Properties

Label 6160.2.a.p.1.1
Level $6160$
Weight $2$
Character 6160.1
Self dual yes
Analytic conductor $49.188$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6160 = 2^{4} \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6160.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(49.1878476451\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 770)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 6160.1

$q$-expansion

\(f(q)\) \(=\) \(q+2.00000 q^{3} +1.00000 q^{5} +1.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+2.00000 q^{3} +1.00000 q^{5} +1.00000 q^{7} +1.00000 q^{9} -1.00000 q^{11} +2.00000 q^{15} +2.00000 q^{21} +4.00000 q^{23} +1.00000 q^{25} -4.00000 q^{27} +2.00000 q^{29} +2.00000 q^{31} -2.00000 q^{33} +1.00000 q^{35} -6.00000 q^{37} +8.00000 q^{41} +12.0000 q^{43} +1.00000 q^{45} +6.00000 q^{47} +1.00000 q^{49} -6.00000 q^{53} -1.00000 q^{55} +10.0000 q^{59} -4.00000 q^{61} +1.00000 q^{63} +8.00000 q^{67} +8.00000 q^{69} +4.00000 q^{71} -4.00000 q^{73} +2.00000 q^{75} -1.00000 q^{77} +16.0000 q^{79} -11.0000 q^{81} +4.00000 q^{87} -6.00000 q^{89} +4.00000 q^{93} +14.0000 q^{97} -1.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.00000 1.15470 0.577350 0.816497i \(-0.304087\pi\)
0.577350 + 0.816497i \(0.304087\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 2.00000 0.516398
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 0 0
\(33\) −2.00000 −0.348155
\(34\) 0 0
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.00000 1.24939 0.624695 0.780869i \(-0.285223\pi\)
0.624695 + 0.780869i \(0.285223\pi\)
\(42\) 0 0
\(43\) 12.0000 1.82998 0.914991 0.403473i \(-0.132197\pi\)
0.914991 + 0.403473i \(0.132197\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 6.00000 0.875190 0.437595 0.899172i \(-0.355830\pi\)
0.437595 + 0.899172i \(0.355830\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) −1.00000 −0.134840
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.0000 1.30189 0.650945 0.759125i \(-0.274373\pi\)
0.650945 + 0.759125i \(0.274373\pi\)
\(60\) 0 0
\(61\) −4.00000 −0.512148 −0.256074 0.966657i \(-0.582429\pi\)
−0.256074 + 0.966657i \(0.582429\pi\)
\(62\) 0 0
\(63\) 1.00000 0.125988
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 0 0
\(69\) 8.00000 0.963087
\(70\) 0 0
\(71\) 4.00000 0.474713 0.237356 0.971423i \(-0.423719\pi\)
0.237356 + 0.971423i \(0.423719\pi\)
\(72\) 0 0
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) 0 0
\(75\) 2.00000 0.230940
\(76\) 0 0
\(77\) −1.00000 −0.113961
\(78\) 0 0
\(79\) 16.0000 1.80014 0.900070 0.435745i \(-0.143515\pi\)
0.900070 + 0.435745i \(0.143515\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 4.00000 0.428845
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 4.00000 0.414781
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 0 0
\(99\) −1.00000 −0.100504
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 14.0000 1.37946 0.689730 0.724066i \(-0.257729\pi\)
0.689730 + 0.724066i \(0.257729\pi\)
\(104\) 0 0
\(105\) 2.00000 0.195180
\(106\) 0 0
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) −6.00000 −0.574696 −0.287348 0.957826i \(-0.592774\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) 0 0
\(111\) −12.0000 −1.13899
\(112\) 0 0
\(113\) 2.00000 0.188144 0.0940721 0.995565i \(-0.470012\pi\)
0.0940721 + 0.995565i \(0.470012\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 16.0000 1.44267
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) 24.0000 2.11308
