Properties

Label 621.1
Level 621
Weight 1
Dimension 24
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 28512
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 621 = 3^{3} \cdot 23 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 2 \)
Sturm bound: \(28512\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(621))\).

Total New Old
Modular forms 702 360 342
Cusp forms 42 24 18
Eisenstein series 660 336 324

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 24 0 0 0

Trace form

\( 24 q - 3 q^{4} + 6 q^{8} - 9 q^{12} - 3 q^{16} + 3 q^{23} + 18 q^{24} - 3 q^{25} - 30 q^{26} + 15 q^{32} - 9 q^{48} - 3 q^{49} - 6 q^{52} - 6 q^{58} - 12 q^{59} + 6 q^{62} - 9 q^{64} - 6 q^{82} - 9 q^{87}+ \cdots - 6 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(621))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
621.1.b \(\chi_{621}(323, \cdot)\) None 0 1
621.1.d \(\chi_{621}(298, \cdot)\) None 0 1
621.1.f \(\chi_{621}(91, \cdot)\) 621.1.f.a 6 2
621.1.h \(\chi_{621}(116, \cdot)\) None 0 2
621.1.k \(\chi_{621}(22, \cdot)\) 621.1.k.a 18 6
621.1.l \(\chi_{621}(47, \cdot)\) None 0 6
621.1.n \(\chi_{621}(28, \cdot)\) None 0 10
621.1.p \(\chi_{621}(26, \cdot)\) None 0 10
621.1.r \(\chi_{621}(8, \cdot)\) None 0 20
621.1.t \(\chi_{621}(10, \cdot)\) None 0 20
621.1.w \(\chi_{621}(2, \cdot)\) None 0 60
621.1.x \(\chi_{621}(7, \cdot)\) None 0 60

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(621))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(621)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(207))\)\(^{\oplus 2}\)