# Properties

 Label 6160.2.a.e.1.1 Level $6160$ Weight $2$ Character 6160.1 Self dual yes Analytic conductor $49.188$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$6160 = 2^{4} \cdot 5 \cdot 7 \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 6160.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$49.1878476451$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 770) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 6160.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+1.00000 q^{5} -1.00000 q^{7} -3.00000 q^{9} +O(q^{10})$$ $$q+1.00000 q^{5} -1.00000 q^{7} -3.00000 q^{9} +1.00000 q^{11} -6.00000 q^{13} -2.00000 q^{17} +4.00000 q^{19} +4.00000 q^{23} +1.00000 q^{25} +6.00000 q^{29} -1.00000 q^{35} -2.00000 q^{37} -6.00000 q^{41} +4.00000 q^{43} -3.00000 q^{45} -4.00000 q^{47} +1.00000 q^{49} -2.00000 q^{53} +1.00000 q^{55} -12.0000 q^{59} -2.00000 q^{61} +3.00000 q^{63} -6.00000 q^{65} +8.00000 q^{67} +8.00000 q^{71} -10.0000 q^{73} -1.00000 q^{77} +8.00000 q^{79} +9.00000 q^{81} +12.0000 q^{83} -2.00000 q^{85} +10.0000 q^{89} +6.00000 q^{91} +4.00000 q^{95} -6.00000 q^{97} -3.00000 q^{99} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$4$$ 0 0
$$5$$ 1.00000 0.447214
$$6$$ 0 0
$$7$$ −1.00000 −0.377964
$$8$$ 0 0
$$9$$ −3.00000 −1.00000
$$10$$ 0 0
$$11$$ 1.00000 0.301511
$$12$$ 0 0
$$13$$ −6.00000 −1.66410 −0.832050 0.554700i $$-0.812833\pi$$
−0.832050 + 0.554700i $$0.812833\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ −2.00000 −0.485071 −0.242536 0.970143i $$-0.577979\pi$$
−0.242536 + 0.970143i $$0.577979\pi$$
$$18$$ 0 0
$$19$$ 4.00000 0.917663 0.458831 0.888523i $$-0.348268\pi$$
0.458831 + 0.888523i $$0.348268\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 4.00000 0.834058 0.417029 0.908893i $$-0.363071\pi$$
0.417029 + 0.908893i $$0.363071\pi$$
$$24$$ 0 0
$$25$$ 1.00000 0.200000
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ 6.00000 1.11417 0.557086 0.830455i $$-0.311919\pi$$
0.557086 + 0.830455i $$0.311919\pi$$
$$30$$ 0 0
$$31$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ −1.00000 −0.169031
$$36$$ 0 0
$$37$$ −2.00000 −0.328798 −0.164399 0.986394i $$-0.552568\pi$$
−0.164399 + 0.986394i $$0.552568\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ −6.00000 −0.937043 −0.468521 0.883452i $$-0.655213\pi$$
−0.468521 + 0.883452i $$0.655213\pi$$
$$42$$ 0 0
$$43$$ 4.00000 0.609994 0.304997 0.952353i $$-0.401344\pi$$
0.304997 + 0.952353i $$0.401344\pi$$
$$44$$ 0 0
$$45$$ −3.00000 −0.447214
$$46$$ 0 0
$$47$$ −4.00000 −0.583460 −0.291730 0.956501i $$-0.594231\pi$$
−0.291730 + 0.956501i $$0.594231\pi$$
$$48$$ 0 0
$$49$$ 1.00000 0.142857
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ −2.00000 −0.274721 −0.137361 0.990521i $$-0.543862\pi$$
−0.137361 + 0.990521i $$0.543862\pi$$
$$54$$ 0 0
$$55$$ 1.00000 0.134840
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ −12.0000 −1.56227 −0.781133 0.624364i $$-0.785358\pi$$