\(130\) 0 0
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −4.00000 −0.344265
\(136\) 0 0
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) 0 0
\(139\) −8.00000 −0.678551 −0.339276 0.940687i \(-0.610182\pi\)
−0.339276 + 0.940687i \(0.610182\pi\)
\(140\) 0 0
\(141\) 12.0000 1.01058
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 2.00000 0.166091
\(146\) 0 0
\(147\) 2.00000 0.164957
\(148\) 0 0
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.00000 0.160644
\(156\) 0 0
\(157\) 6.00000 0.478852 0.239426 0.970915i \(-0.423041\pi\)
0.239426 + 0.970915i \(0.423041\pi\)
\(158\) 0 0
\(159\) −12.0000 −0.951662
\(160\) 0 0
\(161\) 4.00000 0.315244
\(162\) 0 0
\(163\) 8.00000 0.626608 0.313304 0.949653i \(-0.398564\pi\)
0.313304 + 0.949653i \(0.398564\pi\)
\(164\) 0 0
\(165\) −2.00000 −0.155700
\(166\) 0 0
\(167\) −16.0000 −1.23812 −0.619059 0.785345i \(-0.712486\pi\)
−0.619059 + 0.785345i \(0.712486\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 24.0000 1.82469 0.912343 0.409426i \(-0.134271\pi\)
0.912343 + 0.409426i \(0.134271\pi\)
\(174\) 0 0
\(175\) 1.00000 0.0755929
\(176\) 0 0
\(177\) 20.0000 1.50329
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) 0 0
\(183\) −8.00000 −0.591377
\(184\) 0 0
\(185\) −6.00000 −0.441129
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −4.00000 −0.290957
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) −22.0000 −1.58359 −0.791797 0.610784i \(-0.790854\pi\)
−0.791797 + 0.610784i \(0.790854\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.0000 0.997459 0.498729 0.866758i \(-0.333800\pi\)
0.498729 + 0.866758i \(0.333800\pi\)
\(198\) 0 0
\(199\) 6.00000 0.425329 0.212664 0.977125i \(-0.431786\pi\)
0.212664 + 0.977125i \(0.431786\pi\)
\(200\) 0 0
\(201\) 16.0000 1.12855
\(202\) 0 0
\(203\) 2.00000 0.140372
\(204\) 0 0
\(205\) 8.00000 0.558744
\(206\) 0 0
\(207\) 4.00000 0.278019
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) 0 0
\(213\) 8.00000 0.548151
\(214\) 0 0
\(215\) 12.0000 0.818393
\(216\) 0 0
\(217\) 2.00000 0.135769
\(218\) 0 0
\(219\) −8.00000 −0.540590
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 6.00000 0.401790 0.200895 0.979613i \(-0.435615\pi\)
0.200895 + 0.979613i \(0.435615\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) 0 0
\(229\) 2.00000 0.132164 0.0660819 0.997814i \(-0.478950\pi\)
0.0660819 + 0.997814i \(0.478950\pi\)
\(230\) 0 0
\(231\) −2.00000 −0.131590
\(232\) 0 0
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) 0 0
\(235\) 6.00000 0.391397
\(236\) 0 0
\(237\) 32.0000 2.07862
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −16.0000 −1.03065 −0.515325 0.856995i \(-0.672329\pi\)
−0.515325 + 0.856995i \(0.672329\pi\)
\(242\) 0 0
\(243\) −10.0000 −0.641500
\(244\) 0 0
\(245\) 1.00000 0.0638877
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −10.0000 −0.631194 −0.315597 0.948893i \(-0.602205\pi\)
−0.315597 + 0.948893i \(0.602205\pi\)
\(252\) 0 0
\(253\) −4.00000 −0.251478
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −14.0000 −0.873296 −0.436648 0.899632i \(-0.643834\pi\)
−0.436648 + 0.899632i \(0.643834\pi\)
\(258\) 0 0
\(259\) −6.00000 −0.372822
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) 0 0
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) 0 0
\(267\) −12.0000 −0.734388
\(268\) 0 0
\(269\) 10.0000 0.609711 0.304855 0.952399i \(-0.401392\pi\)
0.304855 + 0.952399i \(0.401392\pi\)
\(270\) 0 0
