(-11.2762 - 5.81329i) q^{25} +(-0.0683940 - 0.00983357i) q^{26} +(2.02026 + 6.88036i) q^{28} +(2.00588 + 1.42838i) q^{29} +(-0.710211 - 0.284326i) q^{31} +(2.07031 + 2.17128i) q^{32} +(-0.768262 - 0.0365968i) q^{34} +(-8.44156 + 13.1353i) q^{35} +(1.05184 - 3.58222i) q^{37} +(0.336587 - 0.264695i) q^{38} +(-0.411577 + 4.31023i) q^{40} +(-3.88202 - 0.941769i) q^{41} +(-2.64877 - 6.61630i) q^{43} +(6.32454 - 4.06454i) q^{44} +(1.07477 + 0.649790i) q^{46} +(4.75835 - 2.74724i) q^{47} +(5.33286 + 4.19381i) q^{49} +(-2.70629 + 1.92714i) q^{50} +(0.295602 - 0.415114i) q^{52} +(1.42625 + 1.64598i) q^{53} +(15.7068 + 4.61194i) q^{55} +(3.75339 + 0.723407i) q^{56} +(0.573187 - 0.295499i) q^{58} +(9.13745 - 3.16250i) q^{59} +(2.52544 + 3.21135i) q^{61} +(-0.151407 + 0.131195i) q^{62} +(-6.14149 + 1.80331i) q^{64} +(1.10461 - 0.105478i) q^{65} +(-13.3829 + 0.637507i) q^{67} +(2.83626 - 4.91255i) q^{68} +(2.04449 + 3.54117i) q^{70} +(-0.327930 - 0.510270i) q^{71} +(6.89379 - 15.0953i) q^{73} +(-0.707606 - 0.674701i) q^{74} +(0.597666 + 3.10099i) q^{76} +(5.37115 - 13.4165i) q^{77} +(-0.400302 + 2.07696i) q^{79} +(-12.7125 - 8.16984i) q^{80} +(-0.685057 + 0.790598i) q^{82} +(2.85086 + 11.7514i) q^{83} +(12.1283 - 2.33754i) q^{85} +(-1.85791 - 0.177409i) q^{86} +(-0.380940 - 3.98938i) q^{88} +(1.15305 - 8.01966i) q^{89} -0.979609i q^{91} +(-7.89182 + 4.84953i) q^{92} +(-0.0684651 - 1.43726i) q^{94} +(-4.25074 + 5.40526i) q^{95} +(4.17127 - 4.37470i) q^{97} +(1.61613 - 0.738060i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 440 q + 27 q^{2} - 29 q^{4} + 33 q^{5} - 11 q^{7} - 44 q^{10} + 33 q^{11} - 9 q^{13} + 33 q^{14} + 3 q^{16} - 44 q^{19} + 33 q^{20} + 27 q^{23} + 11 q^{25} - 44 q^{28} - 27 q^{29} - 3 q^{31} + 33 q^{32}+ \cdots + 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/621\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(461\)
\(\chi(n)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.120000 0.232768i 0.0848529 0.164592i −0.842591 0.538554i \(-0.818971\pi\)
0.927444 + 0.373962i \(0.122001\pi\)
\(3\) 0 0
\(4\) 1.12033 + 1.57329i 0.560167 + 0.786644i
\(5\) −0.991492 + 4.08698i −0.443409 + 1.82775i 0.108819 + 0.994062i \(0.465293\pi\)
−0.552228 + 0.833693i \(0.686222\pi\)
\(6\) 0 0
\(7\) 3.50853 + 1.21431i 1.32610 + 0.458968i 0.896096 0.443859i \(-0.146391\pi\)
0.430004 + 0.902827i \(0.358512\pi\)
\(8\) 1.01908 0.146521i 0.360299 0.0518031i
\(9\) 0 0
\(10\) 0.832339 + 0.721226i 0.263209 + 0.228072i
\(11\) 0.185211 3.88807i 0.0558433 1.17230i −0.780884 0.624676i \(-0.785231\pi\)
0.836727 0.547620i \(-0.184466\pi\)
\(12\) 0 0
\(13\) −0.0862974 0.249340i −0.0239346 0.0691545i 0.932401 0.361426i \(-0.117710\pi\)
−0.956335 + 0.292272i \(0.905589\pi\)
\(14\) 0.703678 0.670955i 0.188066 0.179320i
\(15\) 0 0
\(16\) −1.17523 + 3.39559i −0.293807 + 0.848898i
\(17\) −1.22006 2.67157i −0.295909 0.647950i 0.702028 0.712149i \(-0.252278\pi\)
−0.997937 + 0.0641992i \(0.979551\pi\)
\(18\) 0 0
\(19\) 1.48734 + 0.679244i 0.341218 + 0.155829i 0.578652 0.815575i \(-0.303579\pi\)
−0.237434 + 0.971404i \(0.576306\pi\)
\(20\) −7.54080 + 3.01888i −1.68617 + 0.675042i
\(21\) 0 0
\(22\) −0.882791 0.509680i −0.188212 0.108664i
\(23\) −0.324837 + 4.78482i −0.0677332 + 0.997703i
\(24\) 0 0
\(25\) −11.2762 5.81329i −2.25524 1.16266i
\(26\) −0.0683940 0.00983357i −0.0134132 0.00192852i
\(27\) 0 0
\(28\) 2.02026 + 6.88036i 0.381793 + 1.30027i
\(29\) 2.00588 + 1.42838i 0.372483 + 0.265244i 0.750934 0.660378i \(-0.229604\pi\)
−0.378451 + 0.925621i \(0.623543\pi\)
\(30\) 0 0
\(31\) −0.710211 0.284326i −0.127558 0.0510664i 0.307006 0.951708i \(-0.400673\pi\)
−0.434563 + 0.900641i \(0.643097\pi\)
\(32\) 2.07031 + 2.17128i 0.365983 + 0.383832i
\(33\) 0 0
\(34\) −0.768262 0.0365968i −0.131756 0.00627631i
\(35\) −8.44156 + 13.1353i −1.42688 + 2.22028i
\(36\) 0 0
\(37\) 1.05184 3.58222i 0.172921 0.588914i −0.826733 0.562595i \(-0.809803\pi\)
0.999654 0.0263193i \(-0.00837867\pi\)
\(38\) 0.336587 0.264695i 0.0546016 0.0429391i
\(39\) 0 0
\(40\) −0.411577 + 4.31023i −0.0650761 + 0.681508i
\(41\) −3.88202 0.941769i −0.606270 0.147080i −0.0791391 0.996864i \(-0.525217\pi\)
−0.527131 + 0.849784i \(0.676732\pi\)
\(42\) 0 0
\(43\) −2.64877 6.61630i −0.403933 1.00898i −0.981299 0.192491i \(-0.938343\pi\)
0.577365 0.816486i \(-0.304081\pi\)
\(44\) 6.32454 4.06454i 0.953461 0.612752i
\(45\) 0 0
\(46\) 1.07477 + 0.649790i 0.158466 + 0.0958064i
\(47\) 4.75835 2.74724i 0.694077 0.400726i −0.111061 0.993814i \(-0.535425\pi\)
0.805138 + 0.593088i \(0.202091\pi\)
\(48\) 0 0
\(49\) 5.33286 + 4.19381i 0.761837 + 0.599115i
\(50\) −2.70629 + 1.92714i −0.382728 + 0.272539i
\(51\) 0 0
\(52\) 0.295602 0.415114i 0.0409926 0.0575660i
\(53\) 1.42625 + 1.64598i 0.195910 + 0.226092i 0.845202 0.534447i \(-0.179480\pi\)
−0.649292 + 0.760539i \(0.724935\pi\)
\(54\) 0 0
\(55\) 15.7068 + 4.61194i 2.11791 + 0.621874i
\(56\) 3.75339 + 0.723407i 0.501568 + 0.0966693i
\(57\) 0 0
\(58\) 0.573187 0.295499i 0.0752632 0.0388009i
\(59\) 9.13745 3.16250i 1.18960 0.411723i 0.340643 0.940193i \(-0.389355\pi\)
0.848952 + 0.528470i \(0.177234\pi\)
\(60\) 0 0
\(61\) 2.52544 + 3.21135i 0.323349 + 0.411172i 0.920367 0.391056i \(-0.127890\pi\)
−0.597018 + 0.802228i \(0.703648\pi\)
\(62\) −0.151407 + 0.131195i −0.0192287 + 0.0166618i
\(63\) 0 0
\(64\) −6.14149 + 1.80331i −0.767687 + 0.225413i
\(65\) 1.10461 0.105478i 0.137010 0.0130829i
\(66\) 0 0
\(67\) −13.3829 + 0.637507i −1.63498 + 0.0778838i −0.844833 0.535030i \(-0.820300\pi\)
−0.790150 + 0.612914i \(0.789997\pi\)
\(68\) 2.83626 4.91255i 0.343948 0.595735i
\(69\) 0 0
\(70\) 2.04449 + 3.54117i 0.244364 + 0.423250i
\(71\) −0.327930 0.510270i −0.0389182 0.0605579i 0.821249 0.570569i \(-0.193277\pi\)
−0.860168 + 0.510012i \(0.829641\pi\)
\(72\) 0 0
\(73\) 6.89379 15.0953i 0.806857 1.76677i 0.186492 0.982457i \(-0.440288\pi\)
0.620365 0.784313i \(-0.286984\pi\)
\(74\) −0.707606 0.674701i −0.0822575 0.0784324i
\(75\) 0 0
\(76\) 0.597666 + 3.10099i 0.0685570 + 0.355708i
\(77\) 5.37115 13.4165i 0.612100 1.52895i
\(78\) 0 0
\(79\) −0.400302 + 2.07696i −0.0450374 + 0.233676i −0.997471 0.0710685i \(-0.977359\pi\)
0.952434 + 0.304745i \(0.0985712\pi\)
\(80\) −12.7125 8.16984i −1.42130 0.913415i
\(81\) 0 0
\(82\) −0.685057 + 0.790598i −0.0756519 + 0.0873069i
\(83\) 2.85086 + 11.7514i 0.312922 + 1.28988i 0.883419 + 0.468584i \(0.155236\pi\)