−0.781133 + 0.624364i $$0.785358\pi$$
$$60$$ 0 0
$$61$$ −2.00000 −0.256074 −0.128037 0.991769i $$-0.540868\pi$$
−0.128037 + 0.991769i $$0.540868\pi$$
$$62$$ 0 0
$$63$$ 3.00000 0.377964
$$64$$ 0 0
$$65$$ −6.00000 −0.744208
$$66$$ 0 0
$$67$$ 8.00000 0.977356 0.488678 0.872464i $$-0.337479\pi$$
0.488678 + 0.872464i $$0.337479\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 8.00000 0.949425 0.474713 0.880141i $$-0.342552\pi$$
0.474713 + 0.880141i $$0.342552\pi$$
$$72$$ 0 0
$$73$$ −10.0000 −1.17041 −0.585206 0.810885i $$-0.698986\pi$$
−0.585206 + 0.810885i $$0.698986\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ −1.00000 −0.113961
$$78$$ 0 0
$$79$$ 8.00000 0.900070 0.450035 0.893011i $$-0.351411\pi$$
0.450035 + 0.893011i $$0.351411\pi$$
$$80$$ 0 0
$$81$$ 9.00000 1.00000
$$82$$ 0 0
$$83$$ 12.0000 1.31717 0.658586 0.752506i $$-0.271155\pi$$
0.658586 + 0.752506i $$0.271155\pi$$
$$84$$ 0 0
$$85$$ −2.00000 −0.216930
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 10.0000 1.06000 0.529999 0.847998i $$-0.322192\pi$$
0.529999 + 0.847998i $$0.322192\pi$$
$$90$$ 0 0
$$91$$ 6.00000 0.628971
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 4.00000 0.410391
$$96$$ 0 0
$$97$$ −6.00000 −0.609208 −0.304604 0.952479i $$-0.598524\pi$$
−0.304604 + 0.952479i $$0.598524\pi$$
$$98$$ 0 0
$$99$$ −3.00000 −0.301511
$$100$$ 0 0
$$101$$ 14.0000 1.39305 0.696526 0.717532i $$-0.254728\pi$$
0.696526 + 0.717532i $$0.254728\pi$$
$$102$$ 0 0
$$103$$ 4.00000 0.394132 0.197066 0.980390i $$-0.436859\pi$$
0.197066 + 0.980390i $$0.436859\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ −4.00000 −0.386695 −0.193347 0.981130i $$-0.561934\pi$$
−0.193347 + 0.981130i $$0.561934\pi$$
$$108$$ 0 0
$$109$$ 14.0000 1.34096 0.670478 0.741929i $$-0.266089\pi$$
0.670478 + 0.741929i $$0.266089\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ −6.00000 −0.564433 −0.282216 0.959351i $$-0.591070\pi$$
−0.282216 + 0.959351i $$0.591070\pi$$
$$114$$ 0 0
$$115$$ 4.00000 0.373002
$$116$$ 0 0
$$117$$ 18.0000 1.66410
$$118$$ 0 0
$$119$$ 2.00000 0.183340
$$120$$ 0 0
$$121$$ 1.00000 0.0909091
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 1.00000 0.0894427
$$126$$ 0 0
$$127$$ 8.00000 0.709885 0.354943 0.934888i $$-0.384500\pi$$
0.354943 + 0.934888i $$0.384500\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ 12.0000 1.04844 0.524222 0.851581i $$-0.324356\pi$$
0.524222 + 0.851581i $$0.324356\pi$$
$$132$$ 0 0
$$133$$ −4.00000 −0.346844
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 18.0000 1.53784 0.768922 0.639343i $$-0.220793\pi$$
0.768922 + 0.639343i $$0.220793\pi$$
$$138$$ 0 0
$$139$$ 20.0000 1.69638 0.848189 0.529694i $$-0.177693\pi$$
0.848189 + 0.529694i $$0.177693\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ −6.00000 −0.501745
$$144$$ 0 0
$$145$$ 6.00000 0.498273
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ 6.00000 0.491539 0.245770 0.969328i $$-0.420959\pi$$
