Properties

Label 621.2.s.a.251.16
Level $621$
Weight $2$
Character 621.251
Analytic conductor $4.959$
Analytic rank $0$
Dimension $440$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [621,2,Mod(17,621)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("621.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(621, base_ring=CyclotomicField(66)) chi = DirichletCharacter(H, H._module([55, 21])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 621 = 3^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 621.s (of order \(66\), degree \(20\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.95870996552\)
Analytic rank: \(0\)
Dimension: \(440\)
Relative dimension: \(22\) over \(\Q(\zeta_{66})\)
Twist minimal: no (minimal twist has level 207)
Sato-Tate group: $\mathrm{SU}(2)[C_{66}]$

Embedding invariants

Embedding label 251.16
Character \(\chi\) \(=\) 621.251
Dual form 621.2.s.a.287.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.672471 + 1.30441i) q^{2} +(-0.0891590 + 0.125206i) q^{4} +(0.637451 + 2.62761i) q^{5} +(0.985992 - 0.341255i) q^{7} +(2.68195 + 0.385606i) q^{8} +(-2.99882 + 2.59849i) q^{10} +(0.0523085 + 1.09809i) q^{11} +(0.273590 - 0.790486i) q^{13} +(1.10819 + 1.05666i) q^{14} +(1.40109 + 4.04818i) q^{16} +(1.94122 - 4.25068i) q^{17} +(-2.86472 + 1.30827i) q^{19} +(-0.385828 - 0.154462i) q^{20} +(-1.39719 + 0.806666i) q^{22} +(-0.391306 + 4.77984i) q^{23} +(-2.05380 + 1.05881i) q^{25} +(1.21510 - 0.174705i) q^{26} +(-0.0451828 + 0.153878i) q^{28} +(-2.31627 + 1.64941i) q^{29} +(-0.469073 + 0.187789i) q^{31} +(-0.598728 + 0.627927i) q^{32} +(6.85005 - 0.326308i) q^{34} +(1.52521 + 2.37327i) q^{35} +(-0.606716 - 2.06629i) q^{37} +(-3.63297 - 2.85700i) q^{38} +(0.696389 + 7.29292i) q^{40} +(-8.46710 + 2.05410i) q^{41} +(4.37823 - 10.9363i) q^{43} +(-0.142152 - 0.0913553i) q^{44} +(-6.49802 + 2.70388i) q^{46} +(10.9285 + 6.30957i) q^{47} +(-4.64665 + 3.65416i) q^{49} +(-2.76225 - 1.96699i) q^{50} +(0.0745809 + 0.104734i) q^{52} +(-5.36725 + 6.19414i) q^{53} +(-2.85201 + 0.837425i) q^{55} +(2.77597 - 0.535025i) q^{56} +(-3.70913 - 1.91219i) q^{58} +(-4.38212 - 1.51667i) q^{59} +(1.61936 - 2.05918i) q^{61} +(-0.560392 - 0.485582i) q^{62} +(6.99883 + 2.05504i) q^{64} +(2.25149 + 0.214991i) q^{65} +(-1.38147 - 0.0658073i) q^{67} +(0.359135 + 0.622040i) q^{68} +(-2.07006 + 3.58545i) q^{70} +(4.43366 - 6.89892i) q^{71} +(-1.42222 - 3.11423i) q^{73} +(2.28729 - 2.18092i) q^{74} +(0.0916114 - 0.475325i) q^{76} +(0.426305 + 1.06486i) q^{77} +(-2.89846 - 15.0386i) q^{79} +(-9.74392 + 6.26203i) q^{80} +(-8.37327 - 9.66327i) q^{82} +(3.17600 - 13.0917i) q^{83} +(12.4066 + 2.39117i) q^{85} +(17.2096 - 1.64332i) q^{86} +(-0.283142 + 2.96519i) q^{88} +(-2.12858 - 14.8046i) q^{89} -0.872777i q^{91} +(-0.563578 - 0.475160i) q^{92} +(-0.881181 + 18.4983i) q^{94} +(-5.26374 - 6.69340i) q^{95} +(5.31660 + 5.57589i) q^{97} +(-7.89127 - 3.60382i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 440 q + 27 q^{2} - 29 q^{4} + 33 q^{5} - 11 q^{7} - 44 q^{10} + 33 q^{11} - 9 q^{13} + 33 q^{14} + 3 q^{16} - 44 q^{19} + 33 q^{20} + 27 q^{23} + 11 q^{25} - 44 q^{28} - 27 q^{29} - 3 q^{31} + 33 q^{32}+ \cdots + 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/621\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(461\)
\(\chi(n)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.672471 + 1.30441i 0.475509 + 0.922358i 0.997585 + 0.0694594i \(0.0221274\pi\)
−0.522076 + 0.852899i \(0.674842\pi\)
\(3\) 0 0
\(4\) −0.0891590 + 0.125206i −0.0445795 + 0.0626032i
\(5\) 0.637451 + 2.62761i 0.285077 + 1.17510i 0.916619 + 0.399761i \(0.130907\pi\)
−0.631543 + 0.775341i \(0.717578\pi\)
\(6\) 0 0
\(7\) 0.985992 0.341255i 0.372670 0.128982i −0.134312 0.990939i \(-0.542882\pi\)
0.506982 + 0.861957i \(0.330761\pi\)
\(8\) 2.68195 + 0.385606i 0.948213 + 0.136332i
\(9\) 0 0
\(10\) −2.99882 + 2.59849i −0.948309 + 0.821714i
\(11\) 0.0523085 + 1.09809i 0.0157716 + 0.331087i 0.992940 + 0.118619i \(0.0378468\pi\)
−0.977168 + 0.212467i \(0.931850\pi\)
\(12\) 0 0
\(13\) 0.273590 0.790486i 0.0758802 0.219241i −0.900681 0.434481i \(-0.856932\pi\)
0.976561 + 0.215239i \(0.0690531\pi\)
\(14\) 1.10819 + 1.05666i 0.296176 + 0.282403i
\(15\) 0 0
\(16\) 1.40109 + 4.04818i 0.350273 + 1.01205i
\(17\) 1.94122 4.25068i 0.470815 1.03094i −0.514072 0.857747i \(-0.671864\pi\)
0.984888 0.173195i \(-0.0554090\pi\)
\(18\) 0 0
\(19\) −2.86472 + 1.30827i −0.657211 + 0.300138i −0.715967 0.698134i \(-0.754014\pi\)
0.0587558 + 0.998272i \(0.481287\pi\)
\(20\) −0.385828 0.154462i −0.0862737 0.0345388i
\(21\) 0 0
\(22\) −1.39719 + 0.806666i −0.297881 + 0.171982i
\(23\) −0.391306 + 4.77984i −0.0815929 + 0.996666i
\(24\) 0 0
\(25\) −2.05380 + 1.05881i −0.410761 + 0.211762i
\(26\) 1.21510 0.174705i 0.238301 0.0342625i
\(27\) 0 0
\(28\) −0.0451828 + 0.153878i −0.00853874 + 0.0290803i
\(29\) −2.31627 + 1.64941i −0.430120 + 0.306287i −0.774536 0.632530i \(-0.782016\pi\)
0.344416 + 0.938817i \(0.388077\pi\)
\(30\) 0 0
\(31\) −0.469073 + 0.187789i −0.0842480 + 0.0337278i −0.413404 0.910548i \(-0.635660\pi\)
0.329156 + 0.944276i \(0.393236\pi\)
\(32\) −0.598728 + 0.627927i −0.105841 + 0.111003i
\(33\) 0 0
\(34\) 6.85005 0.326308i 1.17477 0.0559614i
\(35\) 1.52521 + 2.37327i 0.257807 + 0.401155i
\(36\) 0 0
\(37\) −0.606716 2.06629i −0.0997435 0.339695i 0.894469 0.447131i \(-0.147554\pi\)
−0.994212 + 0.107436i \(0.965736\pi\)
\(38\) −3.63297 2.85700i −0.589345 0.463466i
\(39\) 0 0
\(40\) 0.696389 + 7.29292i 0.110109 + 1.15311i
\(41\) −8.46710 + 2.05410i −1.32234 + 0.320796i −0.833955 0.551833i \(-0.813929\pi\)
−0.488384 + 0.872629i \(0.662414\pi\)
\(42\) 0 0
\(43\) 4.37823 10.9363i 0.667673 1.66777i −0.0742144 0.997242i \(-0.523645\pi\)
0.741887 0.670524i \(-0.233931\pi\)
\(44\) −0.142152 0.0913553i −0.0214302 0.0137723i
\(45\) 0 0
\(46\) −6.49802 + 2.70388i −0.958081 + 0.398665i
\(47\) 10.9285 + 6.30957i 1.59408 + 0.920345i 0.992596 + 0.121464i \(0.0387589\pi\)
0.601489 + 0.798881i \(0.294574\pi\)
\(48\) 0 0
\(49\) −4.64665 + 3.65416i −0.663807 + 0.522023i
\(50\) −2.76225 1.96699i −0.390641 0.278174i
\(51\) 0 0
\(52\) 0.0745809 + 0.104734i 0.0103425 + 0.0145240i
\(53\) −5.36725 + 6.19414i −0.737249 + 0.850830i −0.993268 0.115841i \(-0.963044\pi\)
0.256019 + 0.966672i \(0.417589\pi\)
\(54\) 0 0
\(55\) −2.85201 + 0.837425i −0.384564 + 0.112918i
\(56\) 2.77597 0.535025i 0.370955 0.0714957i
\(57\) 0 0
\(58\) −3.70913 1.91219i −0.487032 0.251083i
\(59\) −4.38212 1.51667i −0.570504 0.197453i 0.0265597 0.999647i \(-0.491545\pi\)
