Defining parameters
| Level: | \( N \) | \(=\) | \( 621 = 3^{3} \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 621.s (of order \(66\) and degree \(20\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 207 \) |
| Character field: | \(\Q(\zeta_{66})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(144\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(621, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1560 | 520 | 1040 |
| Cusp forms | 1320 | 440 | 880 |
| Eisenstein series | 240 | 80 | 160 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(621, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 621.2.s.a | $440$ | $4.959$ | None | \(27\) | \(0\) | \(33\) | \(-11\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(621, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(621, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(207, [\chi])\)\(^{\oplus 2}\)