\(271\) −20.0000 −1.21491 −0.607457 0.794353i \(-0.707810\pi\)
−0.607457 + 0.794353i \(0.707810\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.00000 −0.0603023
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) 0 0
\(279\) 2.00000 0.119737
\(280\) 0 0
\(281\) −2.00000 −0.119310 −0.0596550 0.998219i \(-0.519000\pi\)
−0.0596550 + 0.998219i \(0.519000\pi\)
\(282\) 0 0
\(283\) −28.0000 −1.66443 −0.832214 0.554455i \(-0.812927\pi\)
−0.832214 + 0.554455i \(0.812927\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.00000 0.472225
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 28.0000 1.64139
\(292\) 0 0
\(293\) −4.00000 −0.233682 −0.116841 0.993151i \(-0.537277\pi\)
−0.116841 + 0.993151i \(0.537277\pi\)
\(294\) 0 0
\(295\) 10.0000 0.582223
\(296\) 0 0
\(297\) 4.00000 0.232104
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 12.0000 0.691669
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −4.00000 −0.229039
\(306\) 0 0
\(307\) −28.0000 −1.59804 −0.799022 0.601302i \(-0.794649\pi\)
−0.799022 + 0.601302i \(0.794649\pi\)
\(308\) 0 0
\(309\) 28.0000 1.59286
\(310\) 0 0
\(311\) 6.00000 0.340229 0.170114 0.985424i \(-0.445586\pi\)
0.170114 + 0.985424i \(0.445586\pi\)
\(312\) 0 0
\(313\) 2.00000 0.113047 0.0565233 0.998401i \(-0.481998\pi\)
0.0565233 + 0.998401i \(0.481998\pi\)
\(314\) 0 0
\(315\) 1.00000 0.0563436
\(316\) 0 0
\(317\) −2.00000 −0.112331 −0.0561656 0.998421i \(-0.517887\pi\)
−0.0561656 + 0.998421i \(0.517887\pi\)
\(318\) 0 0
\(319\) −2.00000 −0.111979
\(320\) 0 0
\(321\) −24.0000 −1.33955
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −12.0000 −0.663602
\(328\) 0 0
\(329\) 6.00000 0.330791
\(330\) 0 0
\(331\) −28.0000 −1.53902 −0.769510 0.638635i \(-0.779499\pi\)
−0.769510 + 0.638635i \(0.779499\pi\)
\(332\) 0 0
\(333\) −6.00000 −0.328798
\(334\) 0 0
\(335\) 8.00000 0.437087
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) 0 0
\(339\) 4.00000 0.217250
\(340\) 0 0
\(341\) −2.00000 −0.108306
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 8.00000 0.430706
\(346\) 0 0
\(347\) −28.0000 −1.50312 −0.751559 0.659665i \(-0.770698\pi\)
−0.751559 + 0.659665i \(0.770698\pi\)
\(348\) 0 0
\(349\) −20.0000 −1.07058 −0.535288 0.844670i \(-0.679797\pi\)
−0.535288 + 0.844670i \(0.679797\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) 0 0
\(355\) 4.00000 0.212298
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8.00000 0.422224 0.211112 0.977462i \(-0.432292\pi\)
0.211112 + 0.977462i \(0.432292\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 2.00000 0.104973
\(364\) 0 0
\(365\) −4.00000 −0.209370
\(366\) 0 0
\(367\) 22.0000 1.14839 0.574195 0.818718i \(-0.305315\pi\)
0.574195 + 0.818718i \(0.305315\pi\)
\(368\) 0 0
\(369\) 8.00000 0.416463
\(370\) 0 0
\(371\) −6.00000 −0.311504
\(372\) 0 0
\(373\) 14.0000 0.724893 0.362446 0.932005i \(-0.381942\pi\)
0.362446 + 0.932005i \(0.381942\pi\)
\(374\) 0 0
\(375\) 2.00000 0.103280
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) −16.0000 −0.819705
\(382\) 0 0
\(383\) 2.00000 0.102195 0.0510976 0.998694i \(-0.483728\pi\)
0.0510976 + 0.998694i \(0.483728\pi\)
\(384\) 0 0
\(385\) −1.00000 −0.0509647
\(386\) 0 0
\(387\) 12.0000 0.609994
\(388\) 0 0
\(389\) 22.0000 1.11544 0.557722 0.830028i \(-0.311675\pi\)
0.557722 + 0.830028i \(0.311675\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −8.00000 −0.403547
\(394\) 0 0
\(395\) 16.0000 0.805047
\(396\) 0 0
\(397\) −34.0000 −1.70641 −0.853206 0.521575i \(-0.825345\pi\)
