Properties

Label 621.1.f
Level $621$
Weight $1$
Character orbit 621.f
Rep. character $\chi_{621}(91,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $6$
Newform subspaces $1$
Sturm bound $72$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 621 = 3^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 621.f (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 207 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(72\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(621, [\chi])\).

Total New Old
Modular forms 30 10 20
Cusp forms 18 6 12
Eisenstein series 12 4 8

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 6 0 0 0

Trace form

\( 6 q - 3 q^{4} + 6 q^{8} - 3 q^{16} + 3 q^{23} - 3 q^{25} - 12 q^{26} - 3 q^{32} - 3 q^{49} + 3 q^{52} + 3 q^{58} - 3 q^{59} + 6 q^{62} - 6 q^{82} + 3 q^{92} + 3 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(621, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
621.1.f.a 621.f 207.f $6$ $0.310$ \(\Q(\zeta_{18})\) $D_{9}$ \(\Q(\sqrt{-23}) \) None 207.1.f.a \(0\) \(0\) \(0\) \(0\) \(q+(\zeta_{18}-\zeta_{18}^{2})q^{2}+(\zeta_{18}^{2}-\zeta_{18}^{3}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(621, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(621, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(207, [\chi])\)\(^{\oplus 2}\)