Properties

Label 621.2.s.a.251.22
Level $621$
Weight $2$
Character 621.251
Analytic conductor $4.959$
Analytic rank $0$
Dimension $440$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [621,2,Mod(17,621)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("621.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(621, base_ring=CyclotomicField(66)) chi = DirichletCharacter(H, H._module([55, 21])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 621 = 3^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 621.s (of order \(66\), degree \(20\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.95870996552\)
Analytic rank: \(0\)
Dimension: \(440\)
Relative dimension: \(22\) over \(\Q(\zeta_{66})\)
Twist minimal: no (minimal twist has level 207)
Sato-Tate group: $\mathrm{SU}(2)[C_{66}]$

Embedding invariants

Embedding label 251.22
Character \(\chi\) \(=\) 621.251
Dual form 621.2.s.a.287.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.19334 + 2.31476i) q^{2} +(-2.77395 + 3.89546i) q^{4} +(0.904406 + 3.72801i) q^{5} +(2.50349 - 0.866468i) q^{7} +(-7.17183 - 1.03115i) q^{8} +(-7.55020 + 6.54229i) q^{10} +(-0.0853862 - 1.79248i) q^{11} +(-1.08344 + 3.13039i) q^{13} +(4.99320 + 4.76100i) q^{14} +(-3.04337 - 8.79325i) q^{16} +(0.919155 - 2.01267i) q^{17} +(5.33902 - 2.43825i) q^{19} +(-17.0311 - 6.81823i) q^{20} +(4.04726 - 2.33669i) q^{22} +(-0.537967 - 4.76556i) q^{23} +(-8.63596 + 4.45214i) q^{25} +(-8.53903 + 1.22773i) q^{26} +(-3.56927 + 12.1558i) q^{28} +(-0.362435 + 0.258089i) q^{29} +(3.86186 - 1.54606i) q^{31} +(6.72245 - 7.05030i) q^{32} +(5.75572 - 0.274179i) q^{34} +(5.49438 + 8.54942i) q^{35} +(-2.15828 - 7.35043i) q^{37} +(12.0153 + 9.44890i) q^{38} +(-2.64209 - 27.6693i) q^{40} +(-2.19367 + 0.532178i) q^{41} +(0.297622 - 0.743424i) q^{43} +(7.21938 + 4.63962i) q^{44} +(10.3892 - 6.93222i) q^{46} +(-2.64028 - 1.52437i) q^{47} +(0.0143456 - 0.0112815i) q^{49} +(-20.6113 - 14.6773i) q^{50} +(-9.18893 - 12.9040i) q^{52} +(-1.12878 + 1.30268i) q^{53} +(6.60515 - 1.93945i) q^{55} +(-18.8481 + 3.63267i) q^{56} +(-1.02992 - 0.530963i) q^{58} +(10.9766 + 3.79905i) q^{59} +(2.64020 - 3.35729i) q^{61} +(8.18729 + 7.09433i) q^{62} +(6.48578 + 1.90440i) q^{64} +(-12.6500 - 1.20793i) q^{65} +(-2.17994 - 0.103843i) q^{67} +(5.29059 + 9.16356i) q^{68} +(-13.2332 + 22.9206i) q^{70} +(-8.51253 + 13.2458i) q^{71} +(1.67838 + 3.67515i) q^{73} +(14.4389 - 13.7675i) q^{74} +(-5.31205 + 27.5615i) q^{76} +(-1.76689 - 4.41347i) q^{77} +(0.836762 + 4.34153i) q^{79} +(30.0289 - 19.2984i) q^{80} +(-3.84966 - 4.44275i) q^{82} +(3.00389 - 12.3822i) q^{83} +(8.33454 + 1.60635i) q^{85} +(2.07601 - 0.198235i) q^{86} +(-1.23594 + 12.9434i) q^{88} +(-0.218032 - 1.51645i) q^{89} +8.77569i q^{91} +(20.0564 + 11.1238i) q^{92} +(0.377786 - 7.93071i) q^{94} +(13.9185 + 17.6988i) q^{95} +(9.85700 + 10.3377i) q^{97} +(0.0432332 + 0.0197440i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 440 q + 27 q^{2} - 29 q^{4} + 33 q^{5} - 11 q^{7} - 44 q^{10} + 33 q^{11} - 9 q^{13} + 33 q^{14} + 3 q^{16} - 44 q^{19} + 33 q^{20} + 27 q^{23} + 11 q^{25} - 44 q^{28} - 27 q^{29} - 3 q^{31} + 33 q^{32}+ \cdots + 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/621\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(461\)
\(\chi(n)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.19334 + 2.31476i 0.843821 + 1.63678i 0.768699 + 0.639610i \(0.220904\pi\)
0.0751219 + 0.997174i \(0.476065\pi\)
\(3\) 0 0
\(4\) −2.77395 + 3.89546i −1.38697 + 1.94773i
\(5\) 0.904406 + 3.72801i 0.404463 + 1.66722i 0.701745 + 0.712429i \(0.252405\pi\)
−0.297282 + 0.954790i \(0.596080\pi\)
\(6\) 0 0
\(7\) 2.50349 0.866468i 0.946232 0.327494i 0.189990 0.981786i \(-0.439154\pi\)
0.756242 + 0.654292i \(0.227033\pi\)
\(8\) −7.17183 1.03115i −2.53562 0.364568i
\(9\) 0 0
\(10\) −7.55020 + 6.54229i −2.38758 + 2.06885i
\(11\) −0.0853862 1.79248i −0.0257449 0.540452i −0.974493 0.224418i \(-0.927952\pi\)
0.948748 0.316034i \(-0.102351\pi\)
\(12\) 0 0
\(13\) −1.08344 + 3.13039i −0.300492 + 0.868215i 0.689145 + 0.724623i \(0.257986\pi\)
−0.989637 + 0.143591i \(0.954135\pi\)
\(14\) 4.99320 + 4.76100i 1.33449 + 1.27243i
\(15\) 0 0
\(16\) −3.04337 8.79325i −0.760843 2.19831i
\(17\) 0.919155 2.01267i 0.222928 0.488144i −0.764812 0.644254i \(-0.777168\pi\)
0.987740 + 0.156110i \(0.0498954\pi\)
\(18\) 0 0
\(19\) 5.33902 2.43825i 1.22486 0.559373i 0.305271 0.952266i \(-0.401253\pi\)
0.919584 + 0.392893i \(0.128526\pi\)
\(20\) −17.0311 6.81823i −3.80827 1.52460i
\(21\) 0 0
\(22\) 4.04726 2.33669i 0.862880 0.498184i
\(23\) −0.537967 4.76556i −0.112174 0.993689i
\(24\) 0 0
\(25\) −8.63596 + 4.45214i −1.72719 + 0.890429i
\(26\) −8.53903 + 1.22773i −1.67464 + 0.240777i
\(27\) 0 0
\(28\) −3.56927 + 12.1558i −0.674528 + 2.29723i
\(29\) −0.362435 + 0.258089i −0.0673025 + 0.0479259i −0.613213 0.789918i \(-0.710123\pi\)
0.545910 + 0.837844i \(0.316184\pi\)
\(30\) 0 0
\(31\) 3.86186 1.54606i 0.693611 0.277680i 0.00205010 0.999998i \(-0.499347\pi\)
0.691561 + 0.722318i \(0.256923\pi\)
\(32\) 6.72245 7.05030i 1.18837 1.24633i
\(33\) 0 0
\(34\) 5.75572 0.274179i 0.987097 0.0470212i
\(35\) 5.49438 + 8.54942i 0.928720 + 1.44512i
\(36\) 0 0
\(37\) −2.15828 7.35043i −0.354819 1.20840i −0.922773 0.385343i \(-0.874083\pi\)
0.567954 0.823060i \(-0.307735\pi\)
\(38\) 12.0153 + 9.44890i 1.94913 + 1.53281i
\(39\) 0 0
\(40\) −2.64209 27.6693i −0.417752 4.37489i
\(41\) −2.19367 + 0.532178i −0.342593 + 0.0831122i −0.403364 0.915040i \(-0.632159\pi\)
0.0607710 + 0.998152i \(0.480644\pi\)
\(42\) 0 0
\(43\) 0.297622 0.743424i 0.0453869 0.113371i −0.903942 0.427654i \(-0.859340\pi\)
0.949329 + 0.314283i \(0.101764\pi\)
\(44\) 7.21938 + 4.63962i 1.08836 + 0.699448i
\(45\) 0 0
\(46\) 10.3892 6.93222i 1.53180 1.02210i
\(47\) −2.64028 1.52437i −0.385124 0.222352i 0.294921 0.955522i \(-0.404707\pi\)
−0.680045 + 0.733170i \(0.738040\pi\)
\(48\) 0 0
\(49\) 0.0143456 0.0112815i 0.00204937 0.00161164i
\(50\) −20.6113 14.6773i −2.91488 2.07568i
\(51\) 0 0
\(52\) −9.18893 12.9040i −1.27427 1.78947i
\(53\) −1.12878 + 1.30268i −0.155050 + 0.178937i −0.827960 0.560787i \(-0.810499\pi\)
0.672910 + 0.739724i \(0.265044\pi\)
\(54\) 0 0
\(55\) 6.60515 1.93945i 0.890639 0.261515i
\(56\) −18.8481 + 3.63267i −2.51868 + 0.485436i
\(57\) 0 0
\(58\) −1.02992 0.530963i −0.135236 0.0697188i
\(59\) 10.9766 + 3.79905i 1.42904 + 0.494595i 0.928569 0.371160i \(-0.121040\pi\)
0.500469 + 0.865755i \(0.333161\pi\)