−0.570497 + 0.821300i \(0.693249\pi\)
\(84\) 0 0
\(85\) 12.1283 2.33754i 1.31550 0.253542i
\(86\) −1.85791 0.177409i −0.200344 0.0191305i
\(87\) 0 0
\(88\) −0.380940 3.98938i −0.0406083 0.425270i
\(89\) 1.15305 8.01966i 0.122223 0.850082i −0.832805 0.553567i \(-0.813266\pi\)
0.955028 0.296515i \(-0.0958246\pi\)
\(90\) 0 0
\(91\) 0.979609i 0.102691i
\(92\) −7.89182 + 4.84953i −0.822779 + 0.505598i
\(93\) 0 0
\(94\) −0.0684651 1.43726i −0.00706164 0.148242i
\(95\) −4.25074 + 5.40526i −0.436117 + 0.554568i
\(96\) 0 0
\(97\) 4.17127 4.37470i 0.423528 0.444183i −0.477051 0.878876i \(-0.658294\pi\)
0.900579 + 0.434692i \(0.143143\pi\)
\(98\) 1.61613 0.738060i 0.163253 0.0745554i
\(99\) 0 0
\(100\) −3.48713 24.2535i −0.348713 2.42535i
\(101\) −0.694693 + 0.168531i −0.0691245 + 0.0167694i −0.270172 0.962812i \(-0.587081\pi\)
0.201048 + 0.979581i \(0.435565\pi\)
\(102\) 0 0
\(103\) 7.43198 + 14.4160i 0.732295 + 1.42045i 0.900569 + 0.434714i \(0.143151\pi\)
−0.168274 + 0.985740i \(0.553819\pi\)
\(104\) −0.124477 0.241453i −0.0122060 0.0236764i
\(105\) 0 0
\(106\) 0.554280 0.134467i 0.0538365 0.0130606i
\(107\) 1.68209 + 11.6992i 0.162614 + 1.13100i 0.893683 + 0.448700i \(0.148113\pi\)
−0.731069 + 0.682304i \(0.760978\pi\)
\(108\) 0 0
\(109\) −18.0521 + 8.24414i −1.72908 + 0.789645i −0.735372 + 0.677664i \(0.762992\pi\)
−0.993710 + 0.111981i \(0.964280\pi\)
\(110\) 2.95833 3.10261i 0.282066 0.295822i
\(111\) 0 0
\(112\) −8.24664 + 10.4865i −0.779234 + 0.990877i
\(113\) −0.0144765 0.303898i −0.00136183 0.0285883i 0.998084 0.0618712i \(-0.0197068\pi\)
−0.999446 + 0.0332829i \(0.989404\pi\)
\(114\) 0 0
\(115\) −19.2334 6.07171i −1.79352 0.566190i
\(116\) 4.75609i 0.441592i
\(117\) 0 0
\(118\) 0.360367 2.50641i 0.0331745 0.230733i
\(119\) −1.03651 10.8548i −0.0950166 0.995059i
\(120\) 0 0
\(121\) −4.13256 0.394611i −0.375687 0.0358737i
\(122\) 1.05055 0.202477i 0.0951125 0.0183314i
\(123\) 0 0
\(124\) −0.348347 1.43591i −0.0312825 0.128948i
\(125\) 21.1689 24.4302i 1.89340 2.18510i
\(126\) 0 0
\(127\) 1.05634 + 0.678868i 0.0937349 + 0.0602398i 0.586669 0.809827i \(-0.300439\pi\)
−0.492934 + 0.870067i \(0.664075\pi\)
\(128\) −1.45278 + 7.53772i −0.128409 + 0.666247i
\(129\) 0 0
\(130\) 0.108002 0.269775i 0.00947238 0.0236609i
\(131\) −1.32952 6.89818i −0.116160 0.602697i −0.992624 0.121230i \(-0.961316\pi\)
0.876464 0.481467i \(-0.159896\pi\)
\(132\) 0 0
\(133\) 4.39355 + 4.18924i 0.380969 + 0.363253i
\(134\) −1.45756 + 3.19161i −0.125914 + 0.275713i
\(135\) 0 0
\(136\) −1.63478 2.54377i −0.140181 0.218127i
\(137\) 0.000589825 0.00102161i 5.03921e−5 8.72817e-5i 0.866051 0.499956i \(-0.166651\pi\)
−0.866000 + 0.500044i \(0.833317\pi\)
\(138\) 0 0
\(139\) 4.03809 6.99418i 0.342507 0.593239i −0.642391 0.766377i \(-0.722057\pi\)
0.984898 + 0.173138i \(0.0553908\pi\)
\(140\) −30.1230 + 1.43494i −2.54586 + 0.121274i
\(141\) 0 0
\(142\) −0.158126 + 0.0150992i −0.0132696 + 0.00126710i
\(143\) −0.985433 + 0.289349i −0.0824061 + 0.0241966i
\(144\) 0 0
\(145\) −7.82659 + 6.78178i −0.649963 + 0.563196i
\(146\) −2.68644 3.41609i −0.222331 0.282717i
\(147\) 0 0
\(148\) 6.81428 2.35844i 0.560130 0.193863i
\(149\) 2.47861 1.27781i 0.203056 0.104682i −0.353700 0.935359i \(-0.615076\pi\)
0.556755 + 0.830677i \(0.312046\pi\)
\(150\) 0 0
\(151\) 9.16133 + 1.76570i 0.745538 + 0.143691i 0.547853 0.836575i \(-0.315445\pi\)
0.197686 + 0.980265i \(0.436657\pi\)
\(152\) 1.61524 + 0.474276i 0.131013 + 0.0384689i
\(153\) 0 0
\(154\) −2.47839 2.86021i −0.199714 0.230482i
\(155\) 1.86620 2.62072i 0.149897 0.210501i
\(156\) 0 0
\(157\) 3.61330 2.57302i 0.288373 0.205349i −0.426711 0.904388i \(-0.640328\pi\)
0.715084 + 0.699039i \(0.246388\pi\)
\(158\) 0.435414 + 0.342413i 0.0346396 + 0.0272409i
\(159\) 0 0
\(160\) −10.9267 + 6.30852i −0.863830 + 0.498732i
\(161\) −6.94997 + 16.3932i −0.547735 + 1.29197i
\(162\) 0 0
\(163\) 0.905001 0.581609i 0.0708852 0.0455551i −0.504718 0.863284i \(-0.668404\pi\)
0.575603 + 0.817729i \(0.304767\pi\)
\(164\) −2.86749 7.16263i −0.223913 0.559308i
\(165\) 0 0
\(166\) 3.07745 + 0.746581i 0.238856 + 0.0579460i
\(167\) 1.49547 15.6612i 0.115723 1.21190i −0.731941 0.681368i \(-0.761385\pi\)
0.847664 0.530534i \(-0.178008\pi\)
\(168\) 0 0
\(169\) 10.1640 7.99303i 0.781844 0.614849i
\(170\) 0.911296 3.10359i 0.0698932 0.238035i
\(171\) 0 0
\(172\) 7.44184 11.5797i 0.567435 0.882947i
\(173\) 17.5284 + 0.834982i 1.33266 + 0.0634825i 0.701778 0.712395i \(-0.252390\pi\)
0.630883 + 0.775878i \(0.282693\pi\)
\(174\) 0 0
\(175\) −32.5038 34.0890i −2.45705 2.57688i
\(176\) 12.9846 + 5.19826i 0.978753 + 0.391834i
\(177\) 0 0
\(178\) −1.72835 1.23075i −0.129545 0.0922489i
\(179\) −4.41110 15.0228i −0.329701 1.12286i −0.942940 0.332962i \(-0.891952\pi\)
0.613239 0.789898i \(-0.289866\pi\)
\(180\) 0 0
\(181\) −2.90054 0.417035i −0.215596 0.0309980i 0.0336705 0.999433i \(-0.489280\pi\)
−0.249266 + 0.968435i \(0.580189\pi\)
\(182\) −0.228021 0.117553i −0.0169021 0.00871363i
\(183\) 0 0
\(184\) 0.370044 + 4.92370i 0.0272800 + 0.362980i
\(185\) 13.5976 + 7.85058i 0.999716 + 0.577186i
\(186\) 0 0
\(187\) −10.6132 + 4.24888i −0.776113 + 0.310709i
\(188\) 9.65313 + 4.40844i 0.704027 + 0.321518i
\(189\) 0 0
\(190\) 0.748080 + 1.63807i 0.0542714 + 0.118838i
\(191\) 4.80103 13.8717i 0.347390 1.00372i −0.627032 0.778994i \(-0.715730\pi\)
0.974422 0.224725i \(-0.0721484\pi\)
\(192\) 0 0
\(193\) −8.74657 + 8.33984i −0.629592 + 0.600315i −0.936177 0.351528i \(-0.885662\pi\)
0.306585 + 0.951843i \(0.400814\pi\)
\(194\) −0.517736 1.49590i −0.0371713 0.107399i
\(195\) 0 0
\(196\) −0.623486 + 13.0886i −0.0445347 + 0.934898i
\(197\) 3.10535 + 2.69081i 0.221247 + 0.191712i 0.758431 0.651753i \(-0.225966\pi\)
−0.537184 + 0.843465i \(0.680512\pi\)
\(198\) 0 0
\(199\) 16.4077 2.35908i 1.16311 0.167230i 0.466396 0.884576i \(-0.345552\pi\)
0.696717 + 0.717346i \(0.254643\pi\)
\(200\) −12.3431 4.27199i −0.872790 0.302076i
\(201\) 0 0
\(202\) −0.0441347 + 0.181926i −0.00310531 + 0.0128003i
\(203\) 5.30319 + 7.44729i 0.372211 + 0.522697i
\(204\) 0 0
\(205\) 7.69799 14.9320i 0.537651 1.04290i
\(206\) 4.24743 0.295932
\(207\) 0 0
\(208\) 0.948076 0.0657373
\(209\) 2.91642 5.65706i 0.201733 0.391307i
\(210\) 0 0
\(211\) −5.99252 8.41532i −0.412542 0.579335i 0.555061 0.831810i \(-0.312695\pi\)
