Newspace parameters
| Level: | \( N \) | \(=\) | \( 621 = 3^{3} \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 621.s (of order \(66\), degree \(20\), not minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(4.95870996552\) |
| Analytic rank: | \(0\) |
| Dimension: | \(440\) |
| Relative dimension: | \(22\) over \(\Q(\zeta_{66})\) |
| Twist minimal: | no (minimal twist has level 207) |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{66}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 17.1 | −0.254294 | − | 2.66308i | 0 | −5.06350 | + | 0.975909i | 0.0783683 | + | 1.64515i | 0 | 0.195151 | + | 0.487463i | 2.37916 | + | 8.10268i | 0 | 4.36126 | − | 0.627054i | ||||||
| 17.2 | −0.239165 | − | 2.50465i | 0 | −4.25222 | + | 0.819549i | −0.0687260 | − | 1.44274i | 0 | 0.409323 | + | 1.02244i | 1.65196 | + | 5.62607i | 0 | −3.59711 | + | 0.517187i | ||||||
| 17.3 | −0.212136 | − | 2.22159i | 0 | −2.92660 | + | 0.564056i | 0.162247 | + | 3.40597i | 0 | −1.13587 | − | 2.83725i | 0.616455 | + | 2.09945i | 0 | 7.53225 | − | 1.08297i | ||||||
| 17.4 | −0.208137 | − | 2.17971i | 0 | −2.74397 | + | 0.528857i | −0.0111710 | − | 0.234508i | 0 | 1.82068 | + | 4.54785i | 0.490101 | + | 1.66913i | 0 | −0.508836 | + | 0.0731595i | ||||||
| 17.5 | −0.167850 | − | 1.75780i | 0 | −1.09783 | + | 0.211590i | −0.135764 | − | 2.85004i | 0 | −1.56436 | − | 3.90758i | −0.438761 | − | 1.49428i | 0 | −4.98701 | + | 0.717024i | ||||||
| 17.6 | −0.148626 | − | 1.55648i | 0 | −0.436691 | + | 0.0841653i | 0.112059 | + | 2.35241i | 0 | −0.570741 | − | 1.42564i | −0.685107 | − | 2.33326i | 0 | 3.64483 | − | 0.524048i | ||||||
| 17.7 | −0.143627 | − | 1.50413i | 0 | −0.277929 | + | 0.0535665i | −0.0496215 | − | 1.04168i | 0 | 0.658540 | + | 1.64495i | −0.730892 | − | 2.48919i | 0 | −1.55970 | + | 0.224251i | ||||||
| 17.8 | −0.109078 | − | 1.14232i | 0 | 0.670864 | − | 0.129299i | −0.119182 | − | 2.50194i | 0 | −0.568097 | − | 1.41904i | −0.867461 | − | 2.95430i | 0 | −2.84501 | + | 0.409051i | ||||||
| 17.9 | −0.100945 | − | 1.05715i | 0 | 0.856485 | − | 0.165074i | 0.172794 | + | 3.62740i | 0 | 1.20269 | + | 3.00418i | −0.859342 | − | 2.92665i | 0 | 3.81726 | − | 0.548839i | ||||||
| 17.10 | −0.0557976 | − | 0.584339i | 0 | 1.62552 | − | 0.313293i | −0.176147 | − | 3.69777i | 0 | 0.153622 | + | 0.383728i | −0.604522 | − | 2.05881i | 0 | −2.15093 | + | 0.309256i | ||||||
| 17.11 | −0.00358223 | − | 0.0375148i | 0 | 1.96246 | − | 0.378234i | 0.124574 | + | 2.61513i | 0 | −1.01237 | − | 2.52879i | −0.0424538 | − | 0.144584i | 0 | 0.0976597 | − | 0.0140413i | ||||||
| 17.12 | 0.00723894 | + | 0.0758096i | 0 | 1.95816 | − | 0.377405i | −0.00947493 | − | 0.198903i | 0 | −1.26788 | − | 3.16702i | 0.0856963 | + | 0.291855i | 0 | 0.0150102 | − | 0.00215814i | ||||||
