Properties

Label 62.2.c
Level $62$
Weight $2$
Character orbit 62.c
Rep. character $\chi_{62}(5,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $4$
Newform subspaces $2$
Sturm bound $16$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 62 = 2 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 62.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 31 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(16\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(62, [\chi])\).

Total New Old
Modular forms 20 4 16
Cusp forms 12 4 8
Eisenstein series 8 0 8

Trace form

\( 4 q - 4 q^{3} + 4 q^{4} + 2 q^{5} - 2 q^{6} + 4 q^{7} - 4 q^{9} - 4 q^{10} - 4 q^{12} - 10 q^{13} + 2 q^{14} + 4 q^{16} - 6 q^{17} - 8 q^{18} + 2 q^{20} + 10 q^{21} + 6 q^{22} - 8 q^{23} - 2 q^{24} + 8 q^{27}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(62, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
62.2.c.a 62.c 31.c $2$ $0.495$ \(\Q(\sqrt{-3}) \) None 62.2.c.a \(-2\) \(-1\) \(3\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q-q^{2}+(-1+\zeta_{6})q^{3}+q^{4}+3\zeta_{6}q^{5}+\cdots\)
62.2.c.b 62.c 31.c $2$ $0.495$ \(\Q(\sqrt{-3}) \) None 62.2.c.b \(2\) \(-3\) \(-1\) \(3\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{2}+(-3+3\zeta_{6})q^{3}+q^{4}-\zeta_{6}q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(62, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(62, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 2}\)