−0.967603 + 0.252475i \(0.918755\pi\)
\(212\) −0.991723 + 4.08794i −0.0681118 + 0.280761i
\(213\) 0 0
\(214\) 2.92505 + 1.01237i 0.199952 + 0.0692041i
\(215\) 29.6670 4.26546i 2.02327 0.290902i
\(216\) 0 0
\(217\) −2.14654 1.85998i −0.145716 0.126264i
\(218\) −0.247290 + 5.19126i −0.0167486 + 0.351596i
\(219\) 0 0
\(220\) 10.3410 + 29.8783i 0.697188 + 2.01439i
\(221\) −0.560840 + 0.534760i −0.0377262 + 0.0359718i
\(222\) 0 0
\(223\) 5.86401 16.9429i 0.392683 1.13458i −0.559441 0.828870i \(-0.688984\pi\)
0.952124 0.305713i \(-0.0988947\pi\)
\(224\) 4.62713 + 10.1320i 0.309163 + 0.676973i
\(225\) 0 0
\(226\) −0.0724749 0.0330982i −0.00482096 0.00220166i
\(227\) −17.6478 + 7.06512i −1.17133 + 0.468929i −0.874037 0.485859i \(-0.838507\pi\)
−0.297290 + 0.954787i \(0.596083\pi\)
\(228\) 0 0
\(229\) 13.9991 + 8.08237i 0.925085 + 0.534098i 0.885254 0.465108i \(-0.153985\pi\)
0.0398315 + 0.999206i \(0.487318\pi\)
\(230\) −3.72131 + 3.74831i −0.245376 + 0.247156i
\(231\) 0 0
\(232\) 2.25344 + 1.16173i 0.147946 + 0.0762712i
\(233\) −12.5681 1.80702i −0.823363 0.118382i −0.282260 0.959338i \(-0.591084\pi\)
−0.541103 + 0.840956i \(0.681993\pi\)
\(234\) 0 0
\(235\) 6.51004 + 22.1712i 0.424668 + 1.44629i
\(236\) 15.2125 + 10.8328i 0.990251 + 0.705154i
\(237\) 0 0
\(238\) −2.65103 1.06131i −0.171841 0.0687947i
\(239\) −3.66511 3.84386i −0.237076 0.248638i 0.594439 0.804141i \(-0.297374\pi\)
−0.831515 + 0.555503i \(0.812526\pi\)
\(240\) 0 0
\(241\) −5.80880 0.276707i −0.374178 0.0178243i −0.140349 0.990102i \(-0.544822\pi\)
−0.233829 + 0.972278i \(0.575125\pi\)
\(242\) −0.587760 + 0.914573i −0.0377826 + 0.0587910i
\(243\) 0 0
\(244\) −2.22305 + 7.57102i −0.142316 + 0.484685i
\(245\) −22.4275 + 17.6372i −1.43284 + 1.12680i
\(246\) 0 0
\(247\) 0.0410093 0.429469i 0.00260936 0.0273265i
\(248\) −0.765421 0.185689i −0.0486043 0.0117913i
\(249\) 0 0
\(250\) −3.14630 7.85907i −0.198989 0.497051i
\(251\) −9.76049 + 6.27268i −0.616076 + 0.395928i −0.811131 0.584864i \(-0.801148\pi\)
0.195055 + 0.980792i \(0.437512\pi\)
\(252\) 0 0
\(253\) 18.5435 + 2.14919i 1.16582 + 0.135118i
\(254\) 0.284779 0.164417i 0.0178686 0.0103165i
\(255\) 0 0
\(256\) −8.48248 6.67070i −0.530155 0.416919i
\(257\) −0.903074 + 0.643076i −0.0563322 + 0.0401140i −0.607876 0.794032i \(-0.707978\pi\)
0.551544 + 0.834146i \(0.314039\pi\)
\(258\) 0 0
\(259\) 8.04035 11.2911i 0.499603 0.701594i
\(260\) 1.40348 + 1.61970i 0.0870401 + 0.100450i
\(261\) 0 0
\(262\) −1.76522 0.518314i −0.109055 0.0320216i
\(263\) −13.4842 2.59887i −0.831473 0.160253i −0.244285 0.969704i \(-0.578553\pi\)
−0.587189 + 0.809450i \(0.699765\pi\)
\(264\) 0 0
\(265\) −8.14119 + 4.19708i −0.500109 + 0.257824i
\(266\) 1.50235 0.519967i 0.0921148 0.0318812i
\(267\) 0 0
\(268\) −15.9963 20.3409i −0.977129 1.24252i
\(269\) −9.11016 + 7.89400i −0.555456 + 0.481305i −0.886767 0.462216i \(-0.847054\pi\)
0.331311 + 0.943522i \(0.392509\pi\)
\(270\) 0 0
\(271\) −16.1529 + 4.74293i −0.981222 + 0.288113i −0.732729 0.680521i \(-0.761754\pi\)
−0.248493 + 0.968634i \(0.579935\pi\)
\(272\) 10.5054 1.00314i 0.636984 0.0608246i
\(273\) 0 0
\(274\) 0.000308576 0 1.46993e-5i 1.86418e−5 0 8.88017e-7i
\(275\) −24.6909 + 42.7659i −1.48892 + 2.57888i
\(276\) 0 0
\(277\) 14.1883 + 24.5748i 0.852490 + 1.47656i 0.878954 + 0.476907i \(0.158242\pi\)
−0.0264633 + 0.999650i \(0.508425\pi\)
\(278\) −1.14345 1.77924i −0.0685795 0.106712i
\(279\) 0 0
\(280\) −6.67801 + 14.6228i −0.399087 + 0.873880i
\(281\) 1.33110 + 1.26920i 0.0794068 + 0.0757142i 0.728743 0.684787i \(-0.240105\pi\)
−0.649336 + 0.760501i \(0.724953\pi\)
\(282\) 0 0
\(283\) 2.38945 + 12.3977i 0.142038 + 0.736964i 0.981187 + 0.193062i \(0.0618417\pi\)
−0.839148 + 0.543902i \(0.816946\pi\)
\(284\) 0.435410 1.08760i 0.0258368 0.0645372i
\(285\) 0 0
\(286\) −0.0509009 + 0.264099i −0.00300984 + 0.0156165i
\(287\) −12.4766 8.01822i −0.736470 0.473301i
\(288\) 0 0
\(289\) 5.48392 6.32878i 0.322584 0.372281i
\(290\) 0.639388 + 2.63559i 0.0375461 + 0.154767i
\(291\) 0 0
\(292\) 31.4726 6.06584i 1.84179 0.354976i
\(293\) −0.235876 0.0225234i −0.0137800 0.00131583i 0.0881638 0.996106i \(-0.471900\pi\)
−0.101944 + 0.994790i \(0.532506\pi\)
\(294\) 0 0
\(295\) 3.86539 + 40.4802i 0.225052 + 2.35685i
\(296\) 0.547031 3.80469i 0.0317955 0.221143i
\(297\) 0 0
\(298\) 0.730278i 0.0423039i
\(299\) 1.22108 0.331922i 0.0706168 0.0191956i
\(300\) 0 0
\(301\) −1.25901 26.4299i −0.0725683 1.52340i
\(302\) 1.51036 1.92058i 0.0869114 0.110517i
\(303\) 0 0
\(304\) −4.05439 + 4.25212i −0.232535 + 0.243876i
\(305\) −15.6287 + 7.13739i −0.894896 + 0.408686i
\(306\) 0 0
\(307\) 3.74628 + 26.0559i 0.213811 + 1.48709i 0.760271 + 0.649606i \(0.225066\pi\)
−0.546460 + 0.837485i \(0.684025\pi\)
\(308\) 27.1255 6.58057i 1.54562 0.374963i
\(309\) 0 0
\(310\) −0.386074 0.748878i −0.0219275 0.0425334i
\(311\) −6.48438 12.5779i −0.367695 0.713229i 0.630311 0.776343i \(-0.282927\pi\)
−0.998006 + 0.0631134i \(0.979897\pi\)
\(312\) 0 0
\(313\) 1.48671 0.360673i 0.0840340 0.0203864i −0.193521 0.981096i \(-0.561991\pi\)
0.277555 + 0.960710i \(0.410476\pi\)
\(314\) −0.165320 1.14982i −0.00932952 0.0648883i
\(315\) 0 0
\(316\) −3.71613 + 1.69710i −0.209049 + 0.0954693i
\(317\) −12.9503 + 13.5819i −0.727362 + 0.762836i −0.978751 0.205050i \(-0.934264\pi\)
0.251389 + 0.967886i \(0.419113\pi\)
\(318\) 0 0
\(319\) 5.92515 7.53444i 0.331745 0.421848i
\(320\) −1.28084 26.8881i −0.0716012 1.50309i
\(321\) 0 0
\(322\) 2.98182 + 3.58492i 0.166170 + 0.199780i
\(323\) 4.80224i 0.267204i
\(324\) 0 0
\(325\) −0.476378 + 3.31328i −0.0264247 + 0.183788i
\(326\) −0.0267796 0.280448i −0.00148318 0.0155326i
\(327\) 0 0
\(328\) −4.09408 0.390937i −0.226058 0.0215859i
\(329\) 20.0308 3.86063i 1.10434 0.212843i
\(330\) 0 0
\(331\) −4.48375 18.4823i −0.246449 1.01588i −0.951727 0.306947i \(-0.900693\pi\)
0.705277 0.708931i \(-0.250822\pi\)
\(332\) −15.2944 + 17.6507i −0.839390 + 0.968708i
\(333\) 0 0
\(334\) −3.46597 2.22744i −0.189650 0.121880i
\(335\) 10.6636 55.3278i 0.582613 3.02288i
\(336\) 0 0
\(337\) −4.09149 + 10.2200i −0.222878 + 0.556721i −0.997092 0.0762016i \(-0.975721\pi\)
0.774215 + 0.632923i \(0.218145\pi\)
\(338\) −0.640843 3.32501i −0.0348573 0.180857i
\(339\) 0 0
\(340\) 17.2654 + 16.4625i 0.936348 + 0.892806i
\(341\) −1.23702 + 2.70869i −0.0669882 + 0.146684i
\(342\) 0 0