−0.597064 + 0.802194i \(0.703666\pi\)
\(60\) 0 0
\(61\) 1.61936 2.05918i 0.207337 0.263651i −0.671252 0.741229i \(-0.734243\pi\)
0.878589 + 0.477579i \(0.158485\pi\)
\(62\) −0.560392 0.485582i −0.0711698 0.0616690i
\(63\) 0 0
\(64\) 6.99883 + 2.05504i 0.874853 + 0.256880i
\(65\) 2.25149 + 0.214991i 0.279263 + 0.0266664i
\(66\) 0 0
\(67\) −1.38147 0.0658073i −0.168773 0.00803964i −0.0369746 0.999316i \(-0.511772\pi\)
−0.131798 + 0.991277i \(0.542075\pi\)
\(68\) 0.359135 + 0.622040i 0.0435515 + 0.0754334i
\(69\) 0 0
\(70\) −2.07006 + 3.58545i −0.247420 + 0.428543i
\(71\) 4.43366 6.89892i 0.526179 0.818751i −0.471839 0.881685i \(-0.656409\pi\)
0.998018 + 0.0629343i \(0.0200459\pi\)
\(72\) 0 0
\(73\) −1.42222 3.11423i −0.166458 0.364493i 0.807959 0.589238i \(-0.200572\pi\)
−0.974417 + 0.224746i \(0.927845\pi\)
\(74\) 2.28729 2.18092i 0.265892 0.253527i
\(75\) 0 0
\(76\) 0.0916114 0.475325i 0.0105085 0.0545235i
\(77\) 0.426305 + 1.06486i 0.0485819 + 0.121352i
\(78\) 0 0
\(79\) −2.89846 15.0386i −0.326102 1.69198i −0.661534 0.749915i \(-0.730094\pi\)
0.335432 0.942064i \(-0.391118\pi\)
\(80\) −9.74392 + 6.26203i −1.08940 + 0.700117i
\(81\) 0 0
\(82\) −8.37327 9.66327i −0.924673 1.06713i
\(83\) 3.17600 13.0917i 0.348612 1.43700i −0.480047 0.877243i \(-0.659381\pi\)
0.828659 0.559754i \(-0.189104\pi\)
\(84\) 0 0
\(85\) 12.4066 + 2.39117i 1.34568 + 0.259359i
\(86\) 17.2096 1.64332i 1.85576 0.177204i
\(87\) 0 0
\(88\) −0.283142 + 2.96519i −0.0301830 + 0.316091i
\(89\) −2.12858 14.8046i −0.225629 1.56929i −0.716206 0.697889i \(-0.754123\pi\)
0.490577 0.871398i \(-0.336786\pi\)
\(90\) 0 0
\(91\) 0.872777i 0.0914919i
\(92\) −0.563578 0.475160i −0.0587571 0.0495389i
\(93\) 0 0
\(94\) −0.881181 + 18.4983i −0.0908868 + 1.90795i
\(95\) −5.26374 6.69340i −0.540049 0.686728i
\(96\) 0 0
\(97\) 5.31660 + 5.57589i 0.539819 + 0.566146i 0.935988 0.352032i \(-0.114509\pi\)
−0.396169 + 0.918177i \(0.629661\pi\)
\(98\) −7.89127 3.60382i −0.797139 0.364041i
\(99\) 0 0
\(100\) 0.0505455 0.351552i 0.00505455 0.0351552i
\(101\) −6.80833 1.65168i −0.677454 0.164349i −0.117753 0.993043i \(-0.537569\pi\)
−0.559702 + 0.828694i \(0.689084\pi\)
\(102\) 0 0
\(103\) 3.71857 7.21302i 0.366402 0.710720i −0.631506 0.775371i \(-0.717563\pi\)
0.997908 + 0.0646506i \(0.0205933\pi\)
\(104\) 1.03857 2.01455i 0.101840 0.197543i
\(105\) 0 0
\(106\) −11.6890 2.83573i −1.13534 0.275430i
\(107\) 0.331396 2.30491i 0.0320372 0.222824i −0.967513 0.252822i \(-0.918641\pi\)
0.999550 + 0.0299985i \(0.00955025\pi\)
\(108\) 0 0
\(109\) 3.38104 + 1.54407i 0.323845 + 0.147895i 0.570703 0.821157i \(-0.306671\pi\)
−0.246858 + 0.969052i \(0.579398\pi\)
\(110\) −3.01024 3.15705i −0.287015 0.301013i
\(111\) 0 0
\(112\) 2.76293 + 3.51335i 0.261072 + 0.331980i
\(113\) 0.0994895 2.08854i 0.00935918 0.196473i −0.989345 0.145588i \(-0.953493\pi\)
0.998704 0.0508855i \(-0.0162043\pi\)
\(114\) 0 0
\(115\) −12.8090 + 2.01871i −1.19444 + 0.188246i
\(116\) 0.437071i 0.0405810i
\(117\) 0 0
\(118\) −0.968492 6.73601i −0.0891569 0.620100i
\(119\) 0.463461 4.85359i 0.0424854 0.444928i
\(120\) 0 0
\(121\) 9.74713 0.930738i 0.886102 0.0846125i
\(122\) 3.77499 + 0.727569i 0.341771 + 0.0658710i
\(123\) 0 0
\(124\) 0.0183098 0.0754740i 0.00164427 0.00677776i
\(125\) 4.76181 + 5.49542i 0.425909 + 0.491525i
\(126\) 0 0
\(127\) −5.27382 + 3.38928i −0.467976 + 0.300750i −0.753295 0.657683i \(-0.771537\pi\)
0.285319 + 0.958433i \(0.407900\pi\)
\(128\) 2.35429 + 12.2152i 0.208091 + 1.07968i
\(129\) 0 0
\(130\) 1.23362 + 3.08144i 0.108196 + 0.270260i
\(131\) −2.45141 + 12.7191i −0.214181 + 1.11127i 0.702509 + 0.711675i \(0.252063\pi\)
−0.916690 + 0.399600i \(0.869149\pi\)
\(132\) 0 0
\(133\) −2.37813 + 2.26755i −0.206210 + 0.196621i
\(134\) −0.843156 1.84625i −0.0728376 0.159492i
\(135\) 0 0
\(136\) 6.84535 10.6516i 0.586984 0.913365i
\(137\) −4.68128 + 8.10821i −0.399949 + 0.692731i −0.993719 0.111903i \(-0.964305\pi\)
0.593771 + 0.804634i \(0.297639\pi\)
\(138\) 0 0
\(139\) −6.12117 10.6022i −0.519191 0.899265i −0.999751 0.0223035i \(-0.992900\pi\)
0.480560 0.876962i \(-0.340433\pi\)
\(140\) −0.433134 0.0206327i −0.0366065 0.00174378i
\(141\) 0 0
\(142\) 11.9805 + 1.14400i 1.00538 + 0.0960026i
\(143\) 0.882336 + 0.259077i 0.0737847 + 0.0216651i
\(144\) 0 0
\(145\) −5.81050 5.03483i −0.482536 0.418120i
\(146\) 3.10583 3.94939i 0.257040 0.326854i
\(147\) 0 0
\(148\) 0.312806 + 0.108263i 0.0257125 + 0.00889919i
\(149\) −2.64274 1.36242i −0.216501 0.111614i 0.346565 0.938026i \(-0.387348\pi\)
−0.563066 + 0.826412i \(0.690378\pi\)
\(150\) 0 0
\(151\) 19.2531 3.71072i 1.56679 0.301974i 0.669296 0.742996i \(-0.266596\pi\)
0.897496 + 0.441022i \(0.145384\pi\)
\(152\) −8.18751 + 2.40407i −0.664095 + 0.194996i
\(153\) 0 0
\(154\) −1.10233 + 1.27216i −0.0888287 + 0.102514i
\(155\) −0.792446 1.11283i −0.0636508 0.0893850i
\(156\) 0 0
\(157\) −12.5164 8.91288i −0.998916 0.711325i −0.0412330 0.999150i \(-0.513129\pi\)
−0.957683 + 0.287825i \(0.907068\pi\)
\(158\) 17.6675 13.8938i 1.40555 1.10533i
\(159\) 0 0
\(160\) −2.03161 1.17295i −0.160613 0.0927297i
\(161\) 1.24532 + 4.84642i 0.0981450 + 0.381951i
\(162\) 0 0
\(163\) −0.973816 0.625834i −0.0762752 0.0490191i 0.501947 0.864898i \(-0.332617\pi\)
−0.578223 + 0.815879i \(0.696253\pi\)
\(164\) 0.497733 1.24328i 0.0388664 0.0970836i
\(165\) 0 0
\(166\) 19.2127 4.66095i 1.49119 0.361760i
\(167\) −2.33707 24.4749i −0.180848 1.89392i −0.397393 0.917649i \(-0.630085\pi\)
0.216545 0.976273i \(-0.430521\pi\)
\(168\) 0 0
\(169\) 9.66867 + 7.60353i 0.743744 + 0.584887i
\(170\) 5.22398 + 17.7913i 0.400661 + 1.36453i
\(171\) 0 0
\(172\) 0.978933 + 1.52325i 0.0746429 + 0.116147i
\(173\) −15.5344 + 0.739995i −1.18106 + 0.0562608i −0.628906 0.777482i \(-0.716497\pi\)
−0.552154 + 0.833742i \(0.686194\pi\)
\(174\) 0 0
\(175\) −1.66371 + 1.74485i −0.125765 + 0.131898i
\(176\) −4.37198 + 1.75028i −0.329551 + 0.131932i
\(177\) 0 0
\(178\) 17.8799 12.7322i 1.34016 0.954321i
\(179\) 4.07254 13.8698i 0.304396 1.03668i −0.655238 0.755423i \(-0.727432\pi\)
0.959633 0.281254i \(-0.0907503\pi\)
\(180\) 0 0
\(181\) 12.9898 1.86766i 0.965527 0.138822i 0.358523 0.933521i \(-0.383280\pi\)
0.607004 + 0.794699i \(0.292371\pi\)
\(182\) 1.13846 0.586917i 0.0843883 0.0435052i
\(183\) 0 0
\(184\) −2.89260 + 12.6684i −0.213245 + 0.933927i
\(185\) 5.04264 2.91137i 0.370742 0.214048i
\(186\) 0 0
\(187\) 4.76917 + 1.90929i 0.348757 + 0.139621i
\(188\) −1.76437 + 0.805762i −0.128680 + 0.0587662i
\(189\) 0 0