−0.853206 + 0.521575i \(0.825345\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6.00000 −0.299626 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −11.0000 −0.546594
\(406\) 0 0
\(407\) 6.00000 0.297409
\(408\) 0 0
\(409\) 4.00000 0.197787 0.0988936 0.995098i \(-0.468470\pi\)
0.0988936 + 0.995098i \(0.468470\pi\)
\(410\) 0 0
\(411\) 12.0000 0.591916
\(412\) 0 0
\(413\) 10.0000 0.492068
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −16.0000 −0.783523
\(418\) 0 0
\(419\) 26.0000 1.27018 0.635092 0.772437i \(-0.280962\pi\)
0.635092 + 0.772437i \(0.280962\pi\)
\(420\) 0 0
\(421\) 18.0000 0.877266 0.438633 0.898666i \(-0.355463\pi\)
0.438633 + 0.898666i \(0.355463\pi\)
\(422\) 0 0
\(423\) 6.00000 0.291730
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −4.00000 −0.193574
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) 0 0
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) 0 0
\(435\) 4.00000 0.191785
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −4.00000 −0.190910 −0.0954548 0.995434i \(-0.530431\pi\)
−0.0954548 + 0.995434i \(0.530431\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 20.0000 0.950229 0.475114 0.879924i \(-0.342407\pi\)
0.475114 + 0.879924i \(0.342407\pi\)
\(444\) 0 0
\(445\) −6.00000 −0.284427
\(446\) 0 0
\(447\) 12.0000 0.567581
\(448\) 0 0
\(449\) −10.0000 −0.471929 −0.235965 0.971762i \(-0.575825\pi\)
−0.235965 + 0.971762i \(0.575825\pi\)
\(450\) 0 0
\(451\) −8.00000 −0.376705
\(452\) 0 0
\(453\) 16.0000 0.751746
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 26.0000 1.21623 0.608114 0.793849i \(-0.291926\pi\)
0.608114 + 0.793849i \(0.291926\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −20.0000 −0.931493 −0.465746 0.884918i \(-0.654214\pi\)
−0.465746 + 0.884918i \(0.654214\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) 0 0
\(465\) 4.00000 0.185496
\(466\) 0 0
\(467\) 30.0000 1.38823 0.694117 0.719862i \(-0.255795\pi\)
0.694117 + 0.719862i \(0.255795\pi\)
\(468\) 0 0
\(469\) 8.00000 0.369406
\(470\) 0 0
\(471\) 12.0000 0.552931
\(472\) 0 0
\(473\) −12.0000 −0.551761
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −6.00000 −0.274721
\(478\) 0 0
\(479\) −20.0000 −0.913823 −0.456912 0.889512i \(-0.651044\pi\)
−0.456912 + 0.889512i \(0.651044\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 8.00000 0.364013
\(484\) 0 0
\(485\) 14.0000 0.635707
\(486\) 0 0
\(487\) −20.0000 −0.906287 −0.453143 0.891438i \(-0.649697\pi\)
−0.453143 + 0.891438i \(0.649697\pi\)
\(488\) 0 0
\(489\) 16.0000 0.723545
\(490\) 0 0
\(491\) −36.0000 −1.62466 −0.812329 0.583200i \(-0.801800\pi\)
−0.812329 + 0.583200i \(0.801800\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −1.00000 −0.0449467
\(496\) 0 0
\(497\) 4.00000 0.179425
\(498\) 0 0
\(499\) 40.0000 1.79065 0.895323 0.445418i \(-0.146945\pi\)
0.895323 + 0.445418i \(0.146945\pi\)
\(500\) 0 0
\(501\) −32.0000 −1.42965
\(502\) 0 0
\(503\) −12.0000 −0.535054 −0.267527 0.963550i \(-0.586206\pi\)
−0.267527 + 0.963550i \(0.586206\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −26.0000 −1.15470
\(508\) 0 0
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 0 0
\(511\) −4.00000 −0.176950
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 14.0000 0.616914
\(516\) 0 0
\(517\) −6.00000 −0.263880
\(518\) 0 0
\(519\) 48.0000 2.10697
\(520\) 0 0
\(521\) −34.0000 −1.48957 −0.744784 0.667306i \(-0.767447\pi\)
−0.744784 + 0.667306i \(0.767447\pi\)
