Defining parameters
| Level: | \( N \) | = | \( 621 = 3^{3} \cdot 23 \) |
| Weight: | \( k \) | = | \( 2 \) |
| Nonzero newspaces: | \( 12 \) | ||
| Newform subspaces: | \( 32 \) | ||
| Sturm bound: | \(57024\) | ||
| Trace bound: | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(621))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 14916 | 11558 | 3358 |
| Cusp forms | 13597 | 10886 | 2711 |
| Eisenstein series | 1319 | 672 | 647 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(621))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
| Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
|---|---|---|---|---|
| 621.2.a | \(\chi_{621}(1, \cdot)\) | 621.2.a.a | 1 | 1 |
| 621.2.a.b | 1 | |||
| 621.2.a.c | 2 | |||
| 621.2.a.d | 2 | |||
| 621.2.a.e | 2 | |||
| 621.2.a.f | 2 | |||
| 621.2.a.g | 2 | |||
| 621.2.a.h | 2 | |||
| 621.2.a.i | 2 | |||
| 621.2.a.j | 2 | |||
| 621.2.a.k | 6 | |||
| 621.2.a.l | 6 | |||
| 621.2.c | \(\chi_{621}(620, \cdot)\) | 621.2.c.a | 16 | 1 |
| 621.2.c.b | 16 | |||
| 621.2.e | \(\chi_{621}(208, \cdot)\) | 621.2.e.a | 16 | 2 |
| 621.2.e.b | 28 | |||
| 621.2.g | \(\chi_{621}(206, \cdot)\) | 621.2.g.a | 12 | 2 |
| 621.2.g.b | 32 | |||
| 621.2.i | \(\chi_{621}(70, \cdot)\) | 621.2.i.a | 180 | 6 |
| 621.2.i.b | 216 | |||
| 621.2.j | \(\chi_{621}(55, \cdot)\) | 621.2.j.a | 80 | 10 |
| 621.2.j.b | 80 | |||
| 621.2.j.c | 80 | |||
| 621.2.j.d | 80 | |||
| 621.2.m | \(\chi_{621}(68, \cdot)\) | 621.2.m.a | 36 | 6 |
| 621.2.m.b | 384 | |||
| 621.2.o | \(\chi_{621}(53, \cdot)\) | 621.2.o.a | 160 | 10 |
| 621.2.o.b | 160 | |||
| 621.2.q | \(\chi_{621}(64, \cdot)\) | 621.2.q.a | 440 | 20 |
| 621.2.s | \(\chi_{621}(17, \cdot)\) | 621.2.s.a | 440 | 20 |
| 621.2.u | \(\chi_{621}(4, \cdot)\) | 621.2.u.a | 4200 | 60 |
| 621.2.v | \(\chi_{621}(5, \cdot)\) | 621.2.v.a | 4200 | 60 |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(621))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(621)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(207))\)\(^{\oplus 2}\)