\(190\) 5.19123 11.3672i 0.376611 0.824664i
\(191\) 8.25170 + 23.8417i 0.597072 + 1.72513i 0.684556 + 0.728960i \(0.259996\pi\)
−0.0874844 + 0.996166i \(0.527883\pi\)
\(192\) 0 0
\(193\) 13.4446 + 12.8194i 0.967767 + 0.922764i 0.997046 0.0768077i \(-0.0244727\pi\)
−0.0292793 + 0.999571i \(0.509321\pi\)
\(194\) −3.69800 + 10.6847i −0.265501 + 0.767114i
\(195\) 0 0
\(196\) −0.0432339 0.907591i −0.00308814 0.0648280i
\(197\) −14.4226 + 12.4972i −1.02757 + 0.890391i −0.994037 0.109047i \(-0.965220\pi\)
−0.0335294 + 0.999438i \(0.510675\pi\)
\(198\) 0 0
\(199\) 1.81677 + 0.261211i 0.128787 + 0.0185168i 0.206407 0.978466i \(-0.433823\pi\)
−0.0776198 + 0.996983i \(0.524732\pi\)
\(200\) −5.91648 + 2.04772i −0.418359 + 0.144795i
\(201\) 0 0
\(202\) −2.42393 9.99158i −0.170547 0.703005i
\(203\) −1.72095 + 2.41674i −0.120787 + 0.169622i
\(204\) 0 0
\(205\) −10.7947 20.9388i −0.753936 1.46243i
\(206\) 11.9094 0.829766
\(207\) 0 0
\(208\) 3.58336 0.248461
\(209\) −1.58645 3.07728i −0.109737 0.212860i
\(210\) 0 0
\(211\) 7.85558 11.0316i 0.540800 0.759448i −0.450255 0.892900i \(-0.648667\pi\)
0.991055 + 0.133452i \(0.0426063\pi\)
\(212\) −0.297007 1.22428i −0.0203985 0.0840837i
\(213\) 0 0
\(214\) 3.22940 1.11771i 0.220757 0.0764049i
\(215\) 31.5272 + 4.53292i 2.15013 + 0.309143i
\(216\) 0 0
\(217\) −0.398419 + 0.345232i −0.0270464 + 0.0234358i
\(218\) 0.259549 + 5.44861i 0.0175789 + 0.369026i
\(219\) 0 0
\(220\) 0.149431 0.431753i 0.0100747 0.0291088i
\(221\) −2.82901 2.69745i −0.190300 0.181450i
\(222\) 0 0
\(223\) 6.11936 + 17.6807i 0.409783 + 1.18399i 0.941484 + 0.337057i \(0.109432\pi\)
−0.531702 + 0.846932i \(0.678447\pi\)
\(224\) −0.376057 + 0.823450i −0.0251264 + 0.0550191i
\(225\) 0 0
\(226\) 2.79122 1.27471i 0.185669 0.0847923i
\(227\) −20.9592 8.39079i −1.39111 0.556916i −0.449396 0.893333i \(-0.648361\pi\)
−0.941713 + 0.336416i \(0.890785\pi\)
\(228\) 0 0
\(229\) −17.6045 + 10.1640i −1.16334 + 0.671655i −0.952102 0.305780i \(-0.901083\pi\)
−0.211238 + 0.977435i \(0.567750\pi\)
\(230\) −11.2469 15.3507i −0.741599 1.01219i
\(231\) 0 0
\(232\) −6.84813 + 3.53046i −0.449602 + 0.231786i
\(233\) −16.7476 + 2.40795i −1.09717 + 0.157750i −0.667045 0.745018i \(-0.732441\pi\)
−0.430129 + 0.902767i \(0.641532\pi\)
\(234\) 0 0
\(235\) −9.61270 + 32.7378i −0.627063 + 2.13558i
\(236\) 0.580602 0.413445i 0.0377940 0.0269130i
\(237\) 0 0
\(238\) 6.64274 2.65935i 0.430585 0.172380i
\(239\) 5.29939 5.55784i 0.342789 0.359507i −0.529662 0.848209i \(-0.677681\pi\)
0.872451 + 0.488702i \(0.162530\pi\)
\(240\) 0 0
\(241\) −27.1238 + 1.29207i −1.74720 + 0.0832294i −0.896671 0.442698i \(-0.854021\pi\)
−0.850530 + 0.525927i \(0.823718\pi\)
\(242\) 7.76872 + 12.0884i 0.499393 + 0.777070i
\(243\) 0 0
\(244\) 0.113442 + 0.386348i 0.00726238 + 0.0247334i
\(245\) −12.5637 9.88022i −0.802667 0.631224i
\(246\) 0 0
\(247\) 0.250414 + 2.62245i 0.0159334 + 0.166862i
\(248\) −1.33044 + 0.322762i −0.0844833 + 0.0204954i
\(249\) 0 0
\(250\) −3.96611 + 9.90687i −0.250839 + 0.626565i
\(251\) 3.59135 + 2.30802i 0.226684 + 0.145681i 0.649053 0.760743i \(-0.275165\pi\)
−0.422369 + 0.906424i \(0.638802\pi\)
\(252\) 0 0
\(253\) −5.26916 0.179663i −0.331270 0.0112953i
\(254\) −7.96751 4.60004i −0.499926 0.288632i
\(255\) 0 0
\(256\) −2.88304 + 2.26725i −0.180190 + 0.141703i
\(257\) 9.57252 + 6.81656i 0.597118 + 0.425205i 0.838249 0.545287i \(-0.183579\pi\)
−0.241132 + 0.970492i \(0.577519\pi\)
\(258\) 0 0
\(259\) −1.30335 1.83030i −0.0809861 0.113729i
\(260\) −0.227659 + 0.262732i −0.0141188 + 0.0162940i
\(261\) 0 0
\(262\) −18.2395 + 5.35559i −1.12684 + 0.330869i
\(263\) −7.67274 + 1.47880i −0.473121 + 0.0911867i −0.420238 0.907414i \(-0.638053\pi\)
−0.0528836 + 0.998601i \(0.516841\pi\)
\(264\) 0 0
\(265\) −19.6971 10.1546i −1.20999 0.623791i
\(266\) −4.55704 1.57721i −0.279410 0.0967047i
\(267\) 0 0
\(268\) 0.131410 0.167101i 0.00802712 0.0102073i
\(269\) −5.31672 4.60697i −0.324166 0.280892i 0.477540 0.878610i \(-0.341529\pi\)
−0.801706 + 0.597718i \(0.796074\pi\)
\(270\) 0 0
\(271\) 10.5066 + 3.08500i 0.638228 + 0.187401i 0.584808 0.811172i \(-0.301170\pi\)
0.0534194 + 0.998572i \(0.482988\pi\)
\(272\) 19.9274 + 1.90283i 1.20827 + 0.115376i
\(273\) 0 0
\(274\) −13.7245 0.653777i −0.829126 0.0394961i
\(275\) −1.27010 2.19988i −0.0765899 0.132658i
\(276\) 0 0
\(277\) −16.1784 + 28.0218i −0.972066 + 1.68367i −0.282771 + 0.959188i \(0.591253\pi\)
−0.689296 + 0.724480i \(0.742080\pi\)
\(278\) 9.71330 15.1142i 0.582565 0.906489i
\(279\) 0 0
\(280\) 3.17538 + 6.95311i 0.189765 + 0.415528i
\(281\) 11.5526 11.0154i 0.689172 0.657124i −0.262255 0.964999i \(-0.584466\pi\)
0.951427 + 0.307875i \(0.0996178\pi\)
\(282\) 0 0
\(283\) 1.27746 6.62811i 0.0759373 0.394000i −0.923995 0.382403i \(-0.875096\pi\)
0.999933 0.0115967i \(-0.00369142\pi\)
\(284\) 0.468487 + 1.17022i 0.0277996 + 0.0694400i
\(285\) 0 0
\(286\) 0.255402 + 1.32515i 0.0151022 + 0.0783579i
\(287\) −7.64752 + 4.91476i −0.451419 + 0.290109i
\(288\) 0 0
\(289\) −3.16732 3.65528i −0.186313 0.215017i
\(290\) 2.66009 10.9651i 0.156206 0.643890i
\(291\) 0 0
\(292\) 0.516725 + 0.0995905i 0.0302390 + 0.00582809i
\(293\) 0.517528 0.0494179i 0.0302343 0.00288703i −0.0799279 0.996801i \(-0.525469\pi\)
0.110162 + 0.993914i \(0.464863\pi\)
\(294\) 0 0
\(295\) 1.19182 12.4813i 0.0693904 0.726690i
\(296\) −0.830410 5.77563i −0.0482666 0.335702i
\(297\) 0 0
\(298\) 4.36341i 0.252765i
\(299\) 3.67134 + 1.61704i 0.212319 + 0.0935157i
\(300\) 0 0
\(301\) 0.584834 12.2772i 0.0337093 0.707644i
\(302\) 17.7874 + 22.6186i 1.02355 + 1.30155i
\(303\) 0 0
\(304\) −9.30986 9.76390i −0.533957 0.559998i
\(305\) 6.44297 + 2.94241i 0.368924 + 0.168482i
\(306\) 0 0
\(307\) −2.59688 + 18.0617i −0.148212 + 1.03084i 0.770933 + 0.636916i \(0.219790\pi\)
−0.919145 + 0.393920i \(0.871119\pi\)
\(308\) −0.171336 0.0415656i −0.00976276 0.00236842i
\(309\) 0 0
\(310\) 0.918698 1.78203i 0.0521785 0.101212i
\(311\) −2.64984 + 5.13997i −0.150258 + 0.291461i −0.951937 0.306295i \(-0.900911\pi\)
0.801678 + 0.597756i \(0.203941\pi\)
\(312\) 0 0
\(313\) −31.8174 7.71881i −1.79842 0.436293i −0.809800 0.586706i \(-0.800424\pi\)
−0.988623 + 0.150413i \(0.951940\pi\)
\(314\) 3.20916 22.3202i 0.181103 1.25960i
\(315\) 0 0
\(316\) 2.14136 + 0.977925i 0.120461 + 0.0550126i
\(317\) 6.14216 + 6.44171i 0.344978 + 0.361803i 0.873250 0.487273i \(-0.162008\pi\)
−0.528272 + 0.849075i \(0.677160\pi\)
\(318\) 0 0
\(319\) −1.93236 2.45719i −0.108191 0.137576i
\(320\) −0.938435 + 19.7002i −0.0524601 + 1.10127i