\(522\) 0 0
\(523\) −28.0000 −1.22435 −0.612177 0.790721i \(-0.709706\pi\)
−0.612177 + 0.790721i \(0.709706\pi\)
\(524\) 0 0
\(525\) 2.00000 0.0872872
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 10.0000 0.433963
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −12.0000 −0.518805
\(536\) 0 0
\(537\) −24.0000 −1.03568
\(538\) 0 0
\(539\) −1.00000 −0.0430730
\(540\) 0 0
\(541\) −10.0000 −0.429934 −0.214967 0.976621i \(-0.568964\pi\)
−0.214967 + 0.976621i \(0.568964\pi\)
\(542\) 0 0
\(543\) −12.0000 −0.514969
\(544\) 0 0
\(545\) −6.00000 −0.257012
\(546\) 0 0
\(547\) 44.0000 1.88130 0.940652 0.339372i \(-0.110215\pi\)
0.940652 + 0.339372i \(0.110215\pi\)
\(548\) 0 0
\(549\) −4.00000 −0.170716
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 16.0000 0.680389
\(554\) 0 0
\(555\) −12.0000 −0.509372
\(556\) 0 0
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −32.0000 −1.34864 −0.674320 0.738440i \(-0.735563\pi\)
−0.674320 + 0.738440i \(0.735563\pi\)
\(564\) 0 0
\(565\) 2.00000 0.0841406
\(566\) 0 0
\(567\) −11.0000 −0.461957
\(568\) 0 0
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) −20.0000 −0.836974 −0.418487 0.908223i \(-0.637439\pi\)
−0.418487 + 0.908223i \(0.637439\pi\)
\(572\) 0 0
\(573\) 16.0000 0.668410
\(574\) 0 0
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) −26.0000 −1.08239 −0.541197 0.840896i \(-0.682029\pi\)
−0.541197 + 0.840896i \(0.682029\pi\)
\(578\) 0 0
\(579\) −44.0000 −1.82858
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 6.00000 0.248495
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2.00000 −0.0825488 −0.0412744 0.999148i \(-0.513142\pi\)
−0.0412744 + 0.999148i \(0.513142\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 28.0000 1.15177
\(592\) 0 0
\(593\) −12.0000 −0.492781 −0.246390 0.969171i \(-0.579245\pi\)
−0.246390 + 0.969171i \(0.579245\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 12.0000 0.491127
\(598\) 0 0
\(599\) −20.0000 −0.817178 −0.408589 0.912719i \(-0.633979\pi\)
−0.408589 + 0.912719i \(0.633979\pi\)
\(600\) 0 0
\(601\) −8.00000 −0.326327 −0.163163 0.986599i \(-0.552170\pi\)
−0.163163 + 0.986599i \(0.552170\pi\)
\(602\) 0 0
\(603\) 8.00000 0.325785
\(604\) 0 0
\(605\) 1.00000 0.0406558
\(606\) 0 0
\(607\) −24.0000 −0.974130 −0.487065 0.873366i \(-0.661933\pi\)
−0.487065 + 0.873366i \(0.661933\pi\)
\(608\) 0 0
\(609\) 4.00000 0.162088
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −6.00000 −0.242338 −0.121169 0.992632i \(-0.538664\pi\)
−0.121169 + 0.992632i \(0.538664\pi\)
\(614\) 0 0
\(615\) 16.0000 0.645182
\(616\) 0 0
\(617\) −42.0000 −1.69086 −0.845428 0.534089i \(-0.820655\pi\)
−0.845428 + 0.534089i \(0.820655\pi\)
\(618\) 0 0
\(619\) 22.0000 0.884255 0.442127 0.896952i \(-0.354224\pi\)
0.442127 + 0.896952i \(0.354224\pi\)
\(620\) 0 0
\(621\) −16.0000 −0.642058
\(622\) 0 0
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 0 0
\(633\) 24.0000 0.953914
\(634\) 0 0
\(635\) −8.00000 −0.317470
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 4.00000 0.158238
\(640\) 0 0
\(641\) 46.0000 1.81689 0.908445 0.418004i \(-0.137270\pi\)
0.908445 + 0.418004i \(0.137270\pi\)
\(642\) 0 0
\(643\) −34.0000 −1.34083 −0.670415 0.741987i \(-0.733884\pi\)
−0.670415 + 0.741987i \(0.733884\pi\)
\(644\) 0 0
\(645\) 24.0000 0.944999
\(646\) 0 0
\(647\) 42.0000 1.65119 0.825595 0.564263i \(-0.190840\pi\)
0.825595 + 0.564263i \(0.190840\pi\)
\(648\) 0 0
\(649\) −10.0000 −0.392534
\(650\) 0 0