| 17.13 | 0.0253850 | + | 0.265844i | 0 | 1.89383 | − | 0.365006i | 0.158686 | + | 3.33122i | 0 | 0.652180 | + | 1.62907i | 0.295585 | + | 1.00667i | 0 | −0.881557 | + | 0.126749i | ||||||
| 17.14 | 0.0488316 | + | 0.511387i | 0 | 1.70472 | − | 0.328559i | −0.0300003 | − | 0.629785i | 0 | 1.52357 | + | 3.80569i | 0.540725 | + | 1.84154i | 0 | 0.320599 | − | 0.0460952i | ||||||
| 17.15 | 0.0769467 | + | 0.805822i | 0 | 1.32043 | − | 0.254492i | −0.0837687 | − | 1.75852i | 0 | 0.477405 | + | 1.19250i | 0.762796 | + | 2.59784i | 0 | 1.41061 | − | 0.202815i | ||||||
| 17.16 | 0.122757 | + | 1.28557i | 0 | 0.326236 | − | 0.0628768i | −0.0711660 | − | 1.49396i | 0 | −1.58054 | − | 3.94799i | 0.848549 | + | 2.88989i | 0 | 1.91185 | − | 0.274883i | ||||||
| 17.17 | 0.133932 | + | 1.40260i | 0 | 0.0145101 | − | 0.00279659i | −0.0155613 | − | 0.326673i | 0 | 0.756236 | + | 1.88899i | 0.799777 | + | 2.72379i | 0 | 0.456107 | − | 0.0655783i | ||||||
| 17.18 | 0.181306 | + | 1.89872i | 0 | −1.60840 | + | 0.309993i | 0.131387 | + | 2.75816i | 0 | 0.491986 | + | 1.22892i | 0.194526 | + | 0.662495i | 0 | −5.21315 | + | 0.749537i | ||||||
| 17.19 | 0.200433 | + | 2.09903i | 0 | −2.40188 | + | 0.462925i | 0.0430034 | + | 0.902752i | 0 | −0.981910 | − | 2.45269i | −0.265001 | − | 0.902511i | 0 | −1.88628 | + | 0.271206i | ||||||
| 17.20 | 0.216863 | + | 2.27109i | 0 | −3.14695 | + | 0.606526i | −0.137206 | − | 2.88031i | 0 | 0.443169 | + | 1.10698i | −0.774430 | − | 2.63747i | 0 | 6.51168 | − | 0.936238i | ||||||
| See next 80 embeddings (of 440 total) | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 9.d | odd | 6 | 1 | inner |
| 23.d | odd | 22 | 1 | inner |
| 207.o | even | 66 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 621.2.s.a | 440 | |
| 3.b | odd | 2 | 1 | 207.2.o.a | ✓ | 440 | |
| 9.c | even | 3 | 1 | 207.2.o.a | ✓ | 440 | |
| 9.d | odd | 6 | 1 | inner | 621.2.s.a | 440 | |
| 23.d | odd | 22 | 1 | inner | 621.2.s.a | 440 | |
| 69.g | even | 22 | 1 | 207.2.o.a | ✓ | 440 | |
| 207.o | even | 66 | 1 | inner | 621.2.s.a | 440 | |
| 207.p | odd | 66 | 1 | 207.2.o.a | ✓ | 440 | |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 207.2.o.a | ✓ | 440 | 3.b | odd | 2 | 1 | |
| 207.2.o.a | ✓ | 440 | 9.c | even | 3 | 1 | |
| 207.2.o.a | ✓ | 440 | 69.g | even | 22 | 1 | |
| 207.2.o.a | ✓ | 440 | 207.p | odd | 66 | 1 | |
| 621.2.s.a | 440 | 1.a | even | 1 | 1 | trivial | |
| 621.2.s.a | 440 | 9.d | odd | 6 | 1 | inner | |
| 621.2.s.a | 440 | 23.d | odd | 22 | 1 | inner | |
| 621.2.s.a | 440 | 207.o | even | 66 | 1 | inner | |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(621, [\chi])\).