\(321\) 0 0
\(322\) −5.48428 + 4.88349i −0.305627 + 0.272146i
\(323\) 14.7166i 0.818856i
\(324\) 0 0
\(325\) 0.275074 + 1.91318i 0.0152584 + 0.106124i
\(326\) 0.161482 1.69111i 0.00894364 0.0936620i
\(327\) 0 0
\(328\) −23.5004 + 2.24402i −1.29759 + 0.123905i
\(329\) 12.9286 + 2.49178i 0.712776 + 0.137376i
\(330\) 0 0
\(331\) −2.11407 + 8.71430i −0.116200 + 0.478982i 0.883740 + 0.467979i \(0.155018\pi\)
−0.999939 + 0.0110029i \(0.996498\pi\)
\(332\) 1.35599 + 1.56490i 0.0744196 + 0.0858848i
\(333\) 0 0
\(334\) 30.3537 19.5071i 1.66088 1.06738i
\(335\) −0.707700 3.67190i −0.0386658 0.200617i
\(336\) 0 0
\(337\) 2.90689 + 7.26106i 0.158348 + 0.395535i 0.986233 0.165364i \(-0.0528798\pi\)
−0.827884 + 0.560899i \(0.810456\pi\)
\(338\) −3.41623 + 17.7251i −0.185818 + 0.964117i
\(339\) 0 0
\(340\) −1.40555 + 1.34019i −0.0762264 + 0.0726818i
\(341\) −0.230745 0.505262i −0.0124956 0.0273615i
\(342\) 0 0
\(343\) −7.28320 + 11.3329i −0.393256 + 0.611918i
\(344\) 15.9593 27.6423i 0.860467 1.49037i
\(345\) 0 0
\(346\) −11.4117 19.7656i −0.613497 1.06261i
\(347\) −25.7711 1.22763i −1.38347 0.0659026i −0.657408 0.753535i \(-0.728347\pi\)
−0.726059 + 0.687633i \(0.758650\pi\)
\(348\) 0 0
\(349\) 6.80326 + 0.649633i 0.364170 + 0.0347740i 0.275537 0.961290i \(-0.411144\pi\)
0.0886328 + 0.996064i \(0.471750\pi\)
\(350\) −3.39480 0.996803i −0.181460 0.0532813i
\(351\) 0 0
\(352\) −0.720839 0.624611i −0.0384209 0.0332919i
\(353\) −1.53771 + 1.95536i −0.0818441 + 0.104073i −0.825251 0.564766i \(-0.808966\pi\)
0.743407 + 0.668840i \(0.233209\pi\)
\(354\) 0 0
\(355\) 20.9539 + 7.25221i 1.11212 + 0.384907i
\(356\) 2.04341 + 1.05345i 0.108301 + 0.0558329i
\(357\) 0 0
\(358\) 20.8306 4.01477i 1.10093 0.212187i
\(359\) −17.3286 + 5.08813i −0.914568 + 0.268541i −0.704963 0.709245i \(-0.749036\pi\)
−0.209606 + 0.977786i \(0.567218\pi\)
\(360\) 0 0
\(361\) −5.94733 + 6.86358i −0.313017 + 0.361241i
\(362\) 11.1715 + 15.6881i 0.587160 + 0.824551i
\(363\) 0 0
\(364\) 0.109277 + 0.0778159i 0.00572768 + 0.00407866i
\(365\) 7.27637 5.72220i 0.380863 0.299514i
\(366\) 0 0
\(367\) 12.3720 + 7.14298i 0.645814 + 0.372861i 0.786850 0.617144i \(-0.211710\pi\)
−0.141037 + 0.990004i \(0.545044\pi\)
\(368\) −19.8979 + 5.11291i −1.03725 + 0.266529i
\(369\) 0 0
\(370\) 7.18865 + 4.61986i 0.373720 + 0.240175i
\(371\) −3.17828 + 7.93897i −0.165008 + 0.412171i
\(372\) 0 0
\(373\) −10.2511 + 2.48690i −0.530783 + 0.128767i −0.492189 0.870488i \(-0.663803\pi\)
−0.0385943 + 0.999255i \(0.512288\pi\)
\(374\) 0.716632 + 7.50491i 0.0370561 + 0.388070i
\(375\) 0 0
\(376\) 26.8767 + 21.1360i 1.38606 + 1.09001i
\(377\) 0.670126 + 2.28224i 0.0345132 + 0.117541i
\(378\) 0 0
\(379\) −1.69081 2.63095i −0.0868511 0.135143i 0.795110 0.606465i \(-0.207413\pi\)
−0.881961 + 0.471322i \(0.843777\pi\)
\(380\) 1.30737 0.0622775i 0.0670665 0.00319477i
\(381\) 0 0
\(382\) −25.5504 + 26.7965i −1.30727 + 1.37103i
\(383\) 8.69031 3.47908i 0.444054 0.177773i −0.138850 0.990313i \(-0.544341\pi\)
0.582904 + 0.812541i \(0.301916\pi\)
\(384\) 0 0
\(385\) −2.52628 + 1.79896i −0.128751 + 0.0916833i
\(386\) −7.68070 + 26.1581i −0.390937 + 1.33141i
\(387\) 0 0
\(388\) −1.17216 + 0.168531i −0.0595074 + 0.00855587i
\(389\) −6.08878 + 3.13898i −0.308713 + 0.159153i −0.605621 0.795753i \(-0.707075\pi\)
0.296907 + 0.954906i \(0.404045\pi\)
\(390\) 0 0
\(391\) 19.5580 + 10.9420i 0.989089 + 0.553363i
\(392\) −13.8711 + 8.00851i −0.700599 + 0.404491i
\(393\) 0 0
\(394\) −26.0003 10.4090i −1.30988 0.524395i
\(395\) 37.6680 17.2024i 1.89528 0.865547i
\(396\) 0 0
\(397\) −6.03124 + 13.2066i −0.302699 + 0.662819i −0.998461 0.0554537i \(-0.982339\pi\)
0.695762 + 0.718272i \(0.255067\pi\)
\(398\) 0.880995 + 2.54547i 0.0441603 + 0.127593i
\(399\) 0 0
\(400\) −7.16382 6.83069i −0.358191 0.341534i
\(401\) −6.38414 + 18.4458i −0.318809 + 0.921137i 0.665764 + 0.746162i \(0.268106\pi\)
−0.984573 + 0.174975i \(0.944016\pi\)
\(402\) 0 0
\(403\) 0.0201106 + 0.422173i 0.00100178 + 0.0210299i
\(404\) 0.813826 0.705184i 0.0404893 0.0350842i
\(405\) 0 0
\(406\) −4.30971 0.619643i −0.213887 0.0307524i
\(407\) 2.23723 0.774313i 0.110895 0.0383813i
\(408\) 0 0
\(409\) −5.09887 21.0178i −0.252123 1.03927i −0.947280 0.320407i \(-0.896180\pi\)
0.695157 0.718858i \(-0.255335\pi\)
\(410\) 20.0537 28.1615i 0.990383 1.39080i
\(411\) 0 0
\(412\) 0.571572 + 1.10869i 0.0281593 + 0.0546215i
\(413\) −4.83831 −0.238078
\(414\) 0 0
\(415\) 36.4243 1.78800
\(416\) 0.332562 + 0.645080i 0.0163052 + 0.0316277i
\(417\) 0 0
\(418\) 2.94720 4.13877i 0.144152 0.202434i
\(419\) 6.57281 + 27.0935i 0.321103 + 1.32360i 0.872194 + 0.489159i \(0.162696\pi\)
−0.551092 + 0.834445i \(0.685788\pi\)
\(420\) 0 0
\(421\) 0.467046 0.161646i 0.0227625 0.00787816i −0.315663 0.948871i \(-0.602227\pi\)
0.338425 + 0.940993i \(0.390106\pi\)
\(422\) 19.6724 + 2.82847i 0.957638 + 0.137688i
\(423\) 0 0
\(424\) −16.7832 + 14.5427i −0.815064 + 0.706257i
\(425\) 0.513774 + 10.7855i 0.0249217 + 0.523171i
\(426\) 0 0
\(427\) 0.893966 2.58295i 0.0432621 0.124998i
\(428\) 0.259042 + 0.246996i 0.0125213 + 0.0119390i
\(429\) 0 0
\(430\) 15.2883 + 44.1727i 0.737267 + 2.13019i
\(431\) 5.40362 11.8323i 0.260283 0.569941i −0.733700 0.679474i \(-0.762208\pi\)
0.993983 + 0.109533i \(0.0349355\pi\)
\(432\) 0 0
\(433\) 22.1861 10.1320i 1.06619 0.486915i 0.196499 0.980504i \(-0.437043\pi\)
0.869695 + 0.493589i \(0.164315\pi\)
\(434\) −0.718249 0.287544i −0.0344771 0.0138025i
\(435\) 0 0
\(436\) −0.494777 + 0.285660i −0.0236955 + 0.0136806i
\(437\) −5.13235 14.2048i −0.245514 0.679509i
\(438\) 0 0
\(439\) −5.42450 + 2.79652i −0.258897 + 0.133471i −0.582790 0.812623i \(-0.698039\pi\)
0.323892 + 0.946094i \(0.395008\pi\)
\(440\) −7.97186 + 1.14618i −0.380043 + 0.0546420i
\(441\) 0 0
\(442\) 1.61616 5.50415i 0.0768731 0.261806i
\(443\) 4.59811 3.27430i 0.218463 0.155567i −0.465587 0.885002i \(-0.654157\pi\)
0.684049 + 0.729436i \(0.260217\pi\)
\(444\) 0 0
\(445\) 37.5439 15.0303i 1.77975 0.712505i
\(446\) −18.9479 + 19.8719i −0.897207 + 0.940964i
\(447\) 0 0
\(448\) 7.60208 0.362132i 0.359164 0.0171091i
\(449\) −11.7076 18.2173i −0.552514 0.859728i 0.446878 0.894595i \(-0.352536\pi\)
−0.999392 + 0.0348669i \(0.988899\pi\)
\(450\) 0 0
\(451\) −2.69848 9.19019i −0.127067 0.432749i
\(452\) 0.252628 + 0.198669i 0.0118826 + 0.00934461i
\(453\) 0 0
\(454\) −3.14940 32.9820i −0.147808 1.54792i
\(455\) 2.29332 0.556352i 0.107512 0.0260822i
\(456\) 0 0
\(457\) 7.35741 18.3779i 0.344165 0.859683i −0.650780 0.759266i \(-0.725558\pi\)