\(60\) 0 0
\(61\) 2.64020 3.35729i 0.338043 0.429857i −0.587077 0.809531i \(-0.699721\pi\)
0.925120 + 0.379674i \(0.123964\pi\)
\(62\) 8.18729 + 7.09433i 1.03979 + 0.900980i
\(63\) 0 0
\(64\) 6.48578 + 1.90440i 0.810723 + 0.238050i
\(65\) −12.6500 1.20793i −1.56904 0.149825i
\(66\) 0 0
\(67\) −2.17994 0.103843i −0.266322 0.0126865i −0.0860037 0.996295i \(-0.527410\pi\)
−0.180318 + 0.983608i \(0.557713\pi\)
\(68\) 5.29059 + 9.16356i 0.641578 + 1.11125i
\(69\) 0 0
\(70\) −13.2332 + 22.9206i −1.58167 + 2.73953i
\(71\) −8.51253 + 13.2458i −1.01025 + 1.57198i −0.205250 + 0.978710i \(0.565801\pi\)
−0.805002 + 0.593272i \(0.797836\pi\)
\(72\) 0 0
\(73\) 1.67838 + 3.67515i 0.196440 + 0.430144i 0.982061 0.188565i \(-0.0603835\pi\)
−0.785621 + 0.618708i \(0.787656\pi\)
\(74\) 14.4389 13.7675i 1.67849 1.60044i
\(75\) 0 0
\(76\) −5.31205 + 27.5615i −0.609334 + 3.16152i
\(77\) −1.76689 4.41347i −0.201355 0.502962i
\(78\) 0 0
\(79\) 0.836762 + 4.34153i 0.0941431 + 0.488461i 0.998142 + 0.0609266i \(0.0194055\pi\)
−0.903999 + 0.427534i \(0.859382\pi\)
\(80\) 30.0289 19.2984i 3.35733 2.15763i
\(81\) 0 0
\(82\) −3.84966 4.44275i −0.425124 0.490619i
\(83\) 3.00389 12.3822i 0.329720 1.35912i −0.529843 0.848096i \(-0.677749\pi\)
0.859563 0.511029i \(-0.170736\pi\)
\(84\) 0 0
\(85\) 8.33454 + 1.60635i 0.904008 + 0.174233i
\(86\) 2.07601 0.198235i 0.223862 0.0213763i
\(87\) 0 0
\(88\) −1.23594 + 12.9434i −0.131752 + 1.37977i
\(89\) −0.218032 1.51645i −0.0231114 0.160743i 0.974997 0.222217i \(-0.0713292\pi\)
−0.998109 + 0.0614733i \(0.980420\pi\)
\(90\) 0 0
\(91\) 8.77569i 0.919942i
\(92\) 20.0564 + 11.1238i 2.09102 + 1.15973i
\(93\) 0 0
\(94\) 0.377786 7.93071i 0.0389657 0.817990i
\(95\) 13.9185 + 17.6988i 1.42800 + 1.81586i
\(96\) 0 0
\(97\) 9.85700 + 10.3377i 1.00083 + 1.04964i 0.998767 + 0.0496395i \(0.0158072\pi\)
0.00206002 + 0.999998i \(0.499344\pi\)
\(98\) 0.0432332 + 0.0197440i 0.00436722 + 0.00199444i
\(99\) 0 0
\(100\) 6.61252 45.9911i 0.661252 4.59911i
\(101\) −7.42557 1.80142i −0.738872 0.179248i −0.151377 0.988476i \(-0.548371\pi\)
−0.587495 + 0.809228i \(0.699886\pi\)
\(102\) 0 0
\(103\) −6.77663 + 13.1448i −0.667722 + 1.29520i 0.274944 + 0.961460i \(0.411341\pi\)
−0.942666 + 0.333739i \(0.891690\pi\)
\(104\) 10.9982 21.3335i 1.07846 2.09192i
\(105\) 0 0
\(106\) −4.36242 1.05831i −0.423715 0.102792i
\(107\) 0.219990 1.53007i 0.0212673 0.147917i −0.976421 0.215876i \(-0.930739\pi\)
0.997688 + 0.0679585i \(0.0216485\pi\)
\(108\) 0 0
\(109\) 8.60283 + 3.92878i 0.824001 + 0.376309i 0.782362 0.622824i \(-0.214015\pi\)
0.0416393 + 0.999133i \(0.486742\pi\)
\(110\) 12.3716 + 12.9749i 1.17958 + 1.23711i
\(111\) 0 0
\(112\) −15.2381 19.3769i −1.43987 1.83094i
\(113\) −0.151342 + 3.17705i −0.0142370 + 0.298872i 0.980507 + 0.196482i \(0.0629518\pi\)
−0.994744 + 0.102390i \(0.967351\pi\)
\(114\) 0 0
\(115\) 17.2795 6.31555i 1.61133 0.588928i
\(116\) 2.12778i 0.197559i
\(117\) 0 0
\(118\) 4.30500 + 29.9419i 0.396307 + 2.75638i
\(119\) 0.557186 5.83512i 0.0510772 0.534905i
\(120\) 0 0
\(121\) 7.74451 0.739511i 0.704046 0.0672283i
\(122\) 10.9220 + 2.10504i 0.988831 + 0.190582i
\(123\) 0 0
\(124\) −4.69000 + 19.3324i −0.421174 + 1.73610i
\(125\) −11.8474 13.6726i −1.05966 1.22291i
\(126\) 0 0
\(127\) 0.209143 0.134408i 0.0185585 0.0119268i −0.531329 0.847166i \(-0.678307\pi\)
0.549887 + 0.835239i \(0.314671\pi\)
\(128\) −0.355671 1.84540i −0.0314372 0.163111i
\(129\) 0 0
\(130\) −12.2997 30.7233i −1.07876 2.69461i
\(131\) 0.0338851 0.175813i 0.00296056 0.0153608i −0.980418 0.196926i \(-0.936904\pi\)
0.983379 + 0.181565i \(0.0581163\pi\)
\(132\) 0 0
\(133\) 11.2535 10.7302i 0.975806 0.930429i
\(134\) −2.36104 5.16996i −0.203963 0.446617i
\(135\) 0 0
\(136\) −8.66739 + 13.4867i −0.743222 + 1.15648i
\(137\) 3.65084 6.32345i 0.311913 0.540249i −0.666864 0.745180i \(-0.732364\pi\)
0.978776 + 0.204931i \(0.0656970\pi\)
\(138\) 0 0
\(139\) −10.6526 18.4508i −0.903542 1.56498i −0.822863 0.568240i \(-0.807625\pi\)
−0.0806786 0.996740i \(-0.525709\pi\)
\(140\) −48.5451 2.31249i −4.10281 0.195441i
\(141\) 0 0
\(142\) −40.8192 3.89776i −3.42547 0.327092i
\(143\) 5.70367 + 1.67475i 0.476965 + 0.140049i
\(144\) 0 0
\(145\) −1.28995 1.11775i −0.107124 0.0928237i
\(146\) −6.50421 + 8.27077i −0.538292 + 0.684494i
\(147\) 0 0
\(148\) 34.6203 + 11.9822i 2.84577 + 0.984930i
\(149\) −10.9253 5.63237i −0.895034 0.461422i −0.0516077 0.998667i \(-0.516435\pi\)
−0.843426 + 0.537246i \(0.819465\pi\)
\(150\) 0 0
\(151\) −2.53066 + 0.487744i −0.205942 + 0.0396921i −0.291179 0.956669i \(-0.594047\pi\)
0.0852368 + 0.996361i \(0.472835\pi\)
\(152\) −40.8047 + 11.9814i −3.30970 + 0.971816i
\(153\) 0 0
\(154\) 8.10764 9.35671i 0.653332 0.753985i
\(155\) 9.25642 + 12.9988i 0.743493 + 1.04409i
\(156\) 0 0
\(157\) 11.9694 + 8.52340i 0.955265 + 0.680241i 0.947509 0.319729i \(-0.103592\pi\)
0.00775580 + 0.999970i \(0.497531\pi\)
\(158\) −9.05108 + 7.11785i −0.720065 + 0.566266i
\(159\) 0 0
\(160\) 32.3635 + 18.6850i 2.55856 + 1.47718i
\(161\) −5.47601 11.4644i −0.431570 0.903524i
\(162\) 0 0
\(163\) −9.01920 5.79629i −0.706438 0.454000i 0.137457 0.990508i \(-0.456107\pi\)
−0.843896 + 0.536507i \(0.819743\pi\)
\(164\) 4.01204 10.0216i 0.313287 0.782554i
\(165\) 0 0
\(166\) 32.2466 7.82293i 2.50282 0.607178i
\(167\) −0.493577 5.16897i −0.0381941 0.399987i −0.994272 0.106875i \(-0.965915\pi\)
0.956078 0.293111i \(-0.0946907\pi\)
\(168\) 0 0
\(169\) 1.59317 + 1.25288i 0.122552 + 0.0963757i
\(170\) 6.22765 + 21.2094i 0.477639 + 1.62669i
\(171\) 0 0
\(172\) 2.07039 + 3.22159i 0.157866 + 0.245644i
\(173\) 9.36625 0.446170i 0.712103 0.0339216i 0.311595 0.950215i \(-0.399137\pi\)
0.400508 + 0.916293i \(0.368834\pi\)
\(174\) 0 0
\(175\) −17.7624 + 18.6287i −1.34271 + 1.40820i
\(176\) −15.5018 + 6.20600i −1.16849 + 0.467794i
\(177\) 0 0
\(178\) 3.25003 2.31434i 0.243600 0.173467i
\(179\) 2.41548 8.22638i 0.180542 0.614869i −0.818636 0.574313i \(-0.805269\pi\)
0.999177 0.0405554i \(-0.0129127\pi\)
\(180\) 0 0
\(181\) −21.5546 + 3.09908i −1.60214 + 0.230353i −0.884663 0.466231i \(-0.845612\pi\)
−0.717476 + 0.696583i \(0.754703\pi\)
\(182\) −20.3136 + 10.4724i −1.50575 + 0.776266i
\(183\) 0 0
\(184\) −1.05582 + 34.7325i −0.0778358 + 2.56052i
\(185\) 25.4505 14.6939i 1.87116 1.08032i
\(186\) 0 0
\(187\) −3.68614 1.47571i −0.269557 0.107915i
\(188\) 13.2621 6.05660i 0.967238 0.441723i
\(189\) 0 0
\(190\) −24.3590 + 53.3387i −1.76718 + 3.86959i