\(651\) 4.00000 0.156772
\(652\) 0 0
\(653\) 22.0000 0.860927 0.430463 0.902608i \(-0.358350\pi\)
0.430463 + 0.902608i \(0.358350\pi\)
\(654\) 0 0
\(655\) −4.00000 −0.156293
\(656\) 0 0
\(657\) −4.00000 −0.156055
\(658\) 0 0
\(659\) 20.0000 0.779089 0.389545 0.921008i \(-0.372632\pi\)
0.389545 + 0.921008i \(0.372632\pi\)
\(660\) 0 0
\(661\) 46.0000 1.78919 0.894596 0.446875i \(-0.147463\pi\)
0.894596 + 0.446875i \(0.147463\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 8.00000 0.309761
\(668\) 0 0
\(669\) 12.0000 0.463947
\(670\) 0 0
\(671\) 4.00000 0.154418
\(672\) 0 0
\(673\) 14.0000 0.539660 0.269830 0.962908i \(-0.413032\pi\)
0.269830 + 0.962908i \(0.413032\pi\)
\(674\) 0 0
\(675\) −4.00000 −0.153960
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 14.0000 0.537271
\(680\) 0 0
\(681\) −8.00000 −0.306561
\(682\) 0 0
\(683\) −20.0000 −0.765279 −0.382639 0.923898i \(-0.624985\pi\)
−0.382639 + 0.923898i \(0.624985\pi\)
\(684\) 0 0
\(685\) 6.00000 0.229248
\(686\) 0 0
\(687\) 4.00000 0.152610
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −6.00000 −0.228251 −0.114125 0.993466i \(-0.536407\pi\)
−0.114125 + 0.993466i \(0.536407\pi\)
\(692\) 0 0
\(693\) −1.00000 −0.0379869
\(694\) 0 0
\(695\) −8.00000 −0.303457
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −36.0000 −1.36165
\(700\) 0 0
\(701\) −14.0000 −0.528773 −0.264386 0.964417i \(-0.585169\pi\)
−0.264386 + 0.964417i \(0.585169\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 12.0000 0.451946
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 30.0000 1.12667 0.563337 0.826227i \(-0.309517\pi\)
0.563337 + 0.826227i \(0.309517\pi\)
\(710\) 0 0
\(711\) 16.0000 0.600047
\(712\) 0 0
\(713\) 8.00000 0.299602
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 34.0000 1.26799 0.633993 0.773339i \(-0.281415\pi\)
0.633993 + 0.773339i \(0.281415\pi\)
\(720\) 0 0
\(721\) 14.0000 0.521387
\(722\) 0 0
\(723\) −32.0000 −1.19009
\(724\) 0 0
\(725\) 2.00000 0.0742781
\(726\) 0 0
\(727\) −14.0000 −0.519231 −0.259616 0.965712i \(-0.583596\pi\)
−0.259616 + 0.965712i \(0.583596\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 4.00000 0.147743 0.0738717 0.997268i \(-0.476464\pi\)
0.0738717 + 0.997268i \(0.476464\pi\)
\(734\) 0 0
\(735\) 2.00000 0.0737711
\(736\) 0 0
\(737\) −8.00000 −0.294684
\(738\) 0 0
\(739\) −12.0000 −0.441427 −0.220714 0.975339i \(-0.570839\pi\)
−0.220714 + 0.975339i \(0.570839\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 8.00000 0.293492 0.146746 0.989174i \(-0.453120\pi\)
0.146746 + 0.989174i \(0.453120\pi\)
\(744\) 0 0
\(745\) 6.00000 0.219823
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −12.0000 −0.438470
\(750\) 0 0
\(751\) −52.0000 −1.89751 −0.948753 0.316017i \(-0.897654\pi\)
−0.948753 + 0.316017i \(0.897654\pi\)
\(752\) 0 0
\(753\) −20.0000 −0.728841
\(754\) 0 0
\(755\) 8.00000 0.291150
\(756\) 0 0
\(757\) −26.0000 −0.944986 −0.472493 0.881334i \(-0.656646\pi\)
−0.472493 + 0.881334i \(0.656646\pi\)
\(758\) 0 0
\(759\) −8.00000 −0.290382
\(760\) 0 0
\(761\) 12.0000 0.435000 0.217500 0.976060i \(-0.430210\pi\)
0.217500 + 0.976060i \(0.430210\pi\)
\(762\) 0 0
\(763\) −6.00000 −0.217215
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 12.0000 0.432731 0.216366 0.976312i \(-0.430580\pi\)
0.216366 + 0.976312i \(0.430580\pi\)
\(770\) 0 0
\(771\) −28.0000 −1.00840
\(772\) 0 0
\(773\) 18.0000 0.647415 0.323708 0.946157i \(-0.395071\pi\)
0.323708 + 0.946157i \(0.395071\pi\)