0.994945 0.100417i \(-0.0320176\pi\)
\(458\) −25.0966 16.1286i −1.17269 0.753639i
\(459\) 0 0
\(460\) 0.889281 1.78375i 0.0414629 0.0831679i
\(461\) 27.2976 + 15.7603i 1.27138 + 0.734030i 0.975247 0.221118i \(-0.0709705\pi\)
0.296130 + 0.955148i \(0.404304\pi\)
\(462\) 0 0
\(463\) 11.7716 9.25731i 0.547074 0.430224i −0.305987 0.952036i \(-0.598986\pi\)
0.853060 + 0.521812i \(0.174744\pi\)
\(464\) −9.92240 7.06571i −0.460636 0.328017i
\(465\) 0 0
\(466\) −14.4032 20.2265i −0.667218 0.936976i
\(467\) 15.3268 17.6881i 0.709239 0.818506i −0.280730 0.959787i \(-0.590577\pi\)
0.989970 + 0.141281i \(0.0451220\pi\)
\(468\) 0 0
\(469\) −1.38457 + 0.406547i −0.0639335 + 0.0187726i
\(470\) −49.1679 + 9.47633i −2.26795 + 0.437111i
\(471\) 0 0
\(472\) −11.1678 5.75740i −0.514040 0.265006i
\(473\) 12.2380 + 4.23563i 0.562706 + 0.194754i
\(474\) 0 0
\(475\) 4.49836 5.72013i 0.206399 0.262457i
\(476\) 0.566378 + 0.490770i 0.0259599 + 0.0224944i
\(477\) 0 0
\(478\) 10.8134 + 3.17510i 0.494593 + 0.145226i
\(479\) −6.17711 0.589842i −0.282239 0.0269506i −0.0470235 0.998894i \(-0.514974\pi\)
−0.235216 + 0.971943i \(0.575580\pi\)
\(480\) 0 0
\(481\) −1.79936 0.0857142i −0.0820438 0.00390823i
\(482\) −19.9254 34.5118i −0.907577 1.57197i
\(483\) 0 0
\(484\) −0.752510 + 1.30339i −0.0342050 + 0.0592448i
\(485\) −11.2622 + 17.5243i −0.511389 + 0.795737i
\(486\) 0 0
\(487\) 14.0170 + 30.6929i 0.635170 + 1.39083i 0.903955 + 0.427628i \(0.140651\pi\)
−0.268785 + 0.963200i \(0.586622\pi\)
\(488\) 5.13706 4.89818i 0.232544 0.221730i
\(489\) 0 0
\(490\) 4.43914 23.0324i 0.200540 1.04050i
\(491\) 12.7886 + 31.9444i 0.577142 + 1.44163i 0.873628 + 0.486594i \(0.161761\pi\)
−0.296487 + 0.955037i \(0.595815\pi\)
\(492\) 0 0
\(493\) 2.51471 + 13.0476i 0.113257 + 0.587633i
\(494\) −3.25236 + 2.09016i −0.146331 + 0.0940409i
\(495\) 0 0
\(496\) −1.41742 1.63579i −0.0636439 0.0734490i
\(497\) 2.01727 8.31528i 0.0904867 0.372991i
\(498\) 0 0
\(499\) 20.1935 + 3.89197i 0.903983 + 0.174229i 0.620001 0.784601i \(-0.287132\pi\)
0.283982 + 0.958830i \(0.408344\pi\)
\(500\) −1.11262 + 0.106242i −0.0497579 + 0.00475130i
\(501\) 0 0
\(502\) −0.595530 + 6.23668i −0.0265798 + 0.278356i
\(503\) −0.408017 2.83782i −0.0181926 0.126532i 0.978701 0.205290i \(-0.0658137\pi\)
−0.996894 + 0.0787577i \(0.974905\pi\)
\(504\) 0 0
\(505\) 18.9425i 0.842930i
\(506\) −3.30901 6.99398i −0.147103 0.310920i
\(507\) 0 0
\(508\) 0.0458496 0.962501i 0.00203425 0.0427041i
\(509\) −16.5546 21.0509i −0.733770 0.933065i 0.265750 0.964042i \(-0.414380\pi\)
−0.999520 + 0.0309774i \(0.990138\pi\)
\(510\) 0 0
\(511\) −2.46504 2.58526i −0.109047 0.114365i
\(512\) 17.7355 + 8.09951i 0.783804 + 0.357951i
\(513\) 0 0
\(514\) −2.45436 + 17.0705i −0.108257 + 0.752945i
\(515\) 21.3234 + 5.17300i 0.939621 + 0.227950i
\(516\) 0 0
\(517\) −6.35682 + 12.3305i −0.279573 + 0.542295i
\(518\) 1.51100 2.93092i 0.0663893 0.128777i
\(519\) 0 0
\(520\) 5.95548 + 1.44478i 0.261165 + 0.0633579i
\(521\) −1.89252 + 13.1628i −0.0829129 + 0.576672i 0.905438 + 0.424479i \(0.139543\pi\)
−0.988351 + 0.152193i \(0.951366\pi\)
\(522\) 0 0
\(523\) −36.4077 16.6268i −1.59200 0.727041i −0.594945 0.803767i \(-0.702826\pi\)
−0.997052 + 0.0767259i \(0.975553\pi\)
\(524\) −1.37395 1.44096i −0.0600212 0.0629484i
\(525\) 0 0
\(526\) −7.08866 9.01396i −0.309080 0.393027i
\(527\) −0.112345 + 2.35842i −0.00489384 + 0.102734i
\(528\) 0 0
\(529\) −22.6938 3.74076i −0.986685 0.162642i
\(530\) 32.5218i 1.41266i
\(531\) 0 0
\(532\) −0.0718790 0.499929i −0.00311635 0.0216747i
\(533\) −0.692779 + 7.25511i −0.0300076 + 0.314254i
\(534\) 0 0
\(535\) 6.26764 0.598488i 0.270974 0.0258749i
\(536\) −3.67965 0.709194i −0.158936 0.0306325i
\(537\) 0 0
\(538\) 2.43404 10.0333i 0.104939 0.432564i
\(539\) −4.25566 4.91129i −0.183304 0.211544i
\(540\) 0 0
\(541\) 35.7999 23.0072i 1.53916 0.989158i 0.551213 0.834365i \(-0.314165\pi\)
0.987947 0.154793i \(-0.0494711\pi\)
\(542\) 3.04124 + 15.7794i 0.130632 + 0.677785i
\(543\) 0 0
\(544\) 1.50686 + 3.76395i 0.0646059 + 0.161378i
\(545\) −1.90196 + 9.86832i −0.0814711 + 0.422712i
\(546\) 0 0
\(547\) −12.2196 + 11.6514i −0.522474 + 0.498178i −0.904793 0.425853i \(-0.859974\pi\)
0.382318 + 0.924031i \(0.375126\pi\)
\(548\) −0.597821 1.30905i −0.0255377 0.0559197i
\(549\) 0 0
\(550\) 2.01544 3.13609i 0.0859387 0.133723i
\(551\) 4.47758 7.75539i 0.190751 0.330391i
\(552\) 0 0
\(553\) −7.98987 13.8389i −0.339764 0.588488i
\(554\) −47.4315 2.25944i −2.01517 0.0959944i
\(555\) 0 0
\(556\) 1.87322 + 0.178871i 0.0794421 + 0.00758580i
\(557\) −0.132902 0.0390237i −0.00563126 0.00165349i 0.278916 0.960316i \(-0.410025\pi\)
−0.284547 + 0.958662i \(0.591843\pi\)
\(558\) 0 0
\(559\) −7.44714 6.45298i −0.314980 0.272932i
\(560\) −7.47047 + 9.49947i −0.315685 + 0.401426i
\(561\) 0 0
\(562\) 22.1374 + 7.66184i 0.933811 + 0.323195i
\(563\) −0.782589 0.403453i −0.0329822 0.0170035i 0.441657 0.897184i \(-0.354391\pi\)
−0.474639 + 0.880181i \(0.657421\pi\)
\(564\) 0 0
\(565\) 5.55129 1.06992i 0.233544 0.0450120i
\(566\) 9.50484 2.79087i 0.399518 0.117309i
\(567\) 0 0
\(568\) 14.5511 16.7929i 0.610552 0.704614i
\(569\) 17.2331 + 24.2005i 0.722450 + 1.01454i 0.998572 + 0.0534168i \(0.0170112\pi\)
−0.276122 + 0.961123i \(0.589049\pi\)
\(570\) 0 0
\(571\) 15.6834 + 11.1681i 0.656330 + 0.467370i 0.859067 0.511863i \(-0.171044\pi\)
−0.202737 + 0.979233i \(0.564984\pi\)
\(572\) −0.111106 + 0.0873750i −0.00464559 + 0.00365333i
\(573\) 0 0
\(574\) −11.5536 6.67048i −0.482238 0.278421i
\(575\) −4.25728 10.2312i −0.177541 0.426670i
\(576\) 0 0
\(577\) −4.05986 2.60911i −0.169014 0.108619i 0.453399 0.891308i \(-0.350211\pi\)
−0.622413 + 0.782689i \(0.713848\pi\)
\(578\) 2.63806 6.58956i 0.109729 0.274090i
\(579\) 0 0
\(580\) 1.14845 0.278611i 0.0476868 0.0115687i
\(581\) −1.33608 13.9921i −0.0554301 0.580490i
\(582\) 0 0
\(583\) −7.08248 5.56972i −0.293326 0.230674i
\(584\) −2.61346 8.90062i −0.108146 0.368310i
\(585\) 0 0
\(586\) 0.412484 + 0.641838i 0.0170396 + 0.0265141i
\(587\) 23.1617 1.10333i 0.955984 0.0455391i 0.436212 0.899844i \(-0.356320\pi\)
0.519772 + 0.854305i \(0.326017\pi\)
\(588\) 0 0
\(589\) 1.09808 1.15164i 0.0452457 0.0474524i
\(590\) 17.0822 6.83869i 0.703264 0.281544i
\(591\) 0 0
\(592\) 7.51464 5.35115i 0.308850 0.219931i
\(593\) −5.58492 + 19.0205i −0.229345 + 0.781077i 0.761744 + 0.647878i \(0.224343\pi\)
−0.991089 + 0.133199i \(0.957475\pi\)
\(594\) 0 0
\(595\) 13.0488 1.87613i 0.534947 0.0769138i
\(596\) 0.406208 0.209415i 0.0166389 0.00857796i