\(191\) 0.871549 + 2.51818i 0.0630631 + 0.182209i 0.972131 0.234440i \(-0.0753257\pi\)
−0.909067 + 0.416649i \(0.863204\pi\)
\(192\) 0 0
\(193\) −11.5652 11.0274i −0.832481 0.793769i 0.148287 0.988944i \(-0.452624\pi\)
−0.980768 + 0.195175i \(0.937472\pi\)
\(194\) −12.1666 + 35.1531i −0.873511 + 2.52384i
\(195\) 0 0
\(196\) 0.00415276 + 0.0871771i 0.000296625 + 0.00622693i
\(197\) −10.8321 + 9.38607i −0.771755 + 0.668730i −0.948943 0.315447i \(-0.897845\pi\)
0.177188 + 0.984177i \(0.443300\pi\)
\(198\) 0 0
\(199\) 14.1618 + 2.03616i 1.00390 + 0.144339i 0.624610 0.780937i \(-0.285258\pi\)
0.379293 + 0.925277i \(0.376167\pi\)
\(200\) 66.5264 23.0250i 4.70413 1.62812i
\(201\) 0 0
\(202\) −4.69139 19.3382i −0.330085 1.36063i
\(203\) −0.683728 + 0.960162i −0.0479883 + 0.0673902i
\(204\) 0 0
\(205\) −3.96793 7.69671i −0.277132 0.537562i
\(206\) −38.5140 −2.68340
\(207\) 0 0
\(208\) 30.8236 2.13723
\(209\) −4.82638 9.36188i −0.333848 0.647575i
\(210\) 0 0
\(211\) 5.51685 7.74732i 0.379795 0.533348i −0.579790 0.814766i \(-0.696865\pi\)
0.959585 + 0.281418i \(0.0908048\pi\)
\(212\) −1.94337 8.01068i −0.133471 0.550176i
\(213\) 0 0
\(214\) 3.80426 1.31667i 0.260054 0.0900056i
\(215\) 3.04066 + 0.437181i 0.207372 + 0.0298155i
\(216\) 0 0
\(217\) 8.32855 7.21673i 0.565379 0.489903i
\(218\) 1.17193 + 24.6019i 0.0793733 + 1.66625i
\(219\) 0 0
\(220\) −10.7673 + 31.1101i −0.725931 + 2.09744i
\(221\) 5.30459 + 5.05792i 0.356825 + 0.340232i
\(222\) 0 0
\(223\) −2.21277 6.39338i −0.148178 0.428132i 0.846347 0.532632i \(-0.178797\pi\)
−0.994525 + 0.104500i \(0.966676\pi\)
\(224\) 10.7208 23.4752i 0.716311 1.56850i
\(225\) 0 0
\(226\) −7.53472 + 3.44099i −0.501202 + 0.228891i
\(227\) −1.11066 0.444642i −0.0737172 0.0295119i 0.334511 0.942392i \(-0.391429\pi\)
−0.408228 + 0.912880i \(0.633853\pi\)
\(228\) 0 0
\(229\) −9.02087 + 5.20820i −0.596116 + 0.344168i −0.767512 0.641035i \(-0.778506\pi\)
0.171396 + 0.985202i \(0.445172\pi\)
\(230\) 35.2394 + 32.4614i 2.32362 + 2.14044i
\(231\) 0 0
\(232\) 2.86545 1.47724i 0.188126 0.0969857i
\(233\) 26.8065 3.85420i 1.75615 0.252497i 0.812390 0.583115i \(-0.198166\pi\)
0.943765 + 0.330618i \(0.107257\pi\)
\(234\) 0 0
\(235\) 3.29497 11.2216i 0.214940 0.732019i
\(236\) −45.2477 + 32.2207i −2.94537 + 2.09739i
\(237\) 0 0
\(238\) 14.1718 5.67355i 0.918624 0.367761i
\(239\) 8.87358 9.30634i 0.573984 0.601977i −0.371185 0.928559i \(-0.621048\pi\)
0.945169 + 0.326582i \(0.105897\pi\)
\(240\) 0 0
\(241\) −12.7455 + 0.607142i −0.821009 + 0.0391095i −0.453882 0.891062i \(-0.649961\pi\)
−0.367126 + 0.930171i \(0.619658\pi\)
\(242\) 10.9537 + 17.0442i 0.704127 + 1.09564i
\(243\) 0 0
\(244\) 5.75442 + 19.5977i 0.368389 + 1.25462i
\(245\) 0.0550319 + 0.0432775i 0.00351586 + 0.00276490i
\(246\) 0 0
\(247\) 1.84817 + 19.3549i 0.117596 + 1.23152i
\(248\) −29.2909 + 7.10588i −1.85997 + 0.451224i
\(249\) 0 0
\(250\) 17.5108 43.7399i 1.10748 2.76635i
\(251\) −15.2592 9.80651i −0.963154 0.618982i −0.0382851 0.999267i \(-0.512189\pi\)
−0.924869 + 0.380285i \(0.875826\pi\)
\(252\) 0 0
\(253\) −8.49623 + 1.37121i −0.534153 + 0.0862071i
\(254\) 0.560703 + 0.323722i 0.0351816 + 0.0203121i
\(255\) 0 0
\(256\) 14.4740 11.3825i 0.904626 0.711406i
\(257\) −19.1620 13.6452i −1.19529 0.851163i −0.203506 0.979074i \(-0.565234\pi\)
−0.991786 + 0.127910i \(0.959173\pi\)
\(258\) 0 0
\(259\) −11.7722 16.5317i −0.731486 1.02723i
\(260\) 39.7959 45.9269i 2.46804 2.84827i
\(261\) 0 0
\(262\) 0.447401 0.131369i 0.0276405 0.00811599i
\(263\) −3.06444 + 0.590623i −0.188962 + 0.0364194i −0.282854 0.959163i \(-0.591281\pi\)
0.0938923 + 0.995582i \(0.470069\pi\)
\(264\) 0 0
\(265\) −5.87728 3.02995i −0.361039 0.186128i
\(266\) 38.2673 + 13.2444i 2.34632 + 0.812068i
\(267\) 0 0
\(268\) 6.45155 8.20381i 0.394091 0.501128i
\(269\) −20.5579 17.8135i −1.25344 1.08611i −0.992689 0.120703i \(-0.961485\pi\)
−0.260749 0.965407i \(-0.583969\pi\)
\(270\) 0 0
\(271\) −28.1936 8.27839i −1.71264 0.502876i −0.729229 0.684270i \(-0.760121\pi\)
−0.983410 + 0.181394i \(0.941939\pi\)
\(272\) −20.4952 1.95706i −1.24270 0.118664i
\(273\) 0 0
\(274\) 18.9940 + 0.904795i 1.14747 + 0.0546607i
\(275\) 8.71776 + 15.0996i 0.525701 + 0.910540i
\(276\) 0 0
\(277\) 7.61253 13.1853i 0.457393 0.792227i −0.541430 0.840746i \(-0.682117\pi\)
0.998822 + 0.0485189i \(0.0154501\pi\)
\(278\) 29.9971 46.6764i 1.79911 2.79947i
\(279\) 0 0
\(280\) −30.5890 66.9805i −1.82804 4.00285i
\(281\) 7.85844 7.49301i 0.468795 0.446995i −0.418487 0.908223i \(-0.637439\pi\)
0.887282 + 0.461228i \(0.152591\pi\)
\(282\) 0 0
\(283\) 2.88826 14.9857i 0.171689 0.890808i −0.789255 0.614066i \(-0.789533\pi\)
0.960944 0.276743i \(-0.0892549\pi\)
\(284\) −27.9850 69.9033i −1.66061 4.14800i
\(285\) 0 0
\(286\) 2.92979 + 15.2012i 0.173242 + 0.898865i
\(287\) −5.03072 + 3.23305i −0.296954 + 0.190841i
\(288\) 0 0
\(289\) 7.92665 + 9.14784i 0.466273 + 0.538108i
\(290\) 1.04797 4.31978i 0.0615387 0.253666i
\(291\) 0 0
\(292\) −18.9721 3.65658i −1.11026 0.213985i
\(293\) −20.7282 + 1.97930i −1.21095 + 0.115632i −0.680928 0.732350i \(-0.738424\pi\)
−0.530025 + 0.847982i \(0.677817\pi\)
\(294\) 0 0
\(295\) −4.23558 + 44.3570i −0.246605 + 2.58256i
\(296\) 7.89940 + 54.9415i 0.459143 + 3.19341i
\(297\) 0 0
\(298\) 32.0108i 1.85433i
\(299\) 15.5009 + 3.47915i 0.896442 + 0.201204i
\(300\) 0 0
\(301\) 0.100942 2.11904i 0.00581821 0.122139i
\(302\) −4.14896 5.27583i −0.238746 0.303590i
\(303\) 0 0
\(304\) −37.6887 39.5268i −2.16160 2.26702i
\(305\) 14.9038 + 6.80635i 0.853391 + 0.389731i
\(306\) 0 0
\(307\) −0.243859 + 1.69608i −0.0139178 + 0.0968002i −0.995596 0.0937445i \(-0.970116\pi\)
0.981679 + 0.190545i \(0.0610254\pi\)
\(308\) 22.0938 + 5.35989i 1.25891 + 0.305408i
\(309\) 0 0
\(310\) −19.0431 + 36.9385i −1.08158 + 2.09796i
\(311\) −8.57366 + 16.6306i −0.486168 + 0.943034i 0.510375 + 0.859952i \(0.329507\pi\)
−0.996543 + 0.0830819i \(0.973524\pi\)
\(312\) 0 0
\(313\) −3.68935 0.895026i −0.208534 0.0505899i 0.130131 0.991497i \(-0.458460\pi\)
−0.338665 + 0.940907i \(0.609975\pi\)
\(314\) −5.44600 + 37.8777i −0.307335 + 2.13756i
\(315\) 0 0
\(316\) −19.2334 8.78361i −1.08196 0.494117i
\(317\) 4.08419 + 4.28337i 0.229391 + 0.240578i 0.828363 0.560192i \(-0.189273\pi\)
−0.598972 + 0.800770i \(0.704424\pi\)
\(318\) 0 0
\(319\) 0.493565 + 0.627619i 0.0276343 + 0.0351399i
\(320\) −1.23384 + 25.9014i −0.0689736 + 1.44793i
\(321\) 0 0
\(322\) 20.0027 26.3567i 1.11471 1.46880i