0.245770 + 0.969328i $$0.420959\pi$$
$$150$$ 0 0
$$151$$ −8.00000 −0.651031 −0.325515 0.945537i $$-0.605538\pi$$
−0.325515 + 0.945537i $$0.605538\pi$$
$$152$$ 0 0
$$153$$ 6.00000 0.485071
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ −2.00000 −0.159617 −0.0798087 0.996810i $$-0.525431\pi$$
−0.0798087 + 0.996810i $$0.525431\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ −4.00000 −0.315244
$$162$$ 0 0
$$163$$ −8.00000 −0.626608 −0.313304 0.949653i $$-0.601436\pi$$
−0.313304 + 0.949653i $$0.601436\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$168$$ 0 0
$$169$$ 23.0000 1.76923
$$170$$ 0 0
$$171$$ −12.0000 −0.917663
$$172$$ 0 0
$$173$$ −14.0000 −1.06440 −0.532200 0.846619i $$-0.678635\pi$$
−0.532200 + 0.846619i $$0.678635\pi$$
$$174$$ 0 0
$$175$$ −1.00000 −0.0755929
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ −20.0000 −1.49487 −0.747435 0.664335i $$-0.768715\pi$$
−0.747435 + 0.664335i $$0.768715\pi$$
$$180$$ 0 0
$$181$$ 6.00000 0.445976 0.222988 0.974821i $$-0.428419\pi$$
0.222988 + 0.974821i $$0.428419\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ −2.00000 −0.147043
$$186$$ 0 0
$$187$$ −2.00000 −0.146254
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ −8.00000 −0.578860 −0.289430 0.957199i $$-0.593466\pi$$
−0.289430 + 0.957199i $$0.593466\pi$$
$$192$$ 0 0
$$193$$ 6.00000 0.431889 0.215945 0.976406i $$-0.430717\pi$$
0.215945 + 0.976406i $$0.430717\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 18.0000 1.28245 0.641223 0.767354i $$-0.278427\pi$$
0.641223 + 0.767354i $$0.278427\pi$$
$$198$$ 0 0
$$199$$ 24.0000 1.70131 0.850657 0.525720i $$-0.176204\pi$$
0.850657 + 0.525720i $$0.176204\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ −6.00000 −0.421117
$$204$$ 0 0
$$205$$ −6.00000 −0.419058
$$206$$ 0 0
$$207$$ −12.0000 −0.834058
$$208$$ 0 0
$$209$$ 4.00000 0.276686
$$210$$ 0 0
$$211$$ −4.00000 −0.275371 −0.137686 0.990476i $$-0.543966\pi$$
−0.137686 + 0.990476i $$0.543966\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 4.00000 0.272798
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ 12.0000 0.807207
$$222$$ 0 0
$$223$$ 4.00000 0.267860 0.133930 0.990991i $$-0.457240\pi$$
0.133930 + 0.990991i $$0.457240\pi$$
$$224$$ 0 0
$$225$$ −3.00000 −0.200000
$$226$$ 0 0
$$227$$ −4.00000 −0.265489 −0.132745 0.991150i $$-0.542379\pi$$
−0.132745 + 0.991150i $$0.542379\pi$$
$$228$$ 0 0
$$229$$ 6.00000 0.396491 0.198246 0.980152i $$-0.436476\pi$$
0.198246 + 0.980152i $$0.436476\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ −10.0000 −0.655122 −0.327561 0.944830i $$-0.606227\pi$$
−0.327561 + 0.944830i $$0.606227\pi$$
$$234$$ 0 0
$$235$$ −4.00000 −0.260931
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 24.0000 1.55243 0.776215 0.630468i $$-0.217137\pi$$
0.776215 + 0.630468i $$0.217137\pi$$
$$240$$ 0 0
$$241$$ 2.00000 0.128831 0.0644157 0.997923i $$-0.479482\pi$$
