Defining parameters
Level: | \( N \) | = | \( 619 \) |
Weight: | \( k \) | = | \( 2 \) |
Character orbit: | \([\chi]\) | = | 619.a (trivial) |
Character field: | \(\Q\) | ||
Newforms: | \( 2 \) | ||
Sturm bound: | \(103\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(619))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 52 | 52 | 0 |
Cusp forms | 51 | 51 | 0 |
Eisenstein series | 1 | 1 | 0 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators.
\(619\) | Dim. |
---|---|
\(+\) | \(21\) |
\(-\) | \(30\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(619))\) into irreducible Hecke orbits
Label | Dim. | \(A\) | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | 619 | |||||||
619.2.a.a | \(21\) | \(4.943\) | None | \(-9\) | \(-5\) | \(-21\) | \(-4\) | \(+\) | |||
619.2.a.b | \(30\) | \(4.943\) | None | \(9\) | \(1\) | \(21\) | \(2\) | \(-\) |