\(323\) 12.9868i 0.722605i
\(324\) 0 0
\(325\) −4.58043 31.8576i −0.254076 1.76714i
\(326\) 2.65403 27.7943i 0.146993 1.53938i
\(327\) 0 0
\(328\) 16.2814 1.55468i 0.898988 0.0858429i
\(329\) −7.93074 1.52852i −0.437236 0.0842703i
\(330\) 0 0
\(331\) 0.894900 3.68883i 0.0491881 0.202756i −0.941915 0.335851i \(-0.890976\pi\)
0.991103 + 0.133094i \(0.0424914\pi\)
\(332\) 39.9018 + 46.0492i 2.18990 + 2.52728i
\(333\) 0 0
\(334\) 11.3759 7.31087i 0.622463 0.400033i
\(335\) −1.58442 8.22075i −0.0865661 0.449148i
\(336\) 0 0
\(337\) −4.84211 12.0950i −0.263767 0.658857i 0.736070 0.676905i \(-0.236679\pi\)
−0.999837 + 0.0180477i \(0.994255\pi\)
\(338\) −0.998929 + 5.18294i −0.0543346 + 0.281915i
\(339\) 0 0
\(340\) −29.3771 + 28.0110i −1.59319 + 1.51911i
\(341\) −3.10102 6.79029i −0.167930 0.367715i
\(342\) 0 0
\(343\) −9.99971 + 15.5599i −0.539934 + 0.840153i
\(344\) −2.90108 + 5.02481i −0.156416 + 0.270920i
\(345\) 0 0
\(346\) 12.2099 + 21.1482i 0.656410 + 1.13694i
\(347\) 34.9011 + 1.66255i 1.87359 + 0.0892501i 0.953307 0.302002i \(-0.0976550\pi\)
0.920283 + 0.391252i \(0.127958\pi\)
\(348\) 0 0
\(349\) 16.3206 + 1.55843i 0.873623 + 0.0834209i 0.522228 0.852806i \(-0.325101\pi\)
0.351396 + 0.936227i \(0.385707\pi\)
\(350\) −64.3177 18.8854i −3.43793 1.00947i
\(351\) 0 0
\(352\) −13.2115 11.4478i −0.704176 0.610172i
\(353\) 19.4996 24.7958i 1.03786 1.31975i 0.0917905 0.995778i \(-0.470741\pi\)
0.946068 0.323967i \(-0.105017\pi\)
\(354\) 0 0
\(355\) −57.0791 19.7553i −3.02945 1.04850i
\(356\) 6.51208 + 3.35721i 0.345139 + 0.177932i
\(357\) 0 0
\(358\) 21.9246 4.22563i 1.15875 0.223331i
\(359\) −24.3292 + 7.14369i −1.28404 + 0.377030i −0.851391 0.524531i \(-0.824241\pi\)
−0.432653 + 0.901560i \(0.642423\pi\)
\(360\) 0 0
\(361\) 10.1177 11.6765i 0.532512 0.614551i
\(362\) −32.8956 46.1955i −1.72896 2.42798i
\(363\) 0 0
\(364\) −34.1854 24.3433i −1.79180 1.27593i
\(365\) −12.1831 + 9.58086i −0.637691 + 0.501485i
\(366\) 0 0
\(367\) 22.8849 + 13.2126i 1.19458 + 0.689694i 0.959343 0.282243i \(-0.0910785\pi\)
0.235242 + 0.971937i \(0.424412\pi\)
\(368\) −40.2675 + 19.2339i −2.09909 + 1.00263i
\(369\) 0 0
\(370\) 64.3841 + 41.3771i 3.34717 + 2.15109i
\(371\) −1.69716 + 4.23930i −0.0881122 + 0.220094i
\(372\) 0 0
\(373\) 27.5314 6.67904i 1.42552 0.345828i 0.552501 0.833512i \(-0.313673\pi\)
0.873020 + 0.487684i \(0.162158\pi\)
\(374\) −0.982917 10.2936i −0.0508254 0.532268i
\(375\) 0 0
\(376\) 17.3638 + 13.6550i 0.895468 + 0.704204i
\(377\) −0.415243 1.41419i −0.0213861 0.0728344i
\(378\) 0 0
\(379\) 10.7760 + 16.7677i 0.553524 + 0.861300i 0.999429 0.0337799i \(-0.0107545\pi\)
−0.445905 + 0.895080i \(0.647118\pi\)
\(380\) −107.554 + 5.12343i −5.51740 + 0.262826i
\(381\) 0 0
\(382\) −4.78892 + 5.02248i −0.245023 + 0.256972i
\(383\) 16.0786 6.43689i 0.821577 0.328910i 0.0774905 0.996993i \(-0.475309\pi\)
0.744086 + 0.668083i \(0.232885\pi\)
\(384\) 0 0
\(385\) 14.8555 10.5785i 0.757106 0.539133i
\(386\) 11.7246 39.9302i 0.596764 2.03239i
\(387\) 0 0
\(388\) −67.6130 + 9.72129i −3.43253 + 0.493524i
\(389\) 5.04145 2.59905i 0.255611 0.131777i −0.325659 0.945487i \(-0.605586\pi\)
0.581270 + 0.813710i \(0.302556\pi\)
\(390\) 0 0
\(391\) −10.0860 3.29754i −0.510069 0.166764i
\(392\) −0.114517 + 0.0661165i −0.00578399 + 0.00333939i
\(393\) 0 0
\(394\) −34.6529 13.8729i −1.74579 0.698909i
\(395\) −15.4285 + 7.04597i −0.776293 + 0.354521i
\(396\) 0 0
\(397\) 6.66528 14.5949i 0.334521 0.732499i −0.665381 0.746504i \(-0.731731\pi\)
0.999902 + 0.0140053i \(0.00445816\pi\)
\(398\) 12.1867 + 35.2110i 0.610862 + 1.76497i
\(399\) 0 0
\(400\) 65.4312 + 62.3886i 3.27156 + 3.11943i
\(401\) 2.00823 5.80239i 0.100286 0.289757i −0.883686 0.468080i \(-0.844946\pi\)
0.983972 + 0.178323i \(0.0570671\pi\)
\(402\) 0 0
\(403\) 0.655670 + 13.7642i 0.0326613 + 0.685644i
\(404\) 27.6155 23.9290i 1.37392 1.19051i
\(405\) 0 0
\(406\) −3.03847 0.436866i −0.150797 0.0216813i
\(407\) −12.9912 + 4.49629i −0.643949 + 0.222873i
\(408\) 0 0
\(409\) 5.04888 + 20.8118i 0.249651 + 1.02908i 0.949246 + 0.314535i \(0.101849\pi\)
−0.699595 + 0.714540i \(0.746636\pi\)
\(410\) 13.0810 18.3696i 0.646023 0.907212i
\(411\) 0 0
\(412\) −32.4072 62.8612i −1.59659 3.09695i
\(413\) 30.7717 1.51418
\(414\) 0 0
\(415\) 48.8778 2.39932
\(416\) 14.7869 + 28.6825i 0.724985 + 1.40627i
\(417\) 0 0
\(418\) 15.9110 22.3439i 0.778232 1.09287i
\(419\) 3.26276 + 13.4493i 0.159396 + 0.657041i 0.994298 + 0.106641i \(0.0340096\pi\)
−0.834901 + 0.550400i \(0.814475\pi\)
\(420\) 0 0
\(421\) 19.1830 6.63930i 0.934922 0.323580i 0.183212 0.983073i \(-0.441351\pi\)
0.751710 + 0.659494i \(0.229229\pi\)
\(422\) 24.5167 + 3.52497i 1.19345 + 0.171593i
\(423\) 0 0
\(424\) 9.43867 8.17866i 0.458382 0.397191i
\(425\) 1.02291 + 21.4735i 0.0496184 + 1.04162i
\(426\) 0 0
\(427\) 3.70075 10.6926i 0.179092 0.517451i
\(428\) 5.35007 + 5.10128i 0.258606 + 0.246580i
\(429\) 0 0
\(430\) 2.61658 + 7.56012i 0.126183 + 0.364582i
\(431\) −7.12729 + 15.6066i −0.343309 + 0.751743i −0.999997 0.00241981i \(-0.999230\pi\)
0.656688 + 0.754163i \(0.271957\pi\)
\(432\) 0 0
\(433\) −21.2797 + 9.71810i −1.02264 + 0.467022i −0.854891 0.518808i \(-0.826376\pi\)
−0.167745 + 0.985830i \(0.553649\pi\)
\(434\) 26.6438 + 10.6666i 1.27894 + 0.512012i
\(435\) 0 0
\(436\) −39.1682 + 22.6138i −1.87582 + 1.08300i
\(437\) −14.4918 24.1317i −0.693239 1.15438i
\(438\) 0 0
\(439\) 1.01209 0.521771i 0.0483046 0.0249028i −0.433905 0.900959i \(-0.642865\pi\)
0.482210 + 0.876056i \(0.339834\pi\)
\(440\) −49.3709 + 7.09846i −2.35367 + 0.338406i
\(441\) 0 0
\(442\) −5.37768 + 18.3147i −0.255790 + 0.871142i
\(443\) −23.0851 + 16.4388i −1.09681 + 0.781033i −0.977313 0.211802i \(-0.932067\pi\)
−0.119495 + 0.992835i \(0.538127\pi\)
\(444\) 0 0
\(445\) 5.45615 2.18431i 0.258646 0.103546i
\(446\) 12.1586 12.7515i 0.575725 0.603803i
\(447\) 0 0
\(448\) 17.8872 0.852073i 0.845092 0.0402567i
\(449\) 17.8738 + 27.8121i 0.843516 + 1.31254i 0.948085 + 0.318018i \(0.103017\pi\)
−0.104569 + 0.994518i \(0.533346\pi\)
\(450\) 0 0
\(451\) 1.14123 + 3.88666i 0.0537382 + 0.183015i
\(452\) −11.9563 9.40252i −0.562376 0.442257i
\(453\) 0 0
\(454\) −0.296160 3.10153i −0.0138995 0.145562i
\(455\) −32.7159 + 7.93679i −1.53374 + 0.372082i
\(456\) 0 0
\(457\) −8.73113 + 21.8093i −0.408425 + 1.02020i 0.571460 + 0.820630i \(0.306377\pi\)
−0.979884 + 0.199566i \(0.936047\pi\)
\(458\) −22.8208 14.6660i −1.06634 0.685297i