\(343\) −0.432867 0.673554i −0.0233726 0.0363685i
\(344\) −3.66873 6.35443i −0.197805 0.342608i
\(345\) 0 0
\(346\) 2.29777 3.97986i 0.123529 0.213958i
\(347\) −13.0542 + 0.621846i −0.700784 + 0.0333824i −0.394950 0.918703i \(-0.629238\pi\)
−0.305833 + 0.952085i \(0.598935\pi\)
\(348\) 0 0
\(349\) 2.14597 0.204915i 0.114871 0.0109688i −0.0374622 0.999298i \(-0.511927\pi\)
0.152333 + 0.988329i \(0.451321\pi\)
\(350\) −11.8353 + 3.47515i −0.632622 + 0.185755i
\(351\) 0 0
\(352\) 8.82552 7.64736i 0.470402 0.407605i
\(353\) 14.6234 + 18.5951i 0.778324 + 0.989719i 0.999894 + 0.0145745i \(0.00463936\pi\)
−0.221570 + 0.975144i \(0.571118\pi\)
\(354\) 0 0
\(355\) 2.41060 0.834318i 0.127942 0.0442810i
\(356\) 13.9090 7.17061i 0.737178 0.380041i
\(357\) 0 0
\(358\) −4.02617 0.775980i −0.212790 0.0410118i
\(359\) −31.0308 9.11147i −1.63774 0.480885i −0.672037 0.740518i \(-0.734580\pi\)
−0.965707 + 0.259633i \(0.916398\pi\)
\(360\) 0 0
\(361\) −10.6916 12.3387i −0.562714 0.649406i
\(362\) −0.445138 + 0.625109i −0.0233959 + 0.0328550i
\(363\) 0 0
\(364\) 1.54121 1.09749i 0.0807812 0.0575240i
\(365\) 54.8591 + 43.1416i 2.87145 + 2.25814i
\(366\) 0 0
\(367\) −11.6368 + 6.71851i −0.607436 + 0.350703i −0.771961 0.635670i \(-0.780724\pi\)
0.164525 + 0.986373i \(0.447391\pi\)
\(368\) −15.8655 6.72626i −0.827048 0.350631i
\(369\) 0 0
\(370\) 3.45908 2.22301i 0.179829 0.115569i
\(371\) 3.00530 + 7.50687i 0.156027 + 0.389737i
\(372\) 0 0
\(373\) −26.1186 6.33630i −1.35237 0.328081i −0.506853 0.862032i \(-0.669191\pi\)
−0.845515 + 0.533951i \(0.820707\pi\)
\(374\) −0.284582 + 2.98028i −0.0147154 + 0.154106i
\(375\) 0 0
\(376\) 4.44661 3.49685i 0.229316 0.180336i
\(377\) 0.183050 0.623412i 0.00942757 0.0321074i
\(378\) 0 0
\(379\) −10.4054 + 16.1911i −0.534487 + 0.831679i −0.998534 0.0541323i \(-0.982761\pi\)
0.464046 + 0.885811i \(0.346397\pi\)
\(380\) −13.2663 0.631950i −0.680545 0.0324184i
\(381\) 0 0
\(382\) −2.65275 2.78213i −0.135727 0.142346i
\(383\) −17.6050 7.04799i −0.899575 0.360135i −0.124659 0.992200i \(-0.539784\pi\)
−0.774916 + 0.632064i \(0.782208\pi\)
\(384\) 0 0
\(385\) 49.5075 + 35.2542i 2.52314 + 1.79672i
\(386\) 0.891656 + 3.03670i 0.0453841 + 0.154564i
\(387\) 0 0
\(388\) 11.5559 + 1.66148i 0.586660 + 0.0843490i
\(389\) 30.9734 + 15.9679i 1.57041 + 0.809604i 0.999931 0.0117064i \(-0.00372635\pi\)
0.570481 + 0.821311i \(0.306757\pi\)
\(390\) 0 0
\(391\) 13.1793 4.96996i 0.666505 0.251341i
\(392\) 6.04908 + 3.49244i 0.305525 + 0.176395i
\(393\) 0 0
\(394\) 0.998976 0.399930i 0.0503277 0.0201482i
\(395\) −8.09161 3.69532i −0.407133 0.185932i
\(396\) 0 0
\(397\) 10.4790 + 22.9457i 0.525924 + 1.15161i 0.967148 + 0.254215i \(0.0818172\pi\)
−0.441224 + 0.897397i \(0.645456\pi\)
\(398\) 1.41981 4.10228i 0.0711688 0.205629i
\(399\) 0 0
\(400\) 32.9917 31.4575i 1.64958 1.57287i
\(401\) −9.35019 27.0156i −0.466926 1.34909i −0.895288 0.445487i \(-0.853031\pi\)
0.428362 0.903607i \(-0.359091\pi\)
\(402\) 0 0
\(403\) −0.00960437 + 0.201621i −0.000478428 + 0.0100434i
\(404\) −1.04343 0.904141i −0.0519128 0.0449827i
\(405\) 0 0
\(406\) 2.36987 0.340736i 0.117615 0.0169105i
\(407\) −13.7331 4.75308i −0.680725 0.235601i
\(408\) 0 0
\(409\) 7.05326 29.0739i 0.348761 1.43761i −0.479634 0.877469i \(-0.659231\pi\)
0.828395 0.560144i \(-0.189254\pi\)
\(410\) −2.55193 3.58369i −0.126031 0.176986i
\(411\) 0 0
\(412\) −14.3543 + 27.8434i −0.707184 + 1.37175i
\(413\) 35.8993 1.76649
\(414\) 0 0
\(415\) −50.8544 −2.49634
\(416\) 0.362724 0.703587i 0.0177840 0.0344962i
\(417\) 0 0
\(418\) −0.966810 1.35770i −0.0472882 0.0664070i
\(419\) 3.06537 12.6356i 0.149753 0.617292i −0.846620 0.532198i \(-0.821366\pi\)
0.996373 0.0850932i \(-0.0271188\pi\)
\(420\) 0 0
\(421\) 3.96346 + 1.37177i 0.193167 + 0.0668557i 0.421939 0.906624i \(-0.361350\pi\)
−0.228772 + 0.973480i \(0.573471\pi\)
\(422\) −2.67792 + 0.385027i −0.130359 + 0.0187428i
\(423\) 0 0
\(424\) 1.69463 + 1.46840i 0.0822984 + 0.0713120i
\(425\) −1.77290 + 37.2177i −0.0859982 + 1.80532i
\(426\) 0 0
\(427\) 4.96098 + 14.3338i 0.240078 + 0.693661i
\(428\) −16.5217 + 15.7534i −0.798606 + 0.761469i
\(429\) 0 0
\(430\) 2.56718 7.41737i 0.123800 0.357697i
\(431\) 8.23138 + 18.0242i 0.396491 + 0.868195i 0.997614 + 0.0690383i \(0.0219931\pi\)
−0.601123 + 0.799157i \(0.705280\pi\)
\(432\) 0 0
\(433\) −2.39698 1.09467i −0.115192 0.0526063i 0.356986 0.934110i \(-0.383805\pi\)
−0.472177 + 0.881504i \(0.656532\pi\)
\(434\) −0.690529 + 0.276446i −0.0331465 + 0.0132698i
\(435\) 0 0
\(436\) −33.1948 19.1650i −1.58974 0.917839i
\(437\) −3.73320 + 6.89599i −0.178583 + 0.329880i
\(438\) 0 0
\(439\) −5.25974 2.71159i −0.251034 0.129417i 0.328118 0.944637i \(-0.393586\pi\)
−0.579151 + 0.815220i \(0.696616\pi\)
\(440\) 16.6822 + 2.39854i 0.795295 + 0.114346i
\(441\) 0 0
\(442\) 0.0571740 + 0.194717i 0.00271949 + 0.00926173i
\(443\) −7.76475 5.52925i −0.368914 0.262703i 0.380532 0.924768i \(-0.375741\pi\)
−0.749446 + 0.662065i \(0.769680\pi\)
\(444\) 0 0
\(445\) 31.6330 + 12.6639i 1.49955 + 0.600328i
\(446\) −3.24009 3.39811i −0.153423 0.160905i
\(447\) 0 0
\(448\) −23.7374 1.13075i −1.12149 0.0534230i
\(449\) 7.65255 11.9076i 0.361146 0.561954i −0.612370 0.790571i \(-0.709784\pi\)
0.973517 + 0.228617i \(0.0734202\pi\)
\(450\) 0 0
\(451\) −4.38065 + 14.9191i −0.206277 + 0.702514i
\(452\) 0.461901 0.363243i 0.0217260 0.0170855i
\(453\) 0 0
\(454\) −0.473208 + 4.95566i −0.0222088 + 0.232581i
\(455\) 4.00365 + 0.971274i 0.187694 + 0.0455340i
\(456\) 0 0
\(457\) 12.7449 + 31.8353i 0.596182 + 1.48919i 0.852568 + 0.522617i \(0.175044\pi\)
−0.256386 + 0.966575i \(0.582532\pi\)
\(458\) 3.56121 2.28865i 0.166404 0.106942i
\(459\) 0 0
\(460\) −11.9953 37.0620i −0.559282 1.72803i
\(461\) −23.9595 + 13.8330i −1.11590 + 0.644267i −0.940352 0.340203i \(-0.889504\pi\)
−0.175551 + 0.984470i \(0.556171\pi\)
\(462\) 0 0
\(463\) −0.147261 0.115807i −0.00684378 0.00538201i 0.614731 0.788737i \(-0.289264\pi\)
−0.621575 + 0.783355i \(0.713507\pi\)
\(464\) −7.20757 + 5.13249i −0.334603 + 0.238270i
\(465\) 0 0
\(466\) −1.92879 + 2.70861i −0.0893494 + 0.125474i
\(467\) 18.8588 + 21.7643i 0.872683 + 1.00713i 0.999884 + 0.0152530i \(0.00485537\pi\)
−0.127201 + 0.991877i \(0.540599\pi\)
\(468\) 0 0
\(469\) −47.7285 14.0143i −2.20390 0.647122i
\(470\) 5.94194 + 1.14522i 0.274081 + 0.0528248i
\(471\) 0 0
