Properties

Label 621.2
Level 621
Weight 2
Dimension 10886
Nonzero newspaces 12
Newform subspaces 32
Sturm bound 57024
Trace bound 5

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 621 = 3^{3} \cdot 23 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Newform subspaces: \( 32 \)
Sturm bound: \(57024\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(621))\).

Total New Old
Modular forms 14916 11558 3358
Cusp forms 13597 10886 2711
Eisenstein series 1319 672 647

Trace form

\( 10886 q - 76 q^{2} - 120 q^{3} - 138 q^{4} - 82 q^{5} - 132 q^{6} - 140 q^{7} - 100 q^{8} - 132 q^{9} - 148 q^{10} - 94 q^{11} - 156 q^{12} - 152 q^{13} - 118 q^{14} - 150 q^{15} - 162 q^{16} - 106 q^{17}+ \cdots - 78 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(621))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
621.2.a \(\chi_{621}(1, \cdot)\) 621.2.a.a 1 1
621.2.a.b 1
621.2.a.c 2
621.2.a.d 2
621.2.a.e 2
621.2.a.f 2
621.2.a.g 2
621.2.a.h 2
621.2.a.i 2
621.2.a.j 2
621.2.a.k 6
621.2.a.l 6
621.2.c \(\chi_{621}(620, \cdot)\) 621.2.c.a 16 1
621.2.c.b 16
621.2.e \(\chi_{621}(208, \cdot)\) 621.2.e.a 16 2
621.2.e.b 28
621.2.g \(\chi_{621}(206, \cdot)\) 621.2.g.a 12 2
621.2.g.b 32
621.2.i \(\chi_{621}(70, \cdot)\) 621.2.i.a 180 6
621.2.i.b 216
621.2.j \(\chi_{621}(55, \cdot)\) 621.2.j.a 80 10
621.2.j.b 80
621.2.j.c 80
621.2.j.d 80
621.2.m \(\chi_{621}(68, \cdot)\) 621.2.m.a 36 6
621.2.m.b 384
621.2.o \(\chi_{621}(53, \cdot)\) 621.2.o.a 160 10
621.2.o.b 160
621.2.q \(\chi_{621}(64, \cdot)\) 621.2.q.a 440 20
621.2.s \(\chi_{621}(17, \cdot)\) 621.2.s.a 440 20
621.2.u \(\chi_{621}(4, \cdot)\) 621.2.u.a 4200 60
621.2.v \(\chi_{621}(5, \cdot)\) 621.2.v.a 4200 60

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(621))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(621)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(207))\)\(^{\oplus 2}\)