\(459\) 0 0
\(460\) −23.3305 + 84.8308i −1.08779 + 3.95526i
\(461\) 2.99383 + 1.72849i 0.139437 + 0.0805038i 0.568095 0.822963i \(-0.307680\pi\)
−0.428659 + 0.903466i \(0.641014\pi\)
\(462\) 0 0
\(463\) −30.0270 + 23.6135i −1.39547 + 1.09741i −0.413057 + 0.910705i \(0.635539\pi\)
−0.982416 + 0.186707i \(0.940218\pi\)
\(464\) 3.37246 + 2.40152i 0.156563 + 0.111488i
\(465\) 0 0
\(466\) 40.9109 + 57.4514i 1.89516 + 2.66138i
\(467\) 22.8932 26.4201i 1.05937 1.22258i 0.0852940 0.996356i \(-0.472817\pi\)
0.974076 0.226222i \(-0.0726375\pi\)
\(468\) 0 0
\(469\) −5.54744 + 1.62887i −0.256157 + 0.0752145i
\(470\) 29.9075 5.76419i 1.37953 0.265882i
\(471\) 0 0
\(472\) −74.8052 38.5648i −3.44319 1.77509i
\(473\) −1.35798 0.470002i −0.0624401 0.0216107i
\(474\) 0 0
\(475\) −35.2521 + 44.8267i −1.61748 + 2.05679i
\(476\) 21.1849 + 18.3568i 0.971008 + 0.841383i
\(477\) 0 0
\(478\) 32.1312 + 9.43457i 1.46965 + 0.431527i
\(479\) 20.3430 + 1.94252i 0.929497 + 0.0887562i 0.548809 0.835948i \(-0.315081\pi\)
0.380688 + 0.924704i \(0.375687\pi\)
\(480\) 0 0
\(481\) 25.3481 + 1.20748i 1.15577 + 0.0550563i
\(482\) −16.6151 28.7782i −0.756798 1.31081i
\(483\) 0 0
\(484\) −18.6021 + 32.2198i −0.845551 + 1.46454i
\(485\) −29.6245 + 46.0966i −1.34518 + 2.09314i
\(486\) 0 0
\(487\) −0.0167778 0.0367382i −0.000760273 0.00166477i 0.909251 0.416247i \(-0.136655\pi\)
−0.910012 + 0.414582i \(0.863928\pi\)
\(488\) −22.3969 + 21.3554i −1.01386 + 0.966716i
\(489\) 0 0
\(490\) −0.0345053 + 0.179031i −0.00155879 + 0.00808778i
\(491\) 11.4600 + 28.6257i 0.517183 + 1.29186i 0.925406 + 0.378977i \(0.123724\pi\)
−0.408223 + 0.912882i \(0.633852\pi\)
\(492\) 0 0
\(493\) 0.186313 + 0.966685i 0.00839112 + 0.0435373i
\(494\) −42.5966 + 27.3752i −1.91651 + 1.23167i
\(495\) 0 0
\(496\) −25.3480 29.2531i −1.13816 1.31350i
\(497\) −9.83405 + 40.5365i −0.441117 + 1.81831i
\(498\) 0 0
\(499\) −6.18830 1.19270i −0.277026 0.0533925i 0.0488456 0.998806i \(-0.484446\pi\)
−0.325872 + 0.945414i \(0.605658\pi\)
\(500\) 86.1249 8.22393i 3.85162 0.367786i
\(501\) 0 0
\(502\) 4.49025 47.0241i 0.200410 2.09879i
\(503\) −1.47746 10.2760i −0.0658768 0.458183i −0.995884 0.0906409i \(-0.971108\pi\)
0.930007 0.367542i \(-0.119801\pi\)
\(504\) 0 0
\(505\) 29.3119i 1.30436i
\(506\) −13.3129 18.0304i −0.591832 0.801550i
\(507\) 0 0
\(508\) −0.0565701 + 1.18755i −0.00250989 + 0.0526891i
\(509\) −6.83816 8.69542i −0.303096 0.385418i 0.610517 0.792003i \(-0.290962\pi\)
−0.913613 + 0.406585i \(0.866719\pi\)
\(510\) 0 0
\(511\) 7.38622 + 7.74645i 0.326747 + 0.342683i
\(512\) 40.2012 + 18.3593i 1.77666 + 0.811373i
\(513\) 0 0
\(514\) 8.71855 60.6388i 0.384559 2.67466i
\(515\) −55.1330 13.3751i −2.42945 0.589378i
\(516\) 0 0
\(517\) −2.50695 + 4.86280i −0.110255 + 0.213866i
\(518\) 24.2187 46.9777i 1.06411 2.06408i
\(519\) 0 0
\(520\) 89.4782 + 21.7072i 3.92388 + 0.951923i
\(521\) −0.289337 + 2.01239i −0.0126761 + 0.0881642i −0.995177 0.0980915i \(-0.968726\pi\)
0.982501 + 0.186256i \(0.0596353\pi\)
\(522\) 0 0
\(523\) −11.5481 5.27386i −0.504965 0.230610i 0.146610 0.989194i \(-0.453164\pi\)
−0.651574 + 0.758585i \(0.725891\pi\)
\(524\) 0.590876 + 0.619693i 0.0258125 + 0.0270714i
\(525\) 0 0
\(526\) −5.02409 6.38864i −0.219061 0.278558i
\(527\) 0.437951 9.19372i 0.0190774 0.400485i
\(528\) 0 0
\(529\) −22.4212 + 5.12743i −0.974834 + 0.222932i
\(530\) 17.2203i 0.748002i
\(531\) 0 0
\(532\) 10.5825 + 73.6028i 0.458809 + 3.19109i
\(533\) 0.710780 7.44362i 0.0307873 0.322419i
\(534\) 0 0
\(535\) 5.90307 0.563674i 0.255212 0.0243698i
\(536\) 15.5271 + 2.99260i 0.670667 + 0.129260i
\(537\) 0 0
\(538\) 16.7015 68.8443i 0.720051 2.96809i
\(539\) −0.0214468 0.0247509i −0.000923777 0.00106610i
\(540\) 0 0
\(541\) 4.54887 2.92338i 0.195571 0.125686i −0.439190 0.898394i \(-0.644735\pi\)
0.634762 + 0.772708i \(0.281098\pi\)
\(542\) −14.4821 75.1405i −0.622061 3.22756i
\(543\) 0 0
\(544\) −8.01095 20.0104i −0.343466 0.857938i
\(545\) −6.86609 + 35.6247i −0.294111 + 1.52599i
\(546\) 0 0
\(547\) 10.6017 10.1087i 0.453294 0.432215i −0.428720 0.903437i \(-0.641035\pi\)
0.882015 + 0.471222i \(0.156187\pi\)
\(548\) 14.5055 + 31.7626i 0.619645 + 1.35683i
\(549\) 0 0
\(550\) −24.5487 + 38.1985i −1.04676 + 1.62879i
\(551\) −1.30576 + 2.26165i −0.0556274 + 0.0963494i
\(552\) 0 0
\(553\) 5.85663 + 10.1440i 0.249049 + 0.431366i
\(554\) 39.6052 + 1.88663i 1.68266 + 0.0801551i
\(555\) 0 0
\(556\) 101.424 + 9.68485i 4.30135 + 0.410729i
\(557\) −29.7304 8.72965i −1.25972 0.369887i −0.417329 0.908755i \(-0.637034\pi\)
−0.842390 + 0.538868i \(0.818852\pi\)
\(558\) 0 0
\(559\) 2.00475 + 1.73713i 0.0847920 + 0.0734727i
\(560\) 58.4557 74.3325i 2.47021 3.14112i
\(561\) 0 0
\(562\) 26.7223 + 9.24869i 1.12721 + 0.390133i
\(563\) 9.44881 + 4.87120i 0.398220 + 0.205297i 0.645691 0.763599i \(-0.276569\pi\)
−0.247471 + 0.968895i \(0.579600\pi\)
\(564\) 0 0
\(565\) −11.9810 + 2.30914i −0.504043 + 0.0971463i
\(566\) 38.1351 11.1975i 1.60294 0.470665i
\(567\) 0 0
\(568\) 74.7088 86.2186i 3.13471 3.61765i
\(569\) 13.7824 + 19.3547i 0.577790 + 0.811392i 0.995255 0.0973007i \(-0.0310209\pi\)
−0.417465 + 0.908693i \(0.637081\pi\)
\(570\) 0 0
\(571\) −7.19014 5.12008i −0.300898 0.214269i 0.419628 0.907696i \(-0.362160\pi\)
−0.720526 + 0.693427i \(0.756100\pi\)
\(572\) −22.3456 + 17.5728i −0.934316 + 0.734754i
\(573\) 0 0
\(574\) −13.4871 7.78679i −0.562941 0.325014i
\(575\) 25.8628 + 38.7601i 1.07855 + 1.61641i
\(576\) 0 0
\(577\) −30.3039 19.4751i −1.26157 0.810760i −0.273069 0.961994i \(-0.588039\pi\)
−0.988498 + 0.151235i \(0.951675\pi\)
\(578\) −11.7159 + 29.2648i −0.487316 + 1.21726i
\(579\) 0 0
\(580\) 7.93238 1.92437i 0.329374 0.0799053i
\(581\) −3.20856 33.6016i −0.133114 1.39403i
\(582\) 0 0
\(583\) 2.43141 + 1.91208i 0.100699 + 0.0791902i
\(584\) −8.24744 28.0882i −0.341282 1.16230i
\(585\) 0 0
\(586\) −29.3175 45.6189i −1.21109 1.88450i
\(587\) −6.46343 + 0.307891i −0.266774 + 0.0127080i −0.180543 0.983567i \(-0.557785\pi\)
−0.0862313 + 0.996275i \(0.527482\pi\)
\(588\) 0 0
\(589\) 16.8489 17.6706i 0.694247 0.728105i
\(590\) −107.730 + 43.1287i −4.43519 + 1.77558i
\(591\) 0 0
\(592\) −58.0657 + 41.3484i −2.38648 + 1.69941i
\(593\) −3.77109 + 12.8432i −0.154860 + 0.527405i −0.999974 0.00718076i \(-0.997714\pi\)
0.845114 + 0.534586i \(0.179532\pi\)
\(594\) 0 0
\(595\) 22.2573 3.20012i 0.912461 0.131192i
\(596\) 52.2468 26.9351i 2.14011 1.10331i
\(597\) 0 0
\(598\) 10.4445 + 40.0328i 0.427109 + 1.63706i