\(472\) 8.84841 4.56167i 0.407281 0.209968i
\(473\) −26.2152 + 9.07317i −1.20538 + 0.417185i
\(474\) 0 0
\(475\) −12.8229 16.3056i −0.588354 0.748153i
\(476\) 15.9165 13.7917i 0.729532 0.632143i
\(477\) 0 0
\(478\) −1.33454 + 0.391856i −0.0610404 + 0.0179231i
\(479\) 13.9208 1.32927i 0.636056 0.0607360i 0.227954 0.973672i \(-0.426797\pi\)
0.408103 + 0.912936i \(0.366190\pi\)
\(480\) 0 0
\(481\) −0.983962 + 0.0468719i −0.0448648 + 0.00213718i
\(482\) −0.761465 + 1.31890i −0.0346838 + 0.0600741i
\(483\) 0 0
\(484\) −4.00900 6.94379i −0.182227 0.315627i
\(485\) 13.7436 + 21.3854i 0.624062 + 0.971060i
\(486\) 0 0
\(487\) 5.80138 12.7033i 0.262886 0.575639i −0.731454 0.681891i \(-0.761158\pi\)
0.994339 + 0.106252i \(0.0338850\pi\)
\(488\) 3.04415 + 2.90259i 0.137802 + 0.131394i
\(489\) 0 0
\(490\) 1.41406 + 7.33687i 0.0638809 + 0.331446i
\(491\) −5.00205 + 12.4945i −0.225739 + 0.563869i −0.997392 0.0721748i \(-0.977006\pi\)
0.771653 + 0.636044i \(0.219430\pi\)
\(492\) 0 0
\(493\) 1.36871 7.10156i 0.0616438 0.319838i
\(494\) −0.0950455 0.0610820i −0.00427630 0.00274821i
\(495\) 0 0
\(496\) 1.80011 2.07744i 0.0808275 0.0932799i
\(497\) −0.530926 2.18851i −0.0238153 0.0981680i
\(498\) 0 0
\(499\) 15.6917 3.02432i 0.702456 0.135387i 0.174498 0.984658i \(-0.444170\pi\)
0.527958 + 0.849270i \(0.322958\pi\)
\(500\) 62.1520 + 5.93479i 2.77952 + 0.265412i
\(501\) 0 0
\(502\) 0.288819 + 3.02465i 0.0128906 + 0.134997i
\(503\) −1.81756 + 12.6414i −0.0810410 + 0.563653i 0.908332 + 0.418251i \(0.137357\pi\)
−0.989373 + 0.145402i \(0.953552\pi\)
\(504\) 0 0
\(505\) 3.00630i 0.133778i
\(506\) 2.72549 4.05843i 0.121163 0.180419i
\(507\) 0 0
\(508\) 0.115397 + 2.42248i 0.00511992 + 0.107480i
\(509\) −8.77625 + 11.1599i −0.389000 + 0.494654i −0.940629 0.339435i \(-0.889764\pi\)
0.551629 + 0.834090i \(0.314006\pi\)
\(510\) 0 0
\(511\) 42.5175 44.5911i 1.88086 1.97259i
\(512\) −16.5361 + 7.55178i −0.730799 + 0.333745i
\(513\) 0 0
\(514\) 0.0413184 + 0.287376i 0.00182248 + 0.0126756i
\(515\) −66.2869 + 16.0810i −2.92095 + 0.708614i
\(516\) 0 0
\(517\) −9.80013 19.0096i −0.431009 0.836041i
\(518\) −1.66336 3.22647i −0.0730838 0.141763i
\(519\) 0 0
\(520\) 1.11023 0.269339i 0.0486869 0.0118113i
\(521\) −5.63432 39.1875i −0.246844 1.71684i −0.616234 0.787563i \(-0.711343\pi\)
0.369390 0.929274i \(-0.379567\pi\)
\(522\) 0 0
\(523\) 10.2065 4.66115i 0.446299 0.203818i −0.179572 0.983745i \(-0.557471\pi\)
0.625870 + 0.779927i \(0.284744\pi\)
\(524\) 9.36332 9.81997i 0.409039 0.428987i
\(525\) 0 0
\(526\) −2.22304 + 2.82683i −0.0969293 + 0.123256i
\(527\) 0.106908 + 2.24427i 0.00465698 + 0.0977620i
\(528\) 0 0
\(529\) −22.7890 3.10857i −0.990824 0.135155i
\(530\) 2.39866i 0.104191i
\(531\) 0 0
\(532\) −1.66864 + 11.6057i −0.0723448 + 0.503169i
\(533\) 0.100188 + 1.04922i 0.00433962 + 0.0454466i
\(534\) 0 0
\(535\) −49.4822 4.72498i −2.13930 0.204279i
\(536\) −13.5448 + 2.61055i −0.585048 + 0.112759i
\(537\) 0 0
\(538\) 0.744248 + 3.06783i 0.0320868 + 0.132264i
\(539\) 17.2935 19.9578i 0.744884 0.859642i
\(540\) 0 0
\(541\) −20.8576 13.4044i −0.896739 0.576299i 0.00908220 0.999959i \(-0.497109\pi\)
−0.905822 + 0.423659i \(0.860745\pi\)
\(542\) −0.834354 + 4.32904i −0.0358386 + 0.185948i
\(543\) 0 0
\(544\) 3.27481 8.18007i 0.140406 0.350718i
\(545\) −15.7951 81.9528i −0.676588 3.51047i
\(546\) 0 0
\(547\) −21.2464 20.2584i −0.908429 0.866185i 0.0830378 0.996546i \(-0.473538\pi\)
−0.991467 + 0.130361i \(0.958386\pi\)
\(548\) −0.000946481 0.00207250i −4.04316e−5 8.85330e-5i
\(549\) 0 0
\(550\) 6.99162 + 10.8792i 0.298124 + 0.463889i
\(551\) 2.01320 + 3.48697i 0.0857652 + 0.148550i
\(552\) 0 0
\(553\) −3.92655 + 6.80099i −0.166974 + 0.289208i
\(554\) 7.42282 0.353592i 0.315365 0.0150227i
\(555\) 0 0
\(556\) 15.5279 1.48273i 0.658528 0.0628818i
\(557\) 1.53026 0.449323i 0.0648390 0.0190384i −0.249152 0.968464i \(-0.580152\pi\)
0.313991 + 0.949426i \(0.398334\pi\)
\(558\) 0 0
\(559\) −1.42113 + 1.23141i −0.0601073 + 0.0520832i
\(560\) −34.6815 44.1011i −1.46556 1.86361i
\(561\) 0 0
\(562\) 0.455162 0.157533i 0.0191998 0.00664513i
\(563\) 19.1445 9.86969i 0.806846 0.415958i −0.00488607 0.999988i \(-0.501555\pi\)
0.811732 + 0.584030i \(0.198525\pi\)
\(564\) 0 0
\(565\) 1.25638 + 0.242148i 0.0528563 + 0.0101872i
\(566\) 3.17251 + 0.931533i 0.133351 + 0.0391553i
\(567\) 0 0
\(568\) −0.408952 0.471956i −0.0171593 0.0198028i
\(569\) 17.6640 24.8057i 0.740515 1.03991i −0.256784 0.966469i \(-0.582663\pi\)
0.997300 0.0734396i \(-0.0233976\pi\)
\(570\) 0 0
\(571\) −25.5046 + 18.1617i −1.06733 + 0.760045i −0.971901 0.235390i \(-0.924363\pi\)
−0.0954334 + 0.995436i \(0.530424\pi\)
\(572\) −1.55924 1.22620i −0.0651952 0.0512701i
\(573\) 0 0
\(574\) −3.36358 + 1.94196i −0.140393 + 0.0810559i
\(575\) 31.4785 52.0662i 1.31274 2.17131i
\(576\) 0 0
\(577\) 26.1902 16.8314i 1.09031 0.700701i 0.133395 0.991063i \(-0.457412\pi\)
0.956917 + 0.290362i \(0.0937758\pi\)
\(578\) −0.815066 2.03594i −0.0339023 0.0846838i
\(579\) 0 0
\(580\) −19.4381 4.71562i −0.807122 0.195806i
\(581\) −4.26757 + 44.6920i −0.177048 + 1.85414i
\(582\) 0 0
\(583\) 6.66382 5.24049i 0.275987 0.217039i
\(584\) 4.81353 16.3934i 0.199185 0.678363i
\(585\) 0 0
\(586\) −0.0335478 + 0.0522014i −0.00138585 + 0.00215642i
\(587\) 22.5514 + 1.07426i 0.930796 + 0.0443393i 0.507499 0.861652i \(-0.330570\pi\)
0.423296 + 0.905991i \(0.360873\pi\)
\(588\) 0 0
\(589\) −0.863196 0.905294i −0.0355674 0.0373020i
\(590\) 9.88634 + 3.95789i 0.407014 + 0.162944i
\(591\) 0 0
\(592\) 10.9276 + 7.78153i 0.449123 + 0.319819i
\(593\) −0.429753 1.46360i −0.0176478 0.0601030i 0.950198 0.311646i \(-0.100880\pi\)
−0.967846 + 0.251543i \(0.919062\pi\)
\(594\) 0 0
\(595\) 45.3911 + 6.52626i 1.86085 + 0.267551i
\(596\) 4.78724 + 2.46799i 0.196093 + 0.101093i
\(597\) 0 0
\(598\) 0.0692688 0.324059i 0.00283261 0.0132517i
\(599\) −24.7668 14.2991i −1.01195 0.584247i −0.100185 0.994969i \(-0.531943\pi\)
−0.911761 + 0.410722i \(0.865277\pi\)
\(600\) 0 0
\(601\) 8.90427 3.56473i 0.363213 0.145408i −0.182876 0.983136i \(-0.558541\pi\)
0.546088 + 0.837728i \(0.316116\pi\)
\(602\) −6.30312 2.87854i −0.256896 0.117320i
\(603\) 0 0
\(604\) 7.48578 + 16.3916i 0.304592 + 0.666964i
\(605\) 5.71016 16.4984i 0.232151 0.670757i
\(606\) 0 0
\(607\) −30.4086 + 28.9945i −1.23425 + 1.17685i −0.256617 + 0.966513i \(0.582608\pi\)