\(597\) 0 0
\(598\) 0.359586 + 5.87635i 0.0147046 + 0.240302i
\(599\) 31.0663 17.9361i 1.26933 0.732851i 0.294472 0.955660i \(-0.404856\pi\)
0.974862 + 0.222810i \(0.0715228\pi\)
\(600\) 0 0
\(601\) −14.4045 5.76670i −0.587572 0.235228i 0.0587758 0.998271i \(-0.481280\pi\)
−0.646348 + 0.763043i \(0.723705\pi\)
\(602\) 16.4078 7.49318i 0.668731 0.305399i
\(603\) 0 0
\(604\) −1.25198 + 2.74145i −0.0509423 + 0.111548i
\(605\) 8.65893 + 25.0183i 0.352035 + 1.01714i
\(606\) 0 0
\(607\) 15.0366 + 14.3374i 0.610317 + 0.581937i 0.930896 0.365286i \(-0.119029\pi\)
−0.320578 + 0.947222i \(0.603877\pi\)
\(608\) 0.893685 2.58213i 0.0362437 0.104719i
\(609\) 0 0
\(610\) 0.494602 + 10.3830i 0.0200259 + 0.420394i
\(611\) 7.97755 6.91259i 0.322737 0.279653i
\(612\) 0 0
\(613\) 21.8606 + 3.14308i 0.882941 + 0.126948i 0.568846 0.822444i \(-0.307390\pi\)
0.314095 + 0.949392i \(0.398299\pi\)
\(614\) −25.3062 + 8.75857i −1.02128 + 0.353467i
\(615\) 0 0
\(616\) 0.732712 + 3.02028i 0.0295218 + 0.121691i
\(617\) 17.6189 24.7423i 0.709310 0.996086i −0.289928 0.957048i \(-0.593631\pi\)
0.999238 0.0390376i \(-0.0124292\pi\)
\(618\) 0 0
\(619\) −3.03509 5.88725i −0.121990 0.236628i 0.819931 0.572463i \(-0.194012\pi\)
−0.941921 + 0.335835i \(0.890982\pi\)
\(620\) 0.209988 0.00843331
\(621\) 0 0
\(622\) −8.48657 −0.340281
\(623\) −7.15092 13.8708i −0.286495 0.555724i
\(624\) 0 0
\(625\) −18.1060 + 25.4263i −0.724239 + 1.01705i
\(626\) −11.3277 46.6936i −0.452748 1.86625i
\(627\) 0 0
\(628\) 2.23190 0.772467i 0.0890624 0.0308248i
\(629\) −9.96089 1.43216i −0.397167 0.0571040i
\(630\) 0 0
\(631\) 26.1918 22.6953i 1.04268 0.903486i 0.0472393 0.998884i \(-0.484958\pi\)
0.995439 + 0.0953975i \(0.0304122\pi\)
\(632\) −1.97453 41.4506i −0.0785427 1.64881i
\(633\) 0 0
\(634\) −4.27222 + 12.3438i −0.169672 + 0.490234i
\(635\) −12.2675 11.6970i −0.486821 0.464183i
\(636\) 0 0
\(637\) 1.61729 + 4.67285i 0.0640794 + 0.185145i
\(638\) 1.90574 4.17298i 0.0754488 0.165210i
\(639\) 0 0
\(640\) −30.5960 + 13.9727i −1.20941 + 0.552321i
\(641\) 18.2337 + 7.29969i 0.720189 + 0.288320i 0.702660 0.711526i \(-0.251996\pi\)
0.0175296 + 0.999846i \(0.494420\pi\)
\(642\) 0 0
\(643\) −41.5551 + 23.9919i −1.63878 + 0.946147i −0.657519 + 0.753438i \(0.728394\pi\)
−0.981256 + 0.192710i \(0.938272\pi\)
\(644\) −0.717834 0.276180i −0.0282866 0.0108830i
\(645\) 0 0
\(646\) −19.1966 + 9.89652i −0.755279 + 0.389373i
\(647\) −29.8180 + 4.28718i −1.17227 + 0.168547i −0.700814 0.713344i \(-0.747180\pi\)
−0.471454 + 0.881891i \(0.656271\pi\)
\(648\) 0 0
\(649\) 1.43622 4.89130i 0.0563764 0.192000i
\(650\) −2.31060 + 1.64537i −0.0906292 + 0.0645367i
\(651\) 0 0
\(652\) 0.165183 0.0661292i 0.00646906 0.00258982i
\(653\) 18.0183 18.8971i 0.705111 0.739499i −0.269599 0.962973i \(-0.586891\pi\)
0.974710 + 0.223473i \(0.0717396\pi\)
\(654\) 0 0
\(655\) −34.9835 + 1.66647i −1.36692 + 0.0651144i
\(656\) −20.1785 31.3984i −0.787839 1.22590i
\(657\) 0 0
\(658\) 5.44379 + 18.5398i 0.212221 + 0.722758i
\(659\) −19.9477 15.6870i −0.777052 0.611081i 0.148843 0.988861i \(-0.452445\pi\)
−0.925895 + 0.377780i \(0.876688\pi\)
\(660\) 0 0
\(661\) −2.60598 27.2911i −0.101361 1.06150i −0.892862 0.450331i \(-0.851306\pi\)
0.791501 0.611168i \(-0.209300\pi\)
\(662\) −12.7887 + 3.10250i −0.497047 + 0.120582i
\(663\) 0 0
\(664\) 13.5661 33.8865i 0.526467 1.31505i
\(665\) −7.47416 4.80335i −0.289836 0.186266i
\(666\) 0 0
\(667\) −6.97753 11.7168i −0.270171 0.453677i
\(668\) 3.27278 + 1.88954i 0.126628 + 0.0731085i
\(669\) 0 0
\(670\) 4.31376 3.39238i 0.166655 0.131059i
\(671\) 2.34587 + 1.67049i 0.0905613 + 0.0644884i
\(672\) 0 0
\(673\) 10.4199 + 14.6327i 0.401658 + 0.564050i 0.965025 0.262157i \(-0.0844338\pi\)
−0.563367 + 0.826207i \(0.690494\pi\)
\(674\) −7.51662 + 8.67464i −0.289529 + 0.334135i
\(675\) 0 0
\(676\) −1.81406 + 0.532656i −0.0697715 + 0.0204868i
\(677\) 22.4154 4.32022i 0.861495 0.166040i 0.260678 0.965426i \(-0.416054\pi\)
0.600817 + 0.799386i \(0.294842\pi\)
\(678\) 0 0
\(679\) 7.14492 + 3.68346i 0.274197 + 0.141358i
\(680\) 32.3517 + 11.1970i 1.24063 + 0.429387i
\(681\) 0 0
\(682\) 0.503900 0.640761i 0.0192953 0.0245360i
\(683\) 7.05211 + 6.11069i 0.269842 + 0.233819i 0.779261 0.626699i \(-0.215594\pi\)
−0.509420 + 0.860518i \(0.670140\pi\)
\(684\) 0 0
\(685\) −24.2893 7.13198i −0.928046 0.272499i
\(686\) −19.6805 1.87926i −0.751404 0.0717504i
\(687\) 0 0
\(688\) 50.4064 + 2.40115i 1.92172 + 0.0915430i
\(689\) 3.42796 + 5.93739i 0.130595 + 0.226197i
\(690\) 0 0
\(691\) −6.97069 + 12.0736i −0.265178 + 0.459301i −0.967610 0.252449i \(-0.918764\pi\)
0.702433 + 0.711750i \(0.252097\pi\)
\(692\) 1.29238 2.01098i 0.0491290 0.0764461i
\(693\) 0 0
\(694\) −15.7290 34.4417i −0.597065 1.30739i
\(695\) 23.9564 22.8424i 0.908719 0.866462i
\(696\) 0 0
\(697\) −7.70521 + 39.9784i −0.291856 + 1.51429i
\(698\) 3.72761 + 9.31111i 0.141092 + 0.352431i
\(699\) 0 0
\(700\) −0.0701314 0.363876i −0.00265072 0.0137532i
\(701\) 1.40337 0.901892i 0.0530046 0.0340640i −0.513870 0.857868i \(-0.671789\pi\)
0.566875 + 0.823804i \(0.308152\pi\)
\(702\) 0 0
\(703\) 4.44133 + 5.12557i 0.167508 + 0.193315i
\(704\) −1.89052 + 7.79284i −0.0712517 + 0.293704i
\(705\) 0 0
\(706\) −3.58466 0.690886i −0.134910 0.0260018i
\(707\) −7.27660 + 0.694831i −0.273665 + 0.0261318i
\(708\) 0 0
\(709\) 2.89302 30.2970i 0.108650 1.13783i −0.762560 0.646918i \(-0.776058\pi\)
0.871209 0.490912i \(-0.163336\pi\)
\(710\) 4.63101 + 32.2094i 0.173799 + 1.20880i
\(711\) 0 0
\(712\) 40.5261i 1.51878i
\(713\) −0.714048 2.31558i −0.0267413 0.0867191i
\(714\) 0 0
\(715\) −0.118308 + 2.48358i −0.00442445 + 0.0928807i
\(716\) 1.37348 + 1.74652i 0.0513294 + 0.0652707i
\(717\) 0 0
\(718\) −18.2900 19.1820i −0.682577 0.715866i
\(719\) −7.80894 3.56623i −0.291224 0.132998i 0.264446 0.964401i \(-0.414811\pi\)
−0.555670 + 0.831403i \(0.687538\pi\)
\(720\) 0 0
\(721\) 1.20500 8.38096i 0.0448766 0.312123i
\(722\) −12.9523 3.14220i −0.482036 0.116941i
\(723\) 0 0
\(724\) −0.924319 + 1.79293i −0.0343520 + 0.0666337i
\(725\) 3.01075 5.84004i 0.111817 0.216894i
\(726\) 0 0
\(727\) 15.9932 + 3.87991i 0.593155 + 0.143898i 0.521089 0.853502i \(-0.325526\pi\)
0.0720655 + 0.997400i \(0.477041\pi\)
\(728\) 0.336548 2.34074i 0.0124733 0.0867537i
\(729\) 0 0
\(730\) 12.3573 + 5.64337i 0.457363 + 0.208870i
\(731\) −37.9875 39.8402i −1.40502 1.47354i
\(732\) 0 0
\(733\) −26.4101 33.5831i −0.975478 1.24042i −0.970666 0.240433i \(-0.922711\pi\)
−0.00481226 0.999988i \(-0.501532\pi\)
\(734\) −0.997573 + 20.9416i −0.0368211 + 0.772970i