\(599\) −1.02406 + 0.591240i −0.0418419 + 0.0241574i −0.520775 0.853694i \(-0.674357\pi\)
0.478933 + 0.877851i \(0.341024\pi\)
\(600\) 0 0
\(601\) −30.2389 12.1058i −1.23347 0.493807i −0.338937 0.940809i \(-0.610067\pi\)
−0.894533 + 0.447003i \(0.852491\pi\)
\(602\) 5.02553 2.29508i 0.204825 0.0935405i
\(603\) 0 0
\(604\) 5.11992 11.2111i 0.208327 0.456172i
\(605\) 9.76109 + 28.2028i 0.396845 + 1.14661i
\(606\) 0 0
\(607\) 17.9570 + 17.1219i 0.728851 + 0.694958i 0.960636 0.277809i \(-0.0896083\pi\)
−0.231786 + 0.972767i \(0.574457\pi\)
\(608\) 18.7009 54.0327i 0.758422 2.19132i
\(609\) 0 0
\(610\) 2.03030 + 42.6212i 0.0822043 + 1.72568i
\(611\) 7.63244 6.61355i 0.308776 0.267556i
\(612\) 0 0
\(613\) −26.4982 3.80986i −1.07025 0.153879i −0.415401 0.909638i \(-0.636359\pi\)
−0.654849 + 0.755760i \(0.727268\pi\)
\(614\) −4.21702 + 1.45953i −0.170185 + 0.0589017i
\(615\) 0 0
\(616\) 8.12085 + 33.4746i 0.327198 + 1.34873i
\(617\) 7.73635 10.8642i 0.311454 0.437376i −0.628945 0.777450i \(-0.716513\pi\)
0.940399 + 0.340074i \(0.110452\pi\)
\(618\) 0 0
\(619\) 0.404571 + 0.784759i 0.0162611 + 0.0315421i 0.896826 0.442383i \(-0.145867\pi\)
−0.880565 + 0.473925i \(0.842837\pi\)
\(620\) −76.3132 −3.06481
\(621\) 0 0
\(622\) −48.7272 −1.95378
\(623\) −1.85980 3.60750i −0.0745112 0.144531i
\(624\) 0 0
\(625\) 12.0775 16.9604i 0.483098 0.678417i
\(626\) −2.33089 9.60804i −0.0931609 0.384015i
\(627\) 0 0
\(628\) −66.4051 + 22.9830i −2.64985 + 0.917123i
\(629\) −16.7778 2.41228i −0.668973 0.0961838i
\(630\) 0 0
\(631\) −5.95890 + 5.16342i −0.237220 + 0.205552i −0.765356 0.643608i \(-0.777437\pi\)
0.528135 + 0.849160i \(0.322891\pi\)
\(632\) −1.52433 31.9996i −0.0606345 1.27287i
\(633\) 0 0
\(634\) −5.04115 + 14.5655i −0.200210 + 0.578468i
\(635\) 0.690226 + 0.658130i 0.0273908 + 0.0261171i
\(636\) 0 0
\(637\) 0.0197730 + 0.0571302i 0.000783433 + 0.00226358i
\(638\) −0.863797 + 1.89145i −0.0341980 + 0.0748833i
\(639\) 0 0
\(640\) 6.55799 2.99493i 0.259227 0.118385i
\(641\) −37.5848 15.0467i −1.48451 0.594309i −0.519024 0.854760i \(-0.673704\pi\)
−0.965487 + 0.260451i \(0.916129\pi\)
\(642\) 0 0
\(643\) −6.46771 + 3.73413i −0.255061 + 0.147260i −0.622080 0.782954i \(-0.713712\pi\)
0.367018 + 0.930214i \(0.380379\pi\)
\(644\) 59.8494 + 10.4701i 2.35840 + 0.412581i
\(645\) 0 0
\(646\) 30.0614 15.4977i 1.18275 0.609749i
\(647\) 32.7053 4.70232i 1.28578 0.184867i 0.534679 0.845055i \(-0.320433\pi\)
0.751100 + 0.660188i \(0.229524\pi\)
\(648\) 0 0
\(649\) 5.87246 19.9998i 0.230514 0.785060i
\(650\) 68.2767 48.6196i 2.67803 1.90702i
\(651\) 0 0
\(652\) 47.5980 19.0554i 1.86408 0.746266i
\(653\) −22.0717 + 23.1482i −0.863734 + 0.905858i −0.996355 0.0853088i \(-0.972812\pi\)
0.132621 + 0.991167i \(0.457661\pi\)
\(654\) 0 0
\(655\) 0.686078 0.0326819i 0.0268073 0.00127699i
\(656\) 11.3557 + 17.6698i 0.443366 + 0.689891i
\(657\) 0 0
\(658\) −5.92592 20.1818i −0.231016 0.786770i
\(659\) 8.78200 + 6.90624i 0.342098 + 0.269029i 0.774395 0.632702i \(-0.218054\pi\)
−0.432297 + 0.901731i \(0.642297\pi\)
\(660\) 0 0
\(661\) 2.83114 + 29.6490i 0.110119 + 1.15321i 0.866532 + 0.499121i \(0.166344\pi\)
−0.756414 + 0.654093i \(0.773050\pi\)
\(662\) 9.60668 2.33056i 0.373374 0.0905797i
\(663\) 0 0
\(664\) −34.3114 + 85.7057i −1.33154 + 3.32603i
\(665\) 50.1802 + 32.2489i 1.94591 + 1.25056i
\(666\) 0 0
\(667\) 1.42492 + 1.58836i 0.0551730 + 0.0615017i
\(668\) 21.5047 + 12.4157i 0.832041 + 0.480379i
\(669\) 0 0
\(670\) 17.1383 13.4777i 0.662112 0.520691i
\(671\) −6.24330 4.44583i −0.241020 0.171629i
\(672\) 0 0
\(673\) −14.0259 19.6966i −0.540659 0.759250i 0.450378 0.892838i \(-0.351289\pi\)
−0.991037 + 0.133588i \(0.957350\pi\)
\(674\) 22.2188 25.6418i 0.855836 0.987687i
\(675\) 0 0
\(676\) −9.29994 + 2.73071i −0.357690 + 0.105027i
\(677\) 45.2015 8.71187i 1.73723 0.334824i 0.780361 0.625329i \(-0.215035\pi\)
0.956874 + 0.290505i \(0.0938233\pi\)
\(678\) 0 0
\(679\) 33.6343 + 17.3397i 1.29076 + 0.665435i
\(680\) −58.1175 20.1147i −2.22870 0.771362i
\(681\) 0 0
\(682\) 12.0173 15.2813i 0.460167 0.585150i
\(683\) 0.675703 + 0.585500i 0.0258551 + 0.0224035i 0.667692 0.744437i \(-0.267282\pi\)
−0.641837 + 0.766841i \(0.721828\pi\)
\(684\) 0 0
\(685\) 26.8757 + 7.89143i 1.02687 + 0.301516i
\(686\) −47.9505 4.57872i −1.83076 0.174816i
\(687\) 0 0
\(688\) −7.44288 0.354548i −0.283757 0.0135170i
\(689\) −2.85494 4.94490i −0.108764 0.188386i
\(690\) 0 0
\(691\) −5.62405 + 9.74115i −0.213949 + 0.370571i −0.952947 0.303137i \(-0.901966\pi\)
0.738998 + 0.673708i \(0.235299\pi\)
\(692\) −24.2434 + 37.7235i −0.921597 + 1.43403i
\(693\) 0 0
\(694\) 37.8006 + 82.7718i 1.43489 + 3.14198i
\(695\) 59.1507 56.4001i 2.24371 2.13938i
\(696\) 0 0
\(697\) −0.945222 + 4.90428i −0.0358028 + 0.185763i
\(698\) 15.8687 + 39.6381i 0.600640 + 1.50033i
\(699\) 0 0
\(700\) −23.2954 120.868i −0.880482 4.56838i
\(701\) 19.2081 12.3443i 0.725479 0.466237i −0.125060 0.992149i \(-0.539912\pi\)
0.850539 + 0.525912i \(0.176276\pi\)
\(702\) 0 0
\(703\) −29.4453 33.9817i −1.11055 1.28164i
\(704\) 2.85979 11.7882i 0.107782 0.444285i
\(705\) 0 0
\(706\) 80.6660 + 15.5471i 3.03591 + 0.585123i
\(707\) −20.1508 + 1.92416i −0.757847 + 0.0723656i
\(708\) 0 0
\(709\) 0.301620 3.15871i 0.0113276 0.118628i −0.988039 0.154201i \(-0.950720\pi\)
0.999367 + 0.0355733i \(0.0113257\pi\)
\(710\) −22.3862 155.700i −0.840140 5.84330i
\(711\) 0 0
\(712\) 11.1005i 0.416010i
\(713\) −9.44539 17.5722i −0.353733 0.658085i
\(714\) 0 0
\(715\) −1.08505 + 22.7780i −0.0405786 + 0.851849i
\(716\) 25.3451 + 32.2290i 0.947193 + 1.20445i
\(717\) 0 0
\(718\) −45.5690 47.7914i −1.70062 1.78356i
\(719\) 7.99664 + 3.65194i 0.298224 + 0.136194i 0.558908 0.829230i \(-0.311221\pi\)
−0.260683 + 0.965424i \(0.583948\pi\)
\(720\) 0 0
\(721\) −5.57569 + 38.7798i −0.207649 + 1.44423i
\(722\) 39.1022 + 9.48609i 1.45523 + 0.353036i
\(723\) 0 0
\(724\) 47.7189 92.5617i 1.77346 3.44003i
\(725\) 1.98092 3.84246i 0.0735697 0.142705i
\(726\) 0 0
\(727\) −42.6376 10.3438i −1.58134 0.383629i −0.653596 0.756844i \(-0.726740\pi\)
−0.927745 + 0.373215i \(0.878256\pi\)
\(728\) 9.04908 62.9377i 0.335381 2.33263i
\(729\) 0 0
\(730\) −36.7160 16.7676i −1.35892 0.620598i
\(731\) −1.22270 1.28234i −0.0452233 0.0474289i
\(732\) 0 0
\(733\) −21.4708 27.3024i −0.793043 1.00844i −0.999550 0.0299915i \(-0.990452\pi\)
0.206507 0.978445i \(-0.433790\pi\)
\(734\) −3.27451 + 68.7404i −0.120864 + 2.53726i