−0.977629 + 0.210337i \(0.932544\pi\)
\(608\) 1.60442 + 4.63567i 0.0650678 + 0.188001i
\(609\) 0 0
\(610\) −0.214092 + 4.49434i −0.00866833 + 0.181971i
\(611\) −1.09563 0.949368i −0.0443244 0.0384073i
\(612\) 0 0
\(613\) −14.7166 + 2.11593i −0.594399 + 0.0854617i −0.432948 0.901419i \(-0.642527\pi\)
−0.161451 + 0.986881i \(0.551618\pi\)
\(614\) 6.51454 + 2.25470i 0.262905 + 0.0909924i
\(615\) 0 0
\(616\) 3.50782 14.4595i 0.141334 0.582588i
\(617\) 15.0749 + 21.1697i 0.606892 + 0.852261i 0.997670 0.0682241i \(-0.0217333\pi\)
−0.390778 + 0.920485i \(0.627794\pi\)
\(618\) 0 0
\(619\) −6.85424 + 13.2954i −0.275495 + 0.534386i −0.985472 0.169839i \(-0.945675\pi\)
0.709977 + 0.704225i \(0.248705\pi\)
\(620\) 6.21391 0.249557
\(621\) 0 0
\(622\) −3.70586 −0.148592
\(623\) 13.7839 26.7371i 0.552241 1.07120i
\(624\) 0 0
\(625\) 42.0626 + 59.0687i 1.68251 + 2.36275i
\(626\) 0.0944529 0.389340i 0.00377510 0.0155612i
\(627\) 0 0
\(628\) 8.09620 + 2.80212i 0.323074 + 0.111817i
\(629\) −10.8535 + 1.56049i −0.432756 + 0.0622209i
\(630\) 0 0
\(631\) 1.81259 + 1.57062i 0.0721583 + 0.0625255i 0.690193 0.723625i \(-0.257526\pi\)
−0.618035 + 0.786151i \(0.712071\pi\)
\(632\) −0.103619 + 2.17524i −0.00412176 + 0.0865264i
\(633\) 0 0
\(634\) 1.60739 + 4.64425i 0.0638376 + 0.184447i
\(635\) −3.82187 + 3.64415i −0.151666 + 0.144614i
\(636\) 0 0
\(637\) 0.585472 1.69161i 0.0231972 0.0670240i
\(638\) −1.04276 2.28332i −0.0412831 0.0903975i
\(639\) 0 0
\(640\) −29.3661 13.4111i −1.16080 0.530119i
\(641\) 1.13136 0.452929i 0.0446861 0.0178896i −0.349212 0.937044i \(-0.613551\pi\)
0.393898 + 0.919154i \(0.371126\pi\)
\(642\) 0 0
\(643\) −14.1568 8.17341i −0.558288 0.322328i 0.194170 0.980968i \(-0.437799\pi\)
−0.752458 + 0.658640i \(0.771132\pi\)
\(644\) −33.5775 + 7.43157i −1.32314 + 0.292845i
\(645\) 0 0
\(646\) −1.11781 0.576269i −0.0439795 0.0226730i
\(647\) −15.7972 2.27130i −0.621053 0.0892939i −0.175396 0.984498i \(-0.556121\pi\)
−0.445657 + 0.895204i \(0.647030\pi\)
\(648\) 0 0
\(649\) −10.6037 36.1128i −0.416230 1.41755i
\(650\) 0.714060 + 0.508480i 0.0280077 + 0.0199442i
\(651\) 0 0
\(652\) 1.92894 + 0.772231i 0.0755431 + 0.0302429i
\(653\) −21.3562 22.3977i −0.835732 0.876490i 0.158096 0.987424i \(-0.449464\pi\)
−0.993828 + 0.110934i \(0.964616\pi\)
\(654\) 0 0
\(655\) 29.5110 + 1.40578i 1.15309 + 0.0549284i
\(656\) 7.76012 12.0750i 0.302982 0.471449i
\(657\) 0 0
\(658\) 1.50507 5.12581i 0.0586739 0.199825i
\(659\) 6.62215 5.20772i 0.257962 0.202864i −0.480799 0.876831i \(-0.659653\pi\)
0.738762 + 0.673967i \(0.235411\pi\)
\(660\) 0 0
\(661\) 1.08578 11.3709i 0.0422321 0.442275i −0.949483 0.313818i \(-0.898392\pi\)
0.991715 0.128456i \(-0.0410023\pi\)
\(662\) −4.84013 1.17420i −0.188117 0.0456367i
\(663\) 0 0
\(664\) 4.62708 + 11.5579i 0.179566 + 0.448533i
\(665\) −21.4775 + 13.8028i −0.832863 + 0.535249i
\(666\) 0 0
\(667\) −7.48613 + 9.13379i −0.289864 + 0.353662i
\(668\) 26.3150 15.1930i 1.01816 0.587834i
\(669\) 0 0
\(670\) −11.5989 9.12148i −0.448105 0.352394i
\(671\) 12.9537 9.22428i 0.500072 0.356099i
\(672\) 0 0
\(673\) 10.8534 15.2415i 0.418370 0.587518i −0.550578 0.834784i \(-0.685593\pi\)
0.968948 + 0.247266i \(0.0795321\pi\)
\(674\) 1.88792 + 2.17877i 0.0727199 + 0.0839232i
\(675\) 0 0
\(676\) 23.9624 + 7.03599i 0.921629 + 0.270615i
\(677\) −42.4299 8.17769i −1.63071 0.314294i −0.709901 0.704301i \(-0.751261\pi\)
−0.920812 + 0.390007i \(0.872473\pi\)
\(678\) 0 0
\(679\) 19.9473 10.2835i 0.765506 0.394646i
\(680\) 12.0172 4.15920i 0.460839 0.159498i
\(681\) 0 0
\(682\) 0.482053 + 0.612980i 0.0184588 + 0.0234722i
\(683\) 21.8205 18.9076i 0.834940 0.723479i −0.128412 0.991721i \(-0.540988\pi\)
0.963352 + 0.268241i \(0.0864425\pi\)
\(684\) 0 0
\(685\) −0.00476010 + 0.00139769i −0.000181874 + 5.34030e-5i
\(686\) −0.208726 + 0.0199309i −0.00796919 + 0.000760966i
\(687\) 0 0
\(688\) 25.5792 1.21849i 0.975197 0.0464544i
\(689\) 0.287326 0.497664i 0.0109463 0.0189595i
\(690\) 0 0
\(691\) 7.76050 + 13.4416i 0.295223 + 0.511342i 0.975037 0.222043i \(-0.0712726\pi\)
−0.679813 + 0.733385i \(0.737939\pi\)
\(692\) 18.3240 + 28.5127i 0.696574 + 1.08389i
\(693\) 0 0
\(694\) −1.42175 + 3.11321i −0.0539691 + 0.118176i
\(695\) 24.5814 + 23.4383i 0.932425 + 0.889065i
\(696\) 0 0
\(697\) 2.22032 + 11.5201i 0.0841005 + 0.436355i
\(698\) 0.209819 0.524102i 0.00794175 0.0198375i
\(699\) 0 0
\(700\) 17.2167 89.3288i 0.650730 3.37631i
\(701\) −9.56055 6.14419i −0.361097 0.232063i 0.347494 0.937682i \(-0.387033\pi\)
−0.708591 + 0.705619i \(0.750669\pi\)
\(702\) 0 0
\(703\) 3.99764 4.61352i 0.150774 0.174002i
\(704\) 5.87389 + 24.2125i 0.221381 + 0.912544i
\(705\) 0 0
\(706\) 6.08315 1.17243i 0.228943 0.0441251i
\(707\) −2.64200 0.252280i −0.0993627 0.00948798i
\(708\) 0 0
\(709\) −1.43041 14.9799i −0.0537202 0.562584i −0.981763 0.190110i \(-0.939116\pi\)
0.928043 0.372474i \(-0.121490\pi\)
\(710\) 0.0950704 0.661229i 0.00356793 0.0248155i
\(711\) 0 0
\(712\) 8.34161i 0.312615i
\(713\) 1.59115 3.30587i 0.0595890 0.123806i
\(714\) 0 0
\(715\) −0.205517 4.31434i −0.00768591 0.161347i
\(716\) 18.6933 23.7705i 0.698603 0.888346i
\(717\) 0 0
\(718\) −5.84456 + 6.12960i −0.218117 + 0.228755i
\(719\) −16.0632 + 7.33582i −0.599057 + 0.273580i −0.691776 0.722112i \(-0.743171\pi\)
0.0927192 + 0.995692i \(0.470444\pi\)
\(720\) 0 0
\(721\) 8.56974 + 59.6039i 0.319154 + 2.21976i
\(722\) −4.15504 + 1.00800i −0.154635 + 0.0375140i
\(723\) 0 0
\(724\) −2.59346 5.03061i −0.0963851 0.186961i
\(725\) −14.3151 27.7675i −0.531651 1.03126i
\(726\) 0 0
\(727\) −38.1723 + 9.26051i −1.41573 + 0.343453i −0.869398 0.494113i \(-0.835493\pi\)
−0.546336 + 0.837566i \(0.683978\pi\)
\(728\) −0.143534 0.998299i −0.00531971 0.0369994i
\(729\) 0 0
\(730\) 16.6251 7.59242i 0.615322 0.281008i
\(731\) −14.4442 + 15.1487i −0.534239 + 0.560294i
\(732\) 0 0
\(733\) −11.6877 + 14.8621i −0.431695 + 0.548945i −0.952424 0.304778i \(-0.901418\pi\)
0.520729 + 0.853722i \(0.325660\pi\)
\(734\) 0.167435 + 3.51489i 0.00618014 + 0.129737i
\(735\) 0 0
\(736\) −11.0617 + 9.20075i −0.407739 + 0.339144i
\(737\) 52.1517i 1.92103i
\(738\) 0 0
\(739\) 4.87676 33.9186i 0.179394 1.24772i −0.678774 0.734347i \(-0.737488\pi\)
0.858169 0.513368i \(-0.171602\pi\)
\(740\) 2.88263 + 30.1882i 0.105967 + 1.10974i
\(741\) 0 0
\(742\) 2.10799 + 0.201289i 0.0773869 + 0.00738955i