\(735\) 0 0
\(736\) −2.76711 3.10753i −0.101997 0.114545i
\(737\) 1.52042i 0.0560052i
\(738\) 0 0
\(739\) 2.37514 + 16.5195i 0.0873711 + 0.607679i 0.985719 + 0.168396i \(0.0538586\pi\)
−0.898348 + 0.439284i \(0.855232\pi\)
\(740\) −0.0850749 + 0.890945i −0.00312742 + 0.0327518i
\(741\) 0 0
\(742\) −12.4930 + 1.19294i −0.458632 + 0.0437941i
\(743\) −14.9452 2.88046i −0.548287 0.105674i −0.0924178 0.995720i \(-0.529460\pi\)
−0.455870 + 0.890047i \(0.650672\pi\)
\(744\) 0 0
\(745\) 1.89530 7.81255i 0.0694386 0.286230i
\(746\) −10.1375 11.6993i −0.371161 0.428343i
\(747\) 0 0
\(748\) −0.664270 + 0.426900i −0.0242881 + 0.0156090i
\(749\) −0.459808 2.38571i −0.0168010 0.0871720i
\(750\) 0 0
\(751\) −3.46811 8.66293i −0.126553 0.316115i 0.851538 0.524294i \(-0.175671\pi\)
−0.978091 + 0.208179i \(0.933246\pi\)
\(752\) −10.2305 + 53.0808i −0.373068 + 1.93566i
\(753\) 0 0
\(754\) −2.52634 + 2.40886i −0.0920038 + 0.0877255i
\(755\) 22.0232 + 48.2241i 0.801507 + 1.75505i
\(756\) 0 0
\(757\) −25.6627 + 39.9320i −0.932727 + 1.45135i −0.0408031 + 0.999167i \(0.512992\pi\)
−0.891924 + 0.452185i \(0.850645\pi\)
\(758\) 2.29483 3.97475i 0.0833518 0.144370i
\(759\) 0 0
\(760\) −11.5361 19.9811i −0.418458 0.724790i
\(761\) −25.6982 1.22416i −0.931560 0.0443757i −0.423688 0.905808i \(-0.639265\pi\)
−0.507872 + 0.861433i \(0.669568\pi\)
\(762\) 0 0
\(763\) 3.86060 + 0.368642i 0.139763 + 0.0133458i
\(764\) −3.72085 1.09254i −0.134616 0.0395267i
\(765\) 0 0
\(766\) 10.3821 + 8.99617i 0.375122 + 0.325045i
\(767\) −2.39781 + 3.04906i −0.0865799 + 0.110095i
\(768\) 0 0
\(769\) 0.916418 + 0.317175i 0.0330469 + 0.0114376i 0.343541 0.939138i \(-0.388373\pi\)
−0.310495 + 0.950575i \(0.600495\pi\)
\(770\) −4.04543 2.08556i −0.145787 0.0751585i
\(771\) 0 0
\(772\) −2.80379 + 0.540386i −0.100910 + 0.0194489i
\(773\) −12.8080 + 3.76076i −0.460671 + 0.135265i −0.503830 0.863803i \(-0.668076\pi\)
0.0431586 + 0.999068i \(0.486258\pi\)
\(774\) 0 0
\(775\) 0.764552 0.882340i 0.0274635 0.0316946i
\(776\) 12.1088 + 17.0044i 0.434679 + 0.610421i
\(777\) 0 0
\(778\) −8.18906 5.83140i −0.293592 0.209066i
\(779\) 21.5685 16.9617i 0.772773 0.607715i
\(780\) 0 0
\(781\) 7.80755 + 4.50769i 0.279376 + 0.161298i
\(782\) −1.12077 + 32.8699i −0.0400785 + 1.17542i
\(783\) 0 0
\(784\) −21.3031 13.6907i −0.760825 0.488952i
\(785\) 15.4410 38.5697i 0.551112 1.37661i
\(786\) 0 0
\(787\) 22.6388 5.49212i 0.806988 0.195773i 0.189017 0.981974i \(-0.439470\pi\)
0.617971 + 0.786201i \(0.287955\pi\)
\(788\) −0.278830 2.92004i −0.00993291 0.104022i
\(789\) 0 0
\(790\) 47.7697 + 37.5665i 1.69957 + 1.33656i
\(791\) −0.614629 2.09324i −0.0218537 0.0744269i
\(792\) 0 0
\(793\) −1.18471 1.84345i −0.0420704 0.0654628i
\(794\) −21.2826 + 1.01382i −0.755292 + 0.0359790i
\(795\) 0 0
\(796\) −0.194686 + 0.204181i −0.00690048 + 0.00723701i
\(797\) −44.5026 + 17.8162i −1.57636 + 0.631081i −0.984567 0.175006i \(-0.944006\pi\)
−0.591797 + 0.806087i \(0.701581\pi\)
\(798\) 0 0
\(799\) 48.0346 34.2053i 1.69934 1.21010i
\(800\) 0.564814 1.92358i 0.0199692 0.0680088i
\(801\) 0 0
\(802\) −28.3540 + 4.07669i −1.00121 + 0.143953i
\(803\) 3.34531 1.72463i 0.118053 0.0608607i
\(804\) 0 0
\(805\) −11.9407 + 6.36157i −0.420853 + 0.224216i
\(806\) −0.537164 + 0.310132i −0.0189208 + 0.0109239i
\(807\) 0 0
\(808\) −17.6227 7.05507i −0.619965 0.248196i
\(809\) −24.2648 + 11.0814i −0.853106 + 0.389600i −0.793462 0.608619i \(-0.791724\pi\)
−0.0596437 + 0.998220i \(0.518996\pi\)
\(810\) 0 0
\(811\) −19.8777 + 43.5261i −0.698000 + 1.52841i 0.144379 + 0.989522i \(0.453881\pi\)
−0.842379 + 0.538885i \(0.818846\pi\)
\(812\) −0.149153 0.430948i −0.00523423 0.0151233i
\(813\) 0 0
\(814\) 2.51450 + 2.39757i 0.0881331 + 0.0840347i
\(815\) 1.02369 2.95775i 0.0358581 0.103605i
\(816\) 0 0
\(817\) 1.76525 + 37.0573i 0.0617584 + 1.29647i
\(818\) 23.9871 20.7849i 0.838688 0.726727i
\(819\) 0 0
\(820\) 3.58412 + 0.515319i 0.125163 + 0.0179957i
\(821\) 5.90075 2.04227i 0.205937 0.0712756i −0.222152 0.975012i \(-0.571308\pi\)
0.428089 + 0.903736i \(0.359187\pi\)
\(822\) 0 0
\(823\) 8.11056 + 33.4322i 0.282716 + 1.16537i 0.919108 + 0.394006i \(0.128911\pi\)
−0.636392 + 0.771366i \(0.719574\pi\)
\(824\) 12.7544 17.9111i 0.444321 0.623961i
\(825\) 0 0
\(826\) −3.25362 6.31115i −0.113208 0.219593i
\(827\) −6.97282 −0.242469 −0.121234 0.992624i \(-0.538685\pi\)
−0.121234 + 0.992624i \(0.538685\pi\)
\(828\) 0 0
\(829\) 34.2211 1.18855 0.594274 0.804263i \(-0.297440\pi\)
0.594274 + 0.804263i \(0.297440\pi\)
\(830\) 24.4943 + 47.5123i 0.850209 + 1.64918i
\(831\) 0 0
\(832\) 3.53929 4.97024i 0.122703 0.172312i
\(833\) 6.51252 + 26.8450i 0.225645 + 0.930123i
\(834\) 0 0
\(835\) 62.8206 21.7424i 2.17400 0.752427i
\(836\) 0.526742 + 0.0757340i 0.0182177 + 0.00261932i
\(837\) 0 0
\(838\) −30.9211 + 26.7932i −1.06815 + 0.925557i
\(839\) 0.577297 + 12.1190i 0.0199305 + 0.418393i 0.986681 + 0.162670i \(0.0520105\pi\)
−0.966750 + 0.255723i \(0.917686\pi\)
\(840\) 0 0
\(841\) −6.84042 + 19.7641i −0.235877 + 0.681520i
\(842\) 0.524929 + 0.500518i 0.0180902 + 0.0172490i
\(843\) 0 0
\(844\) 0.680833 + 1.96714i 0.0234352 + 0.0677116i
\(845\) −13.8158 + 30.2524i −0.475278 + 1.04071i
\(846\) 0 0
\(847\) 9.29297 4.24396i 0.319310 0.145824i
\(848\) −32.5950 13.0491i −1.11932 0.448107i
\(849\) 0 0
\(850\) −13.7232 + 7.92308i −0.470701 + 0.271759i
\(851\) 10.1139 2.09146i 0.346701 0.0716942i
\(852\) 0 0
\(853\) −24.8112 + 12.7911i −0.849519 + 0.437958i −0.827276 0.561795i \(-0.810111\pi\)
−0.0222428 + 0.999753i \(0.507081\pi\)
\(854\) 3.97039 0.570856i 0.135864 0.0195343i
\(855\) 0 0
\(856\) 1.77757 6.05386i 0.0607562 0.206917i
\(857\) −2.90551 + 2.06900i −0.0992503 + 0.0706758i −0.628605 0.777725i \(-0.716374\pi\)
0.529354 + 0.848401i \(0.322434\pi\)
\(858\) 0 0
\(859\) −33.6031 + 13.4527i −1.14652 + 0.458999i −0.865602 0.500732i \(-0.833064\pi\)
−0.280921 + 0.959731i \(0.590640\pi\)
\(860\) −3.37848 + 3.54325i −0.115205 + 0.120824i
\(861\) 0 0
\(862\) 19.0679 0.908318i 0.649457 0.0309374i
\(863\) −7.97847 12.4147i −0.271590 0.422603i 0.678489 0.734610i \(-0.262635\pi\)
−0.950080 + 0.312008i \(0.898999\pi\)
\(864\) 0 0
\(865\) −11.8468 40.3466i −0.402805 1.37183i
\(866\) 28.1358 + 22.1263i 0.956095 + 0.751881i
\(867\) 0 0
\(868\) −0.00770258 0.0806650i −0.000261443 0.00273795i
\(869\) 16.3622 3.96942i 0.555049 0.134653i
\(870\) 0 0
\(871\) −0.429975 + 1.07403i −0.0145691 + 0.0363920i
\(872\) 8.47238 + 5.44487i 0.286911 + 0.184386i
\(873\) 0 0
