# Properties

 Label 6160.2.a.g Level $6160$ Weight $2$ Character orbit 6160.a Self dual yes Analytic conductor $49.188$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$6160 = 2^{4} \cdot 5 \cdot 7 \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 6160.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$49.1878476451$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 385) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q + q^{5} + q^{7} - 3 q^{9} + O(q^{10})$$ $$q + q^{5} + q^{7} - 3 q^{9} - q^{11} - 6 q^{13} + 6 q^{17} + 4 q^{19} + 8 q^{23} + q^{25} - 10 q^{29} + 4 q^{31} + q^{35} + 6 q^{37} - 10 q^{41} - 4 q^{43} - 3 q^{45} + 4 q^{47} + q^{49} + 6 q^{53} - q^{55} - 6 q^{61} - 3 q^{63} - 6 q^{65} - 4 q^{67} + 6 q^{73} - q^{77} + 8 q^{79} + 9 q^{81} - 12 q^{83} + 6 q^{85} + 10 q^{89} - 6 q^{91} + 4 q^{95} + 10 q^{97} + 3 q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 1.00000 0 1.00000 0 −3.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$-1$$
$$7$$ $$-1$$
$$11$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6160.2.a.g 1
4.b odd 2 1 385.2.a.b 1
12.b even 2 1 3465.2.a.k 1
20.d odd 2 1 1925.2.a.i 1
20.e even 4 2 1925.2.b.b 2
28.d even 2 1 2695.2.a.a 1
44.c even 2 1 4235.2.a.g 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
385.2.a.b 1 4.b odd 2 1
1925.2.a.i 1 20.d odd 2 1
1925.2.b.b 2 20.e even 4 2
2695.2.a.a 1 28.d even 2 1
3465.2.a.k 1 12.b even 2 1
4235.2.a.g 1 44.c even 2 1
6160.2.a.g 1 1.a even 1 1 trivial

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(6160))$$:

 $$T_{3}$$ $$T_{13} + 6$$ $$T_{17} - 6$$ $$T_{19} - 4$$ $$T_{23} - 8$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$-1 + T$$
$7$ $$-1 + T$$
$11$ $$1 + T$$
$13$ $$6 + T$$
$17$ $$-6 + T$$
$19$ $$-4 + T$$
$23$ $$-8 + T$$
$29$ $$10 + T$$
$31$ $$-4 + T$$
$37$ $$-6 + T$$
$41$ $$10 + T$$
$43$ $$4 + T$$
$47$ $$-4 + T$$
$53$ $$-6 + T$$
$59$ $$T$$
$61$ $$6 + T$$
$67$ $$4 + T$$
$71$ $$T$$
$73$ $$-6 + T$$
$79$ $$-8 + T$$
$83$ $$12 + T$$
$89$ $$-10 + T$$
$97$ $$-10 + T$$