\(743\) 45.1231 8.69677i 1.65541 0.319054i 0.725884 0.687817i \(-0.241431\pi\)
0.929523 + 0.368764i \(0.120219\pi\)
\(744\) 0 0
\(745\) 2.76488 + 11.3970i 0.101297 + 0.417553i
\(746\) −4.60912 + 5.31921i −0.168752 + 0.194750i
\(747\) 0 0
\(748\) −18.5750 11.9374i −0.679170 0.436476i
\(749\) −8.30483 + 43.0896i −0.303452 + 1.57446i
\(750\) 0 0
\(751\) −11.1577 + 27.8707i −0.407152 + 1.01702i 0.573140 + 0.819458i \(0.305725\pi\)
−0.980291 + 0.197558i \(0.936699\pi\)
\(752\) 3.73636 + 19.3861i 0.136251 + 0.706937i
\(753\) 0 0
\(754\) −0.123144 0.117418i −0.00448465 0.00427610i
\(755\) −16.2998 + 35.6915i −0.593210 + 1.29895i
\(756\) 0 0
\(757\) −5.75878 8.96084i −0.209306 0.325687i 0.720689 0.693259i \(-0.243826\pi\)
−0.929995 + 0.367572i \(0.880189\pi\)
\(758\) 2.52011 + 4.36496i 0.0915346 + 0.158543i
\(759\) 0 0
\(760\) −3.53985 + 6.13121i −0.128404 + 0.222402i
\(761\) −33.5809 + 1.59966i −1.21731 + 0.0579875i −0.646382 0.763014i \(-0.723719\pi\)
−0.570926 + 0.821002i \(0.693416\pi\)
\(762\) 0 0
\(763\) −73.3475 + 7.00384i −2.65536 + 0.253556i
\(764\) 27.2029 7.98749i 0.984166 0.288977i
\(765\) 0 0
\(766\) −3.75315 + 3.25212i −0.135607 + 0.117504i
\(767\) −1.57708 2.00542i −0.0569450 0.0724114i
\(768\) 0 0
\(769\) 18.7545 6.49101i 0.676306 0.234072i 0.0327416 0.999464i \(-0.489576\pi\)
0.643564 + 0.765392i \(0.277455\pi\)
\(770\) 14.1469 7.29326i 0.509820 0.262831i
\(771\) 0 0
\(772\) −22.9200 4.41747i −0.824910 0.158988i
\(773\) −3.36480 0.987993i −0.121023 0.0355357i 0.220660 0.975351i \(-0.429179\pi\)
−0.341683 + 0.939815i \(0.610997\pi\)
\(774\) 0 0
\(775\) 6.35562 + 7.33478i 0.228301 + 0.263473i
\(776\) 3.60986 5.06934i 0.129587 0.181979i
\(777\) 0 0
\(778\) 7.43362 5.29346i 0.266508 0.189780i
\(779\) −5.13418 4.03757i −0.183951 0.144661i
\(780\) 0 0
\(781\) −2.04470 + 1.18051i −0.0731650 + 0.0422419i
\(782\) 0.424669 3.66411i 0.0151861 0.131028i
\(783\) 0 0
\(784\) −20.5078 + 13.1795i −0.732421 + 0.470698i
\(785\) 6.93333 + 17.3186i 0.247461 + 0.618129i
\(786\) 0 0
\(787\) −35.1283 8.52204i −1.25219 0.303778i −0.445784 0.895141i \(-0.647075\pi\)
−0.806406 + 0.591363i \(0.798590\pi\)
\(788\) −0.754379 + 7.90021i −0.0268736 + 0.281433i
\(789\) 0 0
\(790\) −1.83115 + 1.44003i −0.0651492 + 0.0512339i
\(791\) 0.318237 1.08382i 0.0113152 0.0385360i
\(792\) 0 0
\(793\) 0.582780 0.906823i 0.0206951 0.0322022i
\(794\) 6.59850 + 0.314325i 0.234172 + 0.0111550i
\(795\) 0 0
\(796\) 22.0936 + 23.1711i 0.783088 + 0.821279i
\(797\) −26.9123 10.7741i −0.953283 0.381637i −0.157704 0.987486i \(-0.550409\pi\)
−0.795579 + 0.605850i \(0.792833\pi\)
\(798\) 0 0
\(799\) −13.1449 9.36045i −0.465034 0.331149i
\(800\) −10.7230 36.5191i −0.379115 1.29115i
\(801\) 0 0
\(802\) −7.41038 1.06545i −0.261670 0.0376224i
\(803\) −57.4147 29.5993i −2.02612 1.04454i
\(804\) 0 0
\(805\) −60.1080 44.6582i −2.11853 1.57399i
\(806\) 0.0457783 + 0.0264301i 0.00161247 + 0.000930960i
\(807\) 0 0
\(808\) −0.683253 + 0.273533i −0.0240368 + 0.00962287i
\(809\) 31.5971 + 14.4299i 1.11089 + 0.507328i 0.884422 0.466689i \(-0.154553\pi\)
0.226473 + 0.974017i \(0.427281\pi\)
\(810\) 0 0
\(811\) −2.55975 5.60508i −0.0898851 0.196821i 0.859350 0.511387i \(-0.170868\pi\)
−0.949236 + 0.314566i \(0.898141\pi\)
\(812\) −5.77539 + 16.6869i −0.202676 + 0.585595i
\(813\) 0 0
\(814\) −2.75434 + 2.62626i −0.0965395 + 0.0920502i
\(815\) 1.47973 + 4.27539i 0.0518325 + 0.149760i
\(816\) 0 0
\(817\) 0.554473 11.6398i 0.0193986 0.407226i
\(818\) −5.92108 5.13064i −0.207026 0.179389i
\(819\) 0 0
\(820\) 32.1167 4.61768i 1.12156 0.161256i
\(821\) 18.2645 + 6.32142i 0.637437 + 0.220619i 0.626623 0.779323i \(-0.284437\pi\)
0.0108136 + 0.999942i \(0.496558\pi\)
\(822\) 0 0
\(823\) 1.54066 6.35067i 0.0537039 0.221370i −0.938636 0.344910i \(-0.887909\pi\)
0.992340 + 0.123540i \(0.0394246\pi\)
\(824\) 9.68603 + 13.6021i 0.337429 + 0.473853i
\(825\) 0 0
\(826\) 4.30792 8.35621i 0.149892 0.290750i
\(827\) −53.0645 −1.84523 −0.922616 0.385719i \(-0.873954\pi\)
−0.922616 + 0.385719i \(0.873954\pi\)
\(828\) 0 0
\(829\) 50.4138 1.75094 0.875472 0.483269i \(-0.160551\pi\)
0.875472 + 0.483269i \(0.160551\pi\)
\(830\) −6.10253 + 11.8373i −0.211822 + 0.410877i
\(831\) 0 0
\(832\) 0.979631 + 1.37570i 0.0339626 + 0.0476938i
\(833\) 4.69760 19.3638i 0.162762 0.670916i
\(834\) 0 0
\(835\) 62.5244 + 21.6399i 2.16375 + 0.748880i
\(836\) 12.1675 1.74943i 0.420823 0.0605052i
\(837\) 0 0
\(838\) −2.57333 2.22980i −0.0888941 0.0770271i
\(839\) −0.888644 + 18.6549i −0.0306794 + 0.644040i 0.930197 + 0.367061i \(0.119636\pi\)
−0.960876 + 0.276978i \(0.910667\pi\)
\(840\) 0 0
\(841\) −7.50169 21.6747i −0.258679 0.747403i
\(842\) 0.794918 0.757953i 0.0273947 0.0261208i
\(843\) 0 0
\(844\) 6.52610 18.8559i 0.224638 0.649048i
\(845\) 22.5899 + 49.4650i 0.777116 + 1.70165i
\(846\) 0 0
\(847\) −14.0200 6.40273i −0.481734 0.220000i
\(848\) −7.26523 + 2.90856i −0.249489 + 0.0998804i
\(849\) 0 0
\(850\) 8.45034 + 4.87880i 0.289844 + 0.167342i
\(851\) 16.7986 + 6.19648i 0.575849 + 0.212413i
\(852\) 0 0
\(853\) −10.8137 5.57487i −0.370255 0.190880i 0.263049 0.964782i \(-0.415272\pi\)
−0.633305 + 0.773902i \(0.718302\pi\)
\(854\) 3.93177 + 0.565303i 0.134542 + 0.0193443i
\(855\) 0 0
\(856\) 3.42836 + 11.6759i 0.117179 + 0.399075i
\(857\) −21.5386 15.3376i −0.735746 0.523922i 0.149662 0.988737i \(-0.452181\pi\)
−0.885408 + 0.464815i \(0.846121\pi\)
\(858\) 0 0
\(859\) 20.8657 + 8.35338i 0.711930 + 0.285014i 0.699221 0.714906i \(-0.253530\pi\)
0.0127087 + 0.999919i \(0.495955\pi\)
\(860\) 39.9477 + 41.8959i 1.36220 + 1.42864i
\(861\) 0 0
\(862\) 5.18322 + 0.246907i 0.176541 + 0.00840969i
\(863\) −23.1000 + 35.9442i −0.786332 + 1.22356i 0.184273 + 0.982875i \(0.441007\pi\)
−0.970604 + 0.240681i \(0.922629\pi\)
\(864\) 0 0
\(865\) −20.7918 + 70.8105i −0.706944 + 2.40763i
\(866\) −0.542442 + 0.426581i −0.0184329 + 0.0144958i
\(867\) 0 0
\(868\) 0.521455 5.46092i 0.0176993 0.185356i
\(869\) 8.00122 + 1.94108i 0.271423 + 0.0658465i
\(870\) 0 0
\(871\) 1.31387 + 3.28188i 0.0445187 + 0.111202i
\(872\) −17.1886 + 11.0465i −0.582080 + 0.374080i
\(873\) 0 0
\(874\) 1.15718 + 1.69649i 0.0391422 + 0.0573846i
\(875\) 103.938 60.0084i 3.51374 2.02866i
\(876\) 0 0
\(877\) 29.1868 + 22.9528i 0.985569 + 0.775060i 0.974387 0.224877i \(-0.0721981\pi\)
0.0111822 + 0.999937i \(0.496441\pi\)
