Defining parameters
| Level: | \( N \) | \(=\) | \( 621 = 3^{3} \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 1 \) |
| Character orbit: | \([\chi]\) | \(=\) | 621.f (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 207 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(72\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(621, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 30 | 10 | 20 |
| Cusp forms | 18 | 6 | 12 |
| Eisenstein series | 12 | 4 | 8 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 6 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(621, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
| 621.1.f.a | $6$ | $0.310$ | \(\Q(\zeta_{18})\) | $D_{9}$ | \(\Q(\sqrt{-23}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\zeta_{18}-\zeta_{18}^{2})q^{2}+(\zeta_{18}^{2}-\zeta_{18}^{3}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(621, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(621, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(207, [\chi])\)\(^{\oplus 2}\)