\(735\) 0 0
\(736\) −37.2151 28.2434i −1.37177 1.04107i
\(737\) 3.91635i 0.144261i
\(738\) 0 0
\(739\) 5.64224 + 39.2426i 0.207553 + 1.44356i 0.781108 + 0.624396i \(0.214655\pi\)
−0.573555 + 0.819167i \(0.694436\pi\)
\(740\) −13.3590 + 139.902i −0.491086 + 5.14289i
\(741\) 0 0
\(742\) −11.8383 + 1.13042i −0.434597 + 0.0414990i
\(743\) −37.4594 7.21971i −1.37425 0.264865i −0.551931 0.833890i \(-0.686109\pi\)
−0.822321 + 0.569024i \(0.807321\pi\)
\(744\) 0 0
\(745\) 11.1167 45.8235i 0.407283 1.67884i
\(746\) 48.3148 + 55.7583i 1.76893 + 2.04146i
\(747\) 0 0
\(748\) 15.9737 10.2657i 0.584057 0.375351i
\(749\) −0.775008 4.02113i −0.0283182 0.146929i
\(750\) 0 0
\(751\) 2.97584 + 7.43329i 0.108590 + 0.271244i 0.972703 0.232053i \(-0.0745443\pi\)
−0.864113 + 0.503297i \(0.832120\pi\)
\(752\) −5.36877 + 27.8558i −0.195779 + 1.01580i
\(753\) 0 0
\(754\) 2.77798 2.64880i 0.101168 0.0964636i
\(755\) −4.10706 8.99321i −0.149471 0.327296i
\(756\) 0 0
\(757\) −23.3456 + 36.3264i −0.848509 + 1.32031i 0.0971909 + 0.995266i \(0.469014\pi\)
−0.945700 + 0.325040i \(0.894622\pi\)
\(758\) −25.9539 + 44.9535i −0.942688 + 1.63278i
\(759\) 0 0
\(760\) −81.5707 141.285i −2.95888 5.12493i
\(761\) 5.38610 + 0.256572i 0.195246 + 0.00930071i 0.144977 0.989435i \(-0.453689\pi\)
0.0502689 + 0.998736i \(0.483992\pi\)
\(762\) 0 0
\(763\) 24.9413 + 2.38160i 0.902935 + 0.0862199i
\(764\) −12.2271 3.59020i −0.442361 0.129889i
\(765\) 0 0
\(766\) 34.0871 + 29.5367i 1.23162 + 1.06720i
\(767\) −23.7851 + 30.2452i −0.858829 + 1.09209i
\(768\) 0 0
\(769\) 28.6413 + 9.91287i 1.03283 + 0.357467i 0.790329 0.612683i \(-0.209910\pi\)
0.242505 + 0.970150i \(0.422031\pi\)
\(770\) 42.2145 + 21.7631i 1.52131 + 0.784288i
\(771\) 0 0
\(772\) 75.0380 14.4624i 2.70068 0.520513i
\(773\) −5.06971 + 1.48860i −0.182345 + 0.0535413i −0.371630 0.928381i \(-0.621201\pi\)
0.189285 + 0.981922i \(0.439383\pi\)
\(774\) 0 0
\(775\) −26.4676 + 30.5453i −0.950745 + 1.09722i
\(776\) −60.0330 84.3045i −2.15506 3.02636i
\(777\) 0 0
\(778\) 12.0324 + 8.56820i 0.431381 + 0.307185i
\(779\) −10.4144 + 8.19001i −0.373136 + 0.293438i
\(780\) 0 0
\(781\) 24.4696 + 14.1275i 0.875590 + 0.505522i
\(782\) −4.40300 27.2817i −0.157451 0.975593i
\(783\) 0 0
\(784\) −0.142860 0.0918106i −0.00510215 0.00327895i
\(785\) −20.9501 + 52.3308i −0.747741 + 1.86777i
\(786\) 0 0
\(787\) −3.83849 + 0.931209i −0.136828 + 0.0331940i −0.303588 0.952803i \(-0.598185\pi\)
0.166760 + 0.985997i \(0.446669\pi\)
\(788\) −6.51541 68.2325i −0.232102 2.43068i
\(789\) 0 0
\(790\) −34.7213 27.3051i −1.23533 0.971473i
\(791\) 2.37393 + 8.08486i 0.0844072 + 0.287465i
\(792\) 0 0
\(793\) 7.64913 + 11.9023i 0.271629 + 0.422662i
\(794\) 41.7378 1.98822i 1.48122 0.0705591i
\(795\) 0 0
\(796\) −47.2158 + 49.5185i −1.67352 + 1.75514i
\(797\) 8.60197 3.44371i 0.304697 0.121982i −0.214275 0.976773i \(-0.568739\pi\)
0.518973 + 0.854791i \(0.326315\pi\)
\(798\) 0 0
\(799\) −5.49486 + 3.91288i −0.194394 + 0.138428i
\(800\) −26.6658 + 90.8154i −0.942779 + 3.21081i
\(801\) 0 0
\(802\) 15.8277 2.27567i 0.558894 0.0803568i
\(803\) 6.44431 3.32227i 0.227415 0.117240i
\(804\) 0 0
\(805\) 37.7870 30.7831i 1.33182 1.08496i
\(806\) −31.0785 + 17.9432i −1.09469 + 0.632021i
\(807\) 0 0
\(808\) 51.3974 + 20.5764i 1.80815 + 0.723876i
\(809\) 26.5830 12.1401i 0.934610 0.426822i 0.110899 0.993832i \(-0.464627\pi\)
0.823711 + 0.567010i \(0.191900\pi\)
\(810\) 0 0
\(811\) 8.15328 17.8532i 0.286300 0.626910i −0.710768 0.703426i \(-0.751652\pi\)
0.997068 + 0.0765163i \(0.0243797\pi\)
\(812\) −1.84365 5.32688i −0.0646994 0.186937i
\(813\) 0 0
\(814\) −25.9108 24.7059i −0.908173 0.865941i
\(815\) 13.4516 38.8659i 0.471190 1.36141i
\(816\) 0 0
\(817\) −0.223642 4.69483i −0.00782425 0.164251i
\(818\) −42.1492 + 36.5225i −1.47371 + 1.27698i
\(819\) 0 0
\(820\) 40.9891 + 5.89334i 1.43140 + 0.205804i
\(821\) 11.0066 3.80944i 0.384135 0.132950i −0.128174 0.991752i \(-0.540912\pi\)
0.512309 + 0.858801i \(0.328790\pi\)
\(822\) 0 0
\(823\) 1.08444 + 4.47010i 0.0378010 + 0.155818i 0.987584 0.157091i \(-0.0502116\pi\)
−0.949783 + 0.312909i \(0.898696\pi\)
\(824\) 62.1552 87.2848i 2.16528 3.04071i
\(825\) 0 0
\(826\) 36.7212 + 71.2293i 1.27770 + 2.47838i
\(827\) 15.7706 0.548398 0.274199 0.961673i \(-0.411587\pi\)
0.274199 + 0.961673i \(0.411587\pi\)
\(828\) 0 0
\(829\) −22.6475 −0.786580 −0.393290 0.919414i \(-0.628663\pi\)
−0.393290 + 0.919414i \(0.628663\pi\)
\(830\) 58.3280 + 113.141i 2.02459 + 3.92717i
\(831\) 0 0
\(832\) −12.9885 + 18.2397i −0.450294 + 0.632349i
\(833\) −0.00952010 0.0392424i −0.000329852 0.00135967i
\(834\) 0 0
\(835\) 18.8236 6.51491i 0.651417 0.225458i
\(836\) 49.8570 + 7.16835i 1.72434 + 0.247923i
\(837\) 0 0
\(838\) −27.2383 + 23.6021i −0.940933 + 0.815323i
\(839\) 1.64814 + 34.5987i 0.0569000 + 1.19448i 0.829100 + 0.559100i \(0.188853\pi\)
−0.772200 + 0.635379i \(0.780844\pi\)
\(840\) 0 0
\(841\) −9.42022 + 27.2179i −0.324835 + 0.938550i
\(842\) 38.2603 + 36.4811i 1.31854 + 1.25722i
\(843\) 0 0
\(844\) 14.8760 + 42.9813i 0.512052 + 1.47948i
\(845\) −3.22989 + 7.07248i −0.111112 + 0.243301i
\(846\) 0 0
\(847\) 18.7476 8.56173i 0.644174 0.294185i
\(848\) 14.8901 + 5.96109i 0.511328 + 0.204705i
\(849\) 0 0
\(850\) −48.4854 + 27.9931i −1.66304 + 0.960155i
\(851\) −33.8679 + 14.2397i −1.16098 + 0.488131i
\(852\) 0 0
\(853\) −5.17638 + 2.66861i −0.177236 + 0.0913715i −0.544561 0.838721i \(-0.683304\pi\)
0.367325 + 0.930093i \(0.380274\pi\)
\(854\) 29.1671 4.19360i 0.998078 0.143502i
\(855\) 0 0
\(856\) −3.15546 + 10.7465i −0.107852 + 0.367309i
\(857\) 12.3086 8.76492i 0.420454 0.299404i −0.350179 0.936683i \(-0.613879\pi\)
0.770634 + 0.637279i \(0.219940\pi\)
\(858\) 0 0
\(859\) −24.4581 + 9.79156i −0.834500 + 0.334084i −0.749259 0.662277i \(-0.769590\pi\)
−0.0852412 + 0.996360i \(0.527166\pi\)
\(860\) −10.1377 + 10.6321i −0.345691 + 0.362551i
\(861\) 0 0
\(862\) −44.6309 + 2.12603i −1.52013 + 0.0724129i
\(863\) −26.3014 40.9258i −0.895312 1.39313i −0.919358 0.393421i \(-0.871291\pi\)
0.0240467 0.999711i \(-0.492345\pi\)
\(864\) 0 0
\(865\) 10.1342 + 34.5140i 0.344574 + 1.17351i
\(866\) −47.8890 37.6604i −1.62734 1.27975i
\(867\) 0 0
\(868\) 5.00955 + 52.4624i 0.170035 + 1.78069i
\(869\) 7.71065 1.87058i 0.261566 0.0634552i
\(870\) 0 0
\(871\) 2.68690 6.71155i 0.0910422 0.227412i
\(872\) −57.6468 37.0474i −1.95217 1.25458i
\(873\) 0 0
\(874\) 38.5655 62.3426i 1.30450 2.10877i