\(878\) −1.26234 + 0.898908i −0.0426019 + 0.0303367i
\(879\) 0 0
\(880\) −34.1194 + 47.9139i −1.15016 + 1.61518i
\(881\) −25.1322 29.0041i −0.846726 0.977174i 0.153213 0.988193i \(-0.451038\pi\)
−0.999939 + 0.0110188i \(0.996493\pi\)
\(882\) 0 0
\(883\) 8.16884 + 2.39859i 0.274903 + 0.0807189i 0.416278 0.909237i \(-0.363334\pi\)
−0.141375 + 0.989956i \(0.545152\pi\)
\(884\) −1.46966 0.283253i −0.0494300 0.00952684i
\(885\) 0 0
\(886\) −2.21880 + 1.14387i −0.0745422 + 0.0384292i
\(887\) 8.00288 2.76982i 0.268710 0.0930016i −0.189390 0.981902i \(-0.560651\pi\)
0.458101 + 0.888900i \(0.348530\pi\)
\(888\) 0 0
\(889\) 2.88184 + 3.66456i 0.0966537 + 0.122905i
\(890\) 6.74372 5.84347i 0.226050 0.195873i
\(891\) 0 0
\(892\) 33.2258 9.75596i 1.11248 0.326654i
\(893\) 8.94331 0.853983i 0.299277 0.0285774i
\(894\) 0 0
\(895\) 65.7717 3.13309i 2.19850 0.104728i
\(896\) −14.2503 + 24.6822i −0.476068 + 0.824574i
\(897\) 0 0
\(898\) −1.85340 3.21018i −0.0618487 0.107125i
\(899\) −1.01847 1.58478i −0.0339680 0.0528552i
\(900\) 0 0
\(901\) 2.65722 5.81851i 0.0885249 0.193843i
\(902\) 2.94701 + 2.80997i 0.0981249 + 0.0935619i
\(903\) 0 0
\(904\) −0.0592803 0.307575i −0.00197163 0.0102298i
\(905\) 4.58028 11.4410i 0.152254 0.380311i
\(906\) 0 0
\(907\) −8.51160 + 44.1624i −0.282623 + 1.46639i 0.511843 + 0.859079i \(0.328963\pi\)
−0.794466 + 0.607309i \(0.792249\pi\)
\(908\) −30.8869 19.8498i −1.02502 0.658739i
\(909\) 0 0
\(910\) 0.706520 0.815367i 0.0234209 0.0270292i
\(911\) 8.36548 + 34.4830i 0.277161 + 1.14247i 0.924778 + 0.380506i \(0.124250\pi\)
−0.647618 + 0.761966i \(0.724235\pi\)
\(912\) 0 0
\(913\) 46.2182 8.90783i 1.52960 0.294806i
\(914\) 8.93962 + 0.853630i 0.295696 + 0.0282356i
\(915\) 0 0
\(916\) 2.96774 + 31.0795i 0.0980567 + 1.02690i
\(917\) 3.71192 25.8169i 0.122578 0.852550i
\(918\) 0 0
\(919\) 34.2932i 1.13123i −0.824670 0.565614i \(-0.808639\pi\)
0.824670 0.565614i \(-0.191361\pi\)
\(920\) −20.4900 3.36945i −0.675535 0.111087i
\(921\) 0 0
\(922\) 0.344738 + 7.23695i 0.0113534 + 0.238336i
\(923\) −0.0989310 + 0.125801i −0.00325636 + 0.00414079i
\(924\) 0 0
\(925\) −32.6852 + 34.2793i −1.07468 + 1.12710i
\(926\) −0.0446274 + 0.0203807i −0.00146655 + 0.000669750i
\(927\) 0 0
\(928\) 1.05138 + 7.31252i 0.0345133 + 0.240045i
\(929\) 38.2249 9.27325i 1.25412 0.304245i 0.446945 0.894562i \(-0.352512\pi\)
0.807172 + 0.590316i \(0.200997\pi\)
\(930\) 0 0
\(931\) 5.08314 + 9.85991i 0.166593 + 0.323146i
\(932\) −11.2375 21.7977i −0.368096 0.714007i
\(933\) 0 0
\(934\) 7.32908 1.77802i 0.239815 0.0581785i
\(935\) −6.84222 47.5887i −0.223764 1.55632i
\(936\) 0 0
\(937\) 31.2252 14.2601i 1.02008 0.465856i 0.166072 0.986114i \(-0.446891\pi\)
0.854009 + 0.520258i \(0.174164\pi\)
\(938\) −8.98951 + 9.42793i −0.293518 + 0.307833i
\(939\) 0 0
\(940\) −27.5882 + 35.0813i −0.899828 + 1.14422i
\(941\) 1.02870 + 21.5950i 0.0335346 + 0.703977i 0.951561 + 0.307459i \(0.0994786\pi\)
−0.918027 + 0.396518i \(0.870218\pi\)
\(942\) 0 0
\(943\) 5.76722 18.2689i 0.187806 0.594916i
\(944\) 34.7437i 1.13081i
\(945\) 0 0
\(946\) −1.03389 + 7.19084i −0.0336145 + 0.233794i
\(947\) −0.577523 6.04810i −0.0187670 0.196537i −0.999993 0.00367664i \(-0.998830\pi\)
0.981226 0.192860i \(-0.0617764\pi\)
\(948\) 0 0
\(949\) −4.35877 0.416212i −0.141492 0.0135108i
\(950\) −5.33417 + 1.02808i −0.173063 + 0.0333552i
\(951\) 0 0
\(952\) −2.64675 10.9100i −0.0857815 0.353596i
\(953\) −30.1429 + 34.7868i −0.976424 + 1.12685i 0.0154819 + 0.999880i \(0.495072\pi\)
−0.991906 + 0.126973i \(0.959474\pi\)
\(954\) 0 0
\(955\) 51.9331 + 33.3754i 1.68052 + 1.08000i
\(956\) 1.94135 10.0727i 0.0627877 0.325773i
\(957\) 0 0
\(958\) 1.36108 3.39982i 0.0439746 0.109843i
\(959\) 0.000828867 0.00430057i 2.67655e−5 0.000138873i
\(960\) 0 0
\(961\) −22.0122 20.9886i −0.710071 0.677051i
\(962\) −0.107165 + 0.234659i −0.00345515 + 0.00756572i
\(963\) 0 0
\(964\) −6.07245 9.44891i −0.195580 0.304329i
\(965\) −25.4126 44.0160i −0.818062 1.41692i
\(966\) 0 0
\(967\) −21.3193 + 36.9261i −0.685583 + 1.18746i 0.287670 + 0.957729i \(0.407119\pi\)
−0.973253 + 0.229735i \(0.926214\pi\)
\(968\) −4.26922 + 0.203368i −0.137218 + 0.00653649i
\(969\) 0 0
\(970\) 6.62706 0.632807i 0.212782 0.0203182i
\(971\) −37.9374 + 11.1394i −1.21747 + 0.357481i −0.826508 0.562925i \(-0.809676\pi\)
−0.390962 + 0.920407i \(0.627858\pi\)
\(972\) 0 0
\(973\) 22.6609 19.6358i 0.726475 0.629494i
\(974\) −2.26074 2.87477i −0.0724388 0.0921135i
\(975\) 0 0
\(976\) −13.8724 + 4.80129i −0.444045 + 0.153685i
\(977\) −31.0130 + 15.9883i −0.992193 + 0.511511i −0.876308 0.481752i \(-0.840001\pi\)
−0.115885 + 0.993263i \(0.536970\pi\)
\(978\) 0 0
\(979\) −30.9674 5.96848i −0.989723 0.190753i
\(980\) −52.8746 15.5254i −1.68902 0.495940i
\(981\) 0 0
\(982\) 2.30807 + 2.66366i 0.0736536 + 0.0850007i
\(983\) −3.96537 + 5.56859i −0.126476 + 0.177610i −0.872959 0.487794i \(-0.837802\pi\)
0.746483 + 0.665405i \(0.231741\pi\)
\(984\) 0 0
\(985\) −14.0762 + 10.0236i −0.448505 + 0.319379i
\(986\) −1.48877 1.17078i −0.0474121 0.0372853i
\(987\) 0 0
\(988\) 0.721623 0.416629i 0.0229579 0.0132547i
\(989\) 32.5182 10.5247i 1.03402 0.334664i
\(990\) 0 0
\(991\) −24.3623 + 15.6567i −0.773895 + 0.497352i −0.867002 0.498304i \(-0.833956\pi\)
0.0931073 + 0.995656i \(0.470320\pi\)
\(992\) −0.853007 2.13071i −0.0270830 0.0676501i
\(993\) 0 0
\(994\) −0.573125 0.139039i −0.0181784 0.00441004i
\(995\) −6.62662 + 69.3971i −0.210078 + 2.20004i
\(996\) 0 0
\(997\) 21.4018 16.8306i 0.677802 0.533029i −0.218854 0.975758i \(-0.570232\pi\)
0.896656 + 0.442729i \(0.145989\pi\)
\(998\) 1.17904 4.01544i 0.0373218 0.127106i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 621.2.s.a.287.11 440
3.2 odd 2 207.2.o.a.149.12 yes 440
9.2 odd 6 inner 621.2.s.a.494.11 440
9.7 even 3 207.2.o.a.11.12 440
23.21 odd 22 inner 621.2.s.a.44.11 440
69.44 even 22 207.2.o.a.113.12 yes 440
207.182 even 66 inner 621.2.s.a.251.11 440
207.205 odd 66 207.2.o.a.182.12 yes 440
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
207.2.o.a.11.12 440 9.7 even 3
207.2.o.a.113.12 yes 440 69.44 even 22
207.2.o.a.149.12 yes 440 3.2 odd 2
207.2.o.a.182.12 yes 440 207.205 odd 66
621.2.s.a.44.11 440 23.21 odd 22 inner
621.2.s.a.251.11 440 207.182 even 66 inner
621.2.s.a.287.11 440 1.1 even 1 trivial
621.2.s.a.494.11 440 9.2 odd 6 inner