\(774\) 0 0
\(775\) 2.00000 0.0718421
\(776\) 0 0
\(777\) −12.0000 −0.430498
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −4.00000 −0.143131
\(782\) 0 0
\(783\) −8.00000 −0.285897
\(784\) 0 0
\(785\) 6.00000 0.214149
\(786\) 0 0
\(787\) −48.0000 −1.71102 −0.855508 0.517790i \(-0.826755\pi\)
−0.855508 + 0.517790i \(0.826755\pi\)
\(788\) 0 0
\(789\) 48.0000 1.70885
\(790\) 0 0
\(791\) 2.00000 0.0711118
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −12.0000 −0.425596
\(796\) 0 0
\(797\) 6.00000 0.212531 0.106265 0.994338i \(-0.466111\pi\)
0.106265 + 0.994338i \(0.466111\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) 0 0
\(803\) 4.00000 0.141157
\(804\) 0 0
\(805\) 4.00000 0.140981
\(806\) 0 0
\(807\) 20.0000 0.704033
\(808\) 0 0
\(809\) 18.0000 0.632846 0.316423 0.948618i \(-0.397518\pi\)
0.316423 + 0.948618i \(0.397518\pi\)
\(810\) 0 0
\(811\) 44.0000 1.54505 0.772524 0.634985i \(-0.218994\pi\)
0.772524 + 0.634985i \(0.218994\pi\)
\(812\) 0 0
\(813\) −40.0000 −1.40286
\(814\) 0 0
\(815\) 8.00000 0.280228
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −34.0000 −1.18661 −0.593304 0.804978i \(-0.702177\pi\)
−0.593304 + 0.804978i \(0.702177\pi\)
\(822\) 0 0
\(823\) −32.0000 −1.11545 −0.557725 0.830026i \(-0.688326\pi\)
−0.557725 + 0.830026i \(0.688326\pi\)
\(824\) 0 0
\(825\) −2.00000 −0.0696311
\(826\) 0 0
\(827\) 36.0000 1.25184 0.625921 0.779886i \(-0.284723\pi\)
0.625921 + 0.779886i \(0.284723\pi\)
\(828\) 0 0
\(829\) −10.0000 −0.347314 −0.173657 0.984806i \(-0.555558\pi\)
−0.173657 + 0.984806i \(0.555558\pi\)
\(830\) 0 0
\(831\) −4.00000 −0.138758
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −16.0000 −0.553703
\(836\) 0 0
\(837\) −8.00000 −0.276520
\(838\) 0 0
\(839\) 10.0000 0.345238 0.172619 0.984989i \(-0.444777\pi\)
0.172619 + 0.984989i \(0.444777\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) −4.00000 −0.137767
\(844\) 0 0
\(845\) −13.0000 −0.447214
\(846\) 0 0
\(847\) 1.00000 0.0343604
\(848\) 0 0
\(849\) −56.0000 −1.92192
\(850\) 0 0
\(851\) −24.0000 −0.822709
\(852\) 0 0
\(853\) −8.00000 −0.273915 −0.136957 0.990577i \(-0.543732\pi\)
−0.136957 + 0.990577i \(0.543732\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 12.0000 0.409912 0.204956 0.978771i \(-0.434295\pi\)
0.204956 + 0.978771i \(0.434295\pi\)
\(858\) 0 0
\(859\) −2.00000 −0.0682391 −0.0341196 0.999418i \(-0.510863\pi\)
−0.0341196 + 0.999418i \(0.510863\pi\)
\(860\) 0 0
\(861\) 16.0000 0.545279
\(862\) 0 0
\(863\) 32.0000 1.08929 0.544646 0.838666i \(-0.316664\pi\)
0.544646 + 0.838666i \(0.316664\pi\)
\(864\) 0 0
\(865\) 24.0000 0.816024
\(866\) 0 0
\(867\) −34.0000 −1.15470
\(868\) 0 0
\(869\) −16.0000 −0.542763
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 14.0000 0.473828
\(874\) 0 0
\(875\) 1.00000 0.0338062
\(876\) 0 0
\(877\) 10.0000 0.337676 0.168838 0.985644i \(-0.445999\pi\)
0.168838 + 0.985644i \(0.445999\pi\)
\(878\) 0 0
\(879\) −8.00000 −0.269833
\(880\) 0 0
\(881\) −26.0000 −0.875962 −0.437981 0.898984i \(-0.644306\pi\)
−0.437981 + 0.898984i \(0.644306\pi\)
\(882\) 0 0
\(883\) 44.0000 1.48072 0.740359 0.672212i \(-0.234656\pi\)
0.740359 + 0.672212i \(0.234656\pi\)
\(884\) 0 0
\(885\) 20.0000 0.672293
\(886\) 0 0
\(887\) 52.0000 1.74599 0.872995 0.487730i \(-0.162175\pi\)
0.872995 + 0.487730i \(0.162175\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) 0 0
\(891\) 11.0000 0.368514
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −12.0000 −0.401116