\(874\) 15.0776 16.2470i 0.510007 0.549564i
\(875\) 6.57044 + 3.79345i 0.222121 + 0.128242i
\(876\) 0 0
\(877\) 12.7608 10.0352i 0.430901 0.338864i −0.379035 0.925382i \(-0.623744\pi\)
0.809936 + 0.586518i \(0.199502\pi\)
\(878\) −7.29564 5.19520i −0.246216 0.175330i
\(879\) 0 0
\(880\) −7.38597 10.3721i −0.248981 0.349645i
\(881\) 32.0624 37.0020i 1.08021 1.24663i 0.112746 0.993624i \(-0.464035\pi\)
0.967465 0.253006i \(-0.0814191\pi\)
\(882\) 0 0
\(883\) −1.17065 + 0.343734i −0.0393955 + 0.0115676i −0.301371 0.953507i \(-0.597444\pi\)
0.261975 + 0.965075i \(0.415626\pi\)
\(884\) 0.589970 0.113707i 0.0198428 0.00382439i
\(885\) 0 0
\(886\) 7.36313 + 3.79596i 0.247369 + 0.127528i
\(887\) 42.4402 + 14.6887i 1.42500 + 0.493198i 0.927355 0.374182i \(-0.122076\pi\)
0.497647 + 0.867380i \(0.334198\pi\)
\(888\) 0 0
\(889\) −4.04334 + 5.14152i −0.135609 + 0.172441i
\(890\) 44.8529 + 38.8652i 1.50347 + 1.30277i
\(891\) 0 0
\(892\) −2.75934 0.810214i −0.0923894 0.0271280i
\(893\) −39.5617 3.77768i −1.32388 0.126415i
\(894\) 0 0
\(895\) 39.0404 + 1.85972i 1.30498 + 0.0621637i
\(896\) 6.48980 + 11.2407i 0.216809 + 0.375524i
\(897\) 0 0
\(898\) 15.8899 27.5221i 0.530252 0.918424i
\(899\) 0.776759 1.20866i 0.0259064 0.0403111i
\(900\) 0 0
\(901\) 15.9103 + 34.8387i 0.530049 + 1.16064i
\(902\) 10.1731 9.70007i 0.338729 0.322977i
\(903\) 0 0
\(904\) 1.07218 5.56300i 0.0356602 0.185023i
\(905\) 13.1879 + 32.9417i 0.438379 + 1.09502i
\(906\) 0 0
\(907\) 8.01202 + 41.5703i 0.266035 + 1.38032i 0.831489 + 0.555541i \(0.187489\pi\)
−0.565454 + 0.824780i \(0.691299\pi\)
\(908\) 2.91928 1.87611i 0.0968797 0.0622608i
\(909\) 0 0
\(910\) 2.26790 + 2.61730i 0.0751802 + 0.0867626i
\(911\) −0.0468582 + 0.193152i −0.00155248 + 0.00639942i −0.972583 0.232558i \(-0.925290\pi\)
0.971030 + 0.238957i \(0.0768056\pi\)
\(912\) 0 0
\(913\) 14.5420 + 2.80273i 0.481268 + 0.0927569i
\(914\) 28.9200 2.76153i 0.956589 0.0913432i
\(915\) 0 0
\(916\) 0.297008 3.11041i 0.00981343 0.102771i
\(917\) 1.92339 + 13.3775i 0.0635161 + 0.441764i
\(918\) 0 0
\(919\) 13.8209i 0.455910i 0.973672 + 0.227955i \(0.0732039\pi\)
−0.973672 + 0.227955i \(0.926796\pi\)
\(920\) −35.1315 + 0.474867i −1.15825 + 0.0156559i
\(921\) 0 0
\(922\) −2.20105 + 46.2057i −0.0724877 + 1.52170i
\(923\) −4.24049 5.39222i −0.139577 0.177487i
\(924\) 0 0
\(925\) 3.43388 + 3.60135i 0.112905 + 0.118412i
\(926\) 19.9914 + 9.12978i 0.656959 + 0.300023i
\(927\) 0 0
\(928\) 0.351105 2.44199i 0.0115256 0.0801623i
\(929\) −20.4997 4.97316i −0.672572 0.163164i −0.115092 0.993355i \(-0.536716\pi\)
−0.557480 + 0.830191i \(0.688232\pi\)
\(930\) 0 0
\(931\) 8.53069 16.5472i 0.279582 0.542313i
\(932\) 1.19171 2.31160i 0.0390358 0.0757190i
\(933\) 0 0
\(934\) 33.3793 + 8.09774i 1.09221 + 0.264966i
\(935\) −1.97675 + 13.7486i −0.0646466 + 0.449627i
\(936\) 0 0
\(937\) −7.22931 3.30152i −0.236171 0.107856i 0.293814 0.955863i \(-0.405075\pi\)
−0.529985 + 0.848007i \(0.677803\pi\)
\(938\) −1.46139 1.53266i −0.0477160 0.0500431i
\(939\) 0 0
\(940\) −3.24193 4.12244i −0.105740 0.134459i
\(941\) 0.00105958 0.0222434i 3.45414e−5 0.000725113i −0.998850 0.0479445i \(-0.984733\pi\)
0.998885 + 0.0472194i \(0.0150360\pi\)
\(942\) 0 0
\(943\) −6.50503 41.2752i −0.211833 1.34410i
\(944\) 19.8646i 0.646539i
\(945\) 0 0
\(946\) 2.70472 + 18.8118i 0.0879382 + 0.611624i
\(947\) −0.290588 + 3.04318i −0.00944285 + 0.0988900i −0.998965 0.0454937i \(-0.985514\pi\)
0.989522 + 0.144384i \(0.0461200\pi\)
\(948\) 0 0
\(949\) −2.85086 + 0.272224i −0.0925428 + 0.00883676i
\(950\) 10.4864 + 2.02109i 0.340224 + 0.0655728i
\(951\) 0 0
\(952\) 3.11455 12.8384i 0.100943 0.416094i
\(953\) 29.2523 + 33.7589i 0.947575 + 1.09356i 0.995505 + 0.0947087i \(0.0301920\pi\)
−0.0479305 + 0.998851i \(0.515263\pi\)
\(954\) 0 0
\(955\) −57.3866 + 36.8801i −1.85699 + 1.19341i
\(956\) 0.223388 + 1.15905i 0.00722490 + 0.0374863i
\(957\) 0 0
\(958\) −3.38453 8.45414i −0.109349 0.273141i
\(959\) −1.84873 + 9.59214i −0.0596987 + 0.309746i
\(960\) 0 0
\(961\) −22.2510 + 21.2163i −0.717774 + 0.684396i
\(962\) −1.09821 2.40475i −0.0354078 0.0775322i
\(963\) 0 0
\(964\) 2.25656 3.51128i 0.0726789 0.113091i
\(965\) −25.1142 + 43.4990i −0.808454 + 1.40028i
\(966\) 0 0
\(967\) −13.6653 23.6690i −0.439447 0.761144i 0.558200 0.829706i \(-0.311492\pi\)
−0.997647 + 0.0685623i \(0.978159\pi\)
\(968\) 26.5002 + 1.26236i 0.851749 + 0.0405738i
\(969\) 0 0
\(970\) −30.4324 2.90594i −0.977125 0.0933041i
\(971\) −29.7050 8.72218i −0.953280 0.279908i −0.232128 0.972685i \(-0.574569\pi\)
−0.721152 + 0.692777i \(0.756387\pi\)
\(972\) 0 0
\(973\) −9.65347 8.36478i −0.309476 0.268163i
\(974\) −30.6102 + 38.9240i −0.980813 + 1.24721i
\(975\) 0 0
\(976\) 10.6048 + 3.67036i 0.339451 + 0.117485i
\(977\) 41.6589 + 21.4767i 1.33279 + 0.687099i 0.969618 0.244624i \(-0.0786646\pi\)
0.363168 + 0.931723i \(0.381695\pi\)
\(978\) 0 0
\(979\) 16.1455 3.11178i 0.516011 0.0994530i
\(980\) 2.35724 0.692147i 0.0752991 0.0221098i
\(981\) 0 0
\(982\) −33.0687 + 38.1633i −1.05526 + 1.21784i
\(983\) −28.7788 40.4142i −0.917902 1.28901i −0.957093 0.289781i \(-0.906418\pi\)
0.0391912 0.999232i \(-0.487522\pi\)
\(984\) 0 0
\(985\) −42.0315 29.9305i −1.33924 0.953665i
\(986\) −15.3283 + 12.0543i −0.488154 + 0.383888i
\(987\) 0 0
\(988\) −0.350674 0.202462i −0.0111564 0.00644117i
\(989\) 50.5604 + 25.2067i 1.60773 + 0.801525i
\(990\) 0 0
\(991\) −17.8109 11.4464i −0.565782 0.363606i 0.226266 0.974066i \(-0.427348\pi\)
−0.792047 + 0.610460i \(0.790985\pi\)
\(992\) 0.162929 0.406978i 0.00517302 0.0129216i
\(993\) 0 0
\(994\) 12.2031 2.96044i 0.387059 0.0938995i
\(995\) 0.471737 + 4.94026i 0.0149551 + 0.156617i
\(996\) 0 0
\(997\) 10.5293 + 8.28031i 0.333465 + 0.262240i 0.770825 0.637046i \(-0.219844\pi\)
−0.437360 + 0.899286i \(0.644086\pi\)
\(998\) 8.50278 + 28.9578i 0.269151 + 0.916644i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 621.2.s.a.251.16 440
3.2 odd 2 207.2.o.a.182.7 yes 440
9.4 even 3 207.2.o.a.113.7 yes 440
9.5 odd 6 inner 621.2.s.a.44.16 440
23.11 odd 22 inner 621.2.s.a.494.16 440
69.11 even 22 207.2.o.a.11.7 440
207.103 odd 66 207.2.o.a.149.7 yes 440
207.149 even 66 inner 621.2.s.a.287.16 440
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
207.2.o.a.11.7 440 69.11 even 22
207.2.o.a.113.7 yes 440 9.4 even 3
207.2.o.a.149.7 yes 440 207.103 odd 66
207.2.o.a.182.7 yes 440 3.2 odd 2
621.2.s.a.44.16 440 9.5 odd 6 inner
621.2.s.a.251.16 440 1.1 even 1 trivial
621.2.s.a.287.16 440 207.149 even 66 inner
621.2.s.a.494.16 440 23.11 odd 22 inner