Properties

Label 62.2.a
Level $62$
Weight $2$
Character orbit 62.a
Rep. character $\chi_{62}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $2$
Sturm bound $16$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 62 = 2 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 62.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(16\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(62))\).

Total New Old
Modular forms 10 3 7
Cusp forms 7 3 4
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(31\)FrickeDim
\(+\)\(-\)\(-\)\(2\)
\(-\)\(+\)\(-\)\(1\)
Plus space\(+\)\(0\)
Minus space\(-\)\(3\)

Trace form

\( 3 q - q^{2} + 2 q^{3} + 3 q^{4} - 2 q^{5} - 2 q^{6} + 4 q^{7} - q^{8} - q^{9} - 2 q^{10} - 6 q^{11} + 2 q^{12} - 4 q^{14} - 12 q^{15} + 3 q^{16} - 6 q^{17} - 5 q^{18} - 4 q^{19} - 2 q^{20} + 4 q^{21}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(62))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 31
62.2.a.a 62.a 1.a $1$ $0.495$ \(\Q\) None 62.2.a.a \(1\) \(0\) \(-2\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-2q^{5}+q^{8}-3q^{9}-2q^{10}+\cdots\)
62.2.a.b 62.a 1.a $2$ $0.495$ \(\Q(\sqrt{3}) \) None 62.2.a.b \(-2\) \(2\) \(0\) \(4\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(1+\beta )q^{3}+q^{4}-2\beta q^{5}+(-1+\cdots)q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(62))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(62)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 2}\)