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 4.00000 0.133407
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 24.0000 0.798670
\(904\) 0 0
\(905\) −6.00000 −0.199447
\(906\) 0 0
\(907\) −48.0000 −1.59381 −0.796907 0.604102i \(-0.793532\pi\)
−0.796907 + 0.604102i \(0.793532\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −28.0000 −0.927681 −0.463841 0.885919i \(-0.653529\pi\)
−0.463841 + 0.885919i \(0.653529\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −8.00000 −0.264472
\(916\) 0 0
\(917\) −4.00000 −0.132092
\(918\) 0 0
\(919\) 8.00000 0.263896 0.131948 0.991257i \(-0.457877\pi\)
0.131948 + 0.991257i \(0.457877\pi\)
\(920\) 0 0
\(921\) −56.0000 −1.84526
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −6.00000 −0.197279
\(926\) 0 0
\(927\) 14.0000 0.459820
\(928\) 0 0
\(929\) 30.0000 0.984268 0.492134 0.870519i \(-0.336217\pi\)
0.492134 + 0.870519i \(0.336217\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 12.0000 0.392862
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 36.0000 1.17607 0.588034 0.808836i \(-0.299902\pi\)
0.588034 + 0.808836i \(0.299902\pi\)
\(938\) 0 0
\(939\) 4.00000 0.130535
\(940\) 0 0
\(941\) −60.0000 −1.95594 −0.977972 0.208736i \(-0.933065\pi\)
−0.977972 + 0.208736i \(0.933065\pi\)
\(942\) 0 0
\(943\) 32.0000 1.04206
\(944\) 0 0
\(945\) −4.00000 −0.130120
\(946\) 0 0
\(947\) 12.0000 0.389948 0.194974 0.980808i \(-0.437538\pi\)
0.194974 + 0.980808i \(0.437538\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −4.00000 −0.129709
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 8.00000 0.258874
\(956\) 0 0
\(957\) −4.00000 −0.129302
\(958\) 0 0
\(959\) 6.00000 0.193750
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) −12.0000 −0.386695
\(964\) 0 0
\(965\) −22.0000 −0.708205
\(966\) 0 0
\(967\) 48.0000 1.54358 0.771788 0.635880i \(-0.219363\pi\)
0.771788 + 0.635880i \(0.219363\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −26.0000 −0.834380 −0.417190 0.908819i \(-0.636985\pi\)
−0.417190 + 0.908819i \(0.636985\pi\)
\(972\) 0 0
\(973\) −8.00000 −0.256468
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 42.0000 1.34370 0.671850 0.740688i \(-0.265500\pi\)
0.671850 + 0.740688i \(0.265500\pi\)
\(978\) 0 0
\(979\) 6.00000 0.191761
\(980\) 0 0
\(981\) −6.00000 −0.191565
\(982\) 0 0
\(983\) 22.0000 0.701691 0.350846 0.936433i \(-0.385894\pi\)
0.350846 + 0.936433i \(0.385894\pi\)
\(984\) 0 0
\(985\) 14.0000 0.446077
\(986\) 0 0
\(987\) 12.0000 0.381964
\(988\) 0 0
\(989\) 48.0000 1.52631
\(990\) 0 0
\(991\) 4.00000 0.127064 0.0635321 0.997980i \(-0.479763\pi\)
0.0635321 + 0.997980i \(0.479763\pi\)
\(992\) 0 0
\(993\) −56.0000 −1.77711
\(994\) 0 0
\(995\) 6.00000 0.190213
\(996\) 0 0
\(997\) −48.0000 −1.52018 −0.760088 0.649821i \(-0.774844\pi\)
−0.760088 + 0.649821i \(0.774844\pi\)
\(998\) 0 0
\(999\) 24.0000 0.759326
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6160.2.a.p.1.1 1
4.3 odd 2 770.2.a.b.1.1 1
12.11 even 2 6930.2.a.s.1.1 1
20.3 even 4 3850.2.c.p.1849.2 2
20.7 even 4 3850.2.c.p.1849.1 2
20.19 odd 2 3850.2.a.bb.1.1 1
28.27 even 2 5390.2.a.q.1.1 1
44.43 even 2 8470.2.a.v.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
770.2.a.b.1.1 1 4.3 odd 2
3850.2.a.bb.1.1 1 20.19 odd 2
3850.2.c.p.1849.1 2 20.7 even 4
3850.2.c.p.1849.2 2 20.3 even 4
5390.2.a.q.1.1 1 28.27 even 2
6160.2.a.p.1.1 1 1.1 even 1 trivial
6930.2.a.s.1.1 1 12.11 even 2
8470.2.a.v.1.1 1 44.43 even 2