\(875\) −41.5066 23.9639i −1.40318 0.810126i
\(876\) 0 0
\(877\) −15.5380 + 12.2192i −0.524681 + 0.412614i −0.845057 0.534677i \(-0.820433\pi\)
0.320376 + 0.947291i \(0.396191\pi\)
\(878\) 2.41555 + 1.72011i 0.0815209 + 0.0580508i
\(879\) 0 0
\(880\) −37.1560 52.1783i −1.25253 1.75893i
\(881\) −19.6113 + 22.6326i −0.660721 + 0.762512i −0.982895 0.184168i \(-0.941041\pi\)
0.322174 + 0.946680i \(0.395586\pi\)
\(882\) 0 0
\(883\) 48.1840 14.1481i 1.62152 0.476121i 0.660093 0.751184i \(-0.270517\pi\)
0.961426 + 0.275062i \(0.0886985\pi\)
\(884\) −34.4176 + 6.63345i −1.15759 + 0.223107i
\(885\) 0 0
\(886\) −65.6005 33.8194i −2.20389 1.13619i
\(887\) −5.11936 1.77183i −0.171891 0.0594921i 0.239767 0.970830i \(-0.422929\pi\)
−0.411658 + 0.911338i \(0.635050\pi\)
\(888\) 0 0
\(889\) 0.407129 0.517706i 0.0136547 0.0173633i
\(890\) 11.5672 + 10.0231i 0.387734 + 0.335974i
\(891\) 0 0
\(892\) 31.0433 + 9.11513i 1.03941 + 0.305197i
\(893\) −17.8133 1.70096i −0.596099 0.0569205i
\(894\) 0 0
\(895\) 32.8526 + 1.56496i 1.09814 + 0.0523110i
\(896\) −2.48940 4.31176i −0.0831649 0.144046i
\(897\) 0 0
\(898\) −43.0490 + 74.5630i −1.43656 + 2.48820i
\(899\) −1.00065 + 1.55705i −0.0333737 + 0.0519305i
\(900\) 0 0
\(901\) 1.58434 + 3.46922i 0.0527820 + 0.115577i
\(902\) −7.63481 + 7.27978i −0.254212 + 0.242390i
\(903\) 0 0
\(904\) 4.36142 22.6292i 0.145059 0.752636i
\(905\) −31.0475 77.5529i −1.03205 2.57795i
\(906\) 0 0
\(907\) 3.12973 + 16.2386i 0.103921 + 0.539193i 0.996154 + 0.0876181i \(0.0279255\pi\)
−0.892233 + 0.451575i \(0.850862\pi\)
\(908\) 4.81300 3.09313i 0.159725 0.102649i
\(909\) 0 0
\(910\) −57.4131 66.2582i −1.90322 2.19644i
\(911\) −6.86130 + 28.2827i −0.227325 + 0.937047i 0.737750 + 0.675074i \(0.235888\pi\)
−0.965075 + 0.261973i \(0.915627\pi\)
\(912\) 0 0
\(913\) −22.4513 4.32714i −0.743030 0.143207i
\(914\) −60.9026 + 5.81549i −2.01448 + 0.192359i
\(915\) 0 0
\(916\) 4.73506 49.5877i 0.156451 1.63843i
\(917\) −0.0675048 0.469506i −0.00222921 0.0155045i
\(918\) 0 0
\(919\) 30.9735i 1.02172i −0.859663 0.510861i \(-0.829327\pi\)
0.859663 0.510861i \(-0.170673\pi\)
\(920\) −130.438 + 27.4762i −4.30042 + 0.905864i
\(921\) 0 0
\(922\) −0.428375 + 8.99269i −0.0141078 + 0.296159i
\(923\) −32.2416 40.9985i −1.06125 1.34948i
\(924\) 0 0
\(925\) 51.3640 + 53.8690i 1.68884 + 1.77120i
\(926\) −90.4922 41.3264i −2.97376 1.35807i
\(927\) 0 0
\(928\) −0.616847 + 4.29027i −0.0202490 + 0.140835i
\(929\) −10.0362 2.43476i −0.329277 0.0798818i 0.0677124 0.997705i \(-0.478430\pi\)
−0.396990 + 0.917823i \(0.629945\pi\)
\(930\) 0 0
\(931\) 0.0490843 0.0952103i 0.00160867 0.00312039i
\(932\) −59.3460 + 115.115i −1.94394 + 3.77072i
\(933\) 0 0
\(934\) 88.4758 + 21.4640i 2.89502 + 0.702323i
\(935\) 2.16769 15.0766i 0.0708911 0.493059i
\(936\) 0 0
\(937\) −49.8660 22.7730i −1.62905 0.743962i −0.629594 0.776924i \(-0.716779\pi\)
−0.999457 + 0.0329618i \(0.989506\pi\)
\(938\) −10.3905 10.8972i −0.339261 0.355806i
\(939\) 0 0
\(940\) 34.5734 + 43.9637i 1.12766 + 1.43394i
\(941\) −2.29060 + 48.0856i −0.0746715 + 1.56755i 0.581886 + 0.813271i \(0.302315\pi\)
−0.656557 + 0.754276i \(0.727988\pi\)
\(942\) 0 0
\(943\) 3.71625 + 10.1678i 0.121018 + 0.331108i
\(944\) 108.082i 3.51778i
\(945\) 0 0
\(946\) −0.532595 3.70428i −0.0173162 0.120437i
\(947\) −3.19103 + 33.4180i −0.103694 + 1.08594i 0.782508 + 0.622640i \(0.213940\pi\)
−0.886203 + 0.463298i \(0.846666\pi\)
\(948\) 0 0
\(949\) −13.3231 + 1.27220i −0.432486 + 0.0412974i
\(950\) −145.831 28.1066i −4.73138 0.911900i
\(951\) 0 0
\(952\) −10.0129 + 41.2739i −0.324522 + 1.33770i
\(953\) −39.2866 45.3391i −1.27262 1.46868i −0.814924 0.579568i \(-0.803221\pi\)
−0.457693 0.889110i \(-0.651324\pi\)
\(954\) 0 0
\(955\) −8.59956 + 5.52660i −0.278275 + 0.178837i
\(956\) 11.6377 + 60.3820i 0.376389 + 1.95289i
\(957\) 0 0
\(958\) 19.7797 + 49.4074i 0.639054 + 1.59628i
\(959\) 3.66080 18.9941i 0.118214 0.613350i
\(960\) 0 0
\(961\) −9.91205 + 9.45112i −0.319744 + 0.304875i
\(962\) 27.4540 + 60.1158i 0.885151 + 1.93821i
\(963\) 0 0
\(964\) 32.9902 51.3337i 1.06254 1.65335i
\(965\) 30.6506 53.0884i 0.986679 1.70898i
\(966\) 0 0
\(967\) −8.46492 14.6617i −0.272213 0.471487i 0.697215 0.716862i \(-0.254422\pi\)
−0.969428 + 0.245375i \(0.921089\pi\)
\(968\) −56.3048 2.68213i −1.80971 0.0862069i
\(969\) 0 0
\(970\) −142.055 13.5646i −4.56110 0.435533i
\(971\) 15.3885 + 4.51848i 0.493842 + 0.145005i 0.519164 0.854674i \(-0.326243\pi\)
−0.0253229 + 0.999679i \(0.508061\pi\)
\(972\) 0 0
\(973\) −42.6558 36.9614i −1.36748 1.18493i
\(974\) 0.0650186 0.0826778i 0.00208333 0.00264917i
\(975\) 0 0
\(976\) −37.5566 12.9985i −1.20216 0.416070i
\(977\) −4.06958 2.09802i −0.130197 0.0671215i 0.391897 0.920009i \(-0.371819\pi\)
−0.522095 + 0.852888i \(0.674849\pi\)
\(978\) 0 0
\(979\) −2.69958 + 0.520302i −0.0862790 + 0.0166289i
\(980\) −0.321241 + 0.0943250i −0.0102617 + 0.00301310i
\(981\) 0 0
\(982\) −52.5860 + 60.6875i −1.67809 + 1.93661i
\(983\) 15.1105 + 21.2197i 0.481949 + 0.676803i 0.981932 0.189232i \(-0.0605999\pi\)
−0.499983 + 0.866035i \(0.666660\pi\)
\(984\) 0 0
\(985\) −44.7880 31.8934i −1.42706 1.01621i
\(986\) −2.01531 + 1.58486i −0.0641806 + 0.0504722i
\(987\) 0 0
\(988\) −80.5231 46.4900i −2.56178 1.47905i
\(989\) −3.70294 1.01840i −0.117747 0.0323832i
\(990\) 0 0
\(991\) 31.6171 + 20.3191i 1.00435 + 0.645456i 0.935925 0.352200i \(-0.114566\pi\)
0.0684244 + 0.997656i \(0.478203\pi\)
\(992\) 15.0610 37.6206i 0.478188 1.19446i
\(993\) 0 0
\(994\) −105.568 + 25.6105i −3.34841 + 0.812315i
\(995\) 5.21719 + 54.6369i 0.165396 + 1.73211i
\(996\) 0 0
\(997\) 2.90201 + 2.28216i 0.0919075 + 0.0722768i 0.663055 0.748570i \(-0.269259\pi\)
−0.571148 + 0.820847i \(0.693502\pi\)
\(998\) −4.62396 15.7478i −0.146369 0.498486i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 621.2.s.a.251.22 440
3.2 odd 2 207.2.o.a.182.1 yes 440
9.4 even 3 207.2.o.a.113.1 yes 440
9.5 odd 6 inner 621.2.s.a.44.22 440
23.11 odd 22 inner 621.2.s.a.494.22 440
69.11 even 22 207.2.o.a.11.1 440
207.103 odd 66 207.2.o.a.149.1 yes 440
207.149 even 66 inner 621.2.s.a.287.22 440
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
207.2.o.a.11.1 440 69.11 even 22
207.2.o.a.113.1 yes 440 9.4 even 3
207.2.o.a.149.1 yes 440 207.103 odd 66
207.2.o.a.182.1 yes 440 3.2 odd 2
621.2.s.a.44.22 440 9.5 odd 6 inner
621.2.s.a.251.22 440 1.1 even 1 trivial
621.2.s.a.287.22 440 207.149 even 66 inner
621.2.s.a.494.22 440 23.11 odd 22 inner