Properties

Label 621.2.s
Level $621$
Weight $2$
Character orbit 621.s
Rep. character $\chi_{621}(17,\cdot)$
Character field $\Q(\zeta_{66})$
Dimension $440$
Newform subspaces $1$
Sturm bound $144$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 621 = 3^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 621.s (of order \(66\) and degree \(20\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 207 \)
Character field: \(\Q(\zeta_{66})\)
Newform subspaces: \( 1 \)
Sturm bound: \(144\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(621, [\chi])\).

Total New Old
Modular forms 1560 520 1040
Cusp forms 1320 440 880
Eisenstein series 240 80 160

Trace form

\( 440 q + 27 q^{2} - 29 q^{4} + 33 q^{5} - 11 q^{7} - 44 q^{10} + 33 q^{11} - 9 q^{13} + 33 q^{14} + 3 q^{16} - 44 q^{19} + 33 q^{20} + 27 q^{23} + 11 q^{25} - 44 q^{28} - 27 q^{29} - 3 q^{31} + 33 q^{32}+ \cdots + 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(621, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
621.2.s.a 621.s 207.o $440$ $4.959$ None 207.2.o.a \(27\) \(0\) \(33\) \(-11\) $\mathrm{SU}(2)[C_{66}]$

Decomposition of \(S_{2}^{\mathrm{old}}(621, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(621, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(207, [\chi])\)\(^{\oplus 2}\)