0.0644157 + 0.997923i $$0.479482\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 1.00000 0.0638877
$$246$$ 0 0
$$247$$ −24.0000 −1.52708
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ −20.0000 −1.26239 −0.631194 0.775625i $$-0.717435\pi$$
−0.631194 + 0.775625i $$0.717435\pi$$
$$252$$ 0 0
$$253$$ 4.00000 0.251478
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 18.0000 1.12281 0.561405 0.827541i $$-0.310261\pi$$
0.561405 + 0.827541i $$0.310261\pi$$
$$258$$ 0 0
$$259$$ 2.00000 0.124274
$$260$$ 0 0
$$261$$ −18.0000 −1.11417
$$262$$ 0 0
$$263$$ −16.0000 −0.986602 −0.493301 0.869859i $$-0.664210\pi$$
−0.493301 + 0.869859i $$0.664210\pi$$
$$264$$ 0 0
$$265$$ −2.00000 −0.122859
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ −2.00000 −0.121942 −0.0609711 0.998140i $$-0.519420\pi$$
−0.0609711 + 0.998140i $$0.519420\pi$$
$$270$$ 0 0
$$271$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 1.00000 0.0603023
$$276$$ 0 0
$$277$$ 26.0000 1.56219 0.781094 0.624413i $$-0.214662\pi$$
0.781094 + 0.624413i $$0.214662\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ −30.0000 −1.78965 −0.894825 0.446417i $$-0.852700\pi$$
−0.894825 + 0.446417i $$0.852700\pi$$
$$282$$ 0 0
$$283$$ 20.0000 1.18888 0.594438 0.804141i $$-0.297374\pi$$
0.594438 + 0.804141i $$0.297374\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 6.00000 0.354169
$$288$$ 0 0
$$289$$ −13.0000 −0.764706
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ −14.0000 −0.817889 −0.408944 0.912559i $$-0.634103\pi$$
−0.408944 + 0.912559i $$0.634103\pi$$
$$294$$ 0 0
$$295$$ −12.0000 −0.698667
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ −24.0000 −1.38796
$$300$$ 0 0
$$301$$ −4.00000 −0.230556
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ −2.00000 −0.114520
$$306$$ 0 0
$$307$$ 20.0000 1.14146 0.570730 0.821138i $$-0.306660\pi$$
0.570730 + 0.821138i $$0.306660\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$312$$ 0 0
$$313$$ 10.0000 0.565233 0.282617 0.959233i $$-0.408798\pi$$
0.282617 + 0.959233i $$0.408798\pi$$
$$314$$ 0 0
$$315$$ 3.00000 0.169031
$$316$$ 0 0
$$317$$ 14.0000 0.786318 0.393159 0.919470i $$-0.371382\pi$$
0.393159 + 0.919470i $$0.371382\pi$$
$$318$$ 0 0
$$319$$ 6.00000 0.335936
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ −8.00000 −0.445132
$$324$$ 0 0
$$325$$ −6.00000 −0.332820
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 4.00000 0.220527
$$330$$ 0 0
$$331$$ 28.0000 1.53902 0.769510 0.638635i $$-0.220501\pi$$
0.769510 + 0.638635i $$0.220501\pi$$
$$332$$ 0 0
$$333$$ 6.00000 0.328798
$$334$$ 0 0
$$335$$ 8.00000 0.437087
$$336$$ 0 0
$$337$$ 22.0000 1.19842 0.599208 0.800593i $$-0.295482\pi$$
0.599208 + 0.800593i $$0.295482\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ 0 0
$$342$$ 0 0
$$343$$ −1.00000 −0.0539949
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 28.0000 1.50312 0.751559 0.659665i $$-0.229302\pi$$
0.751559 + 0.659665i $$0.229302\pi$$
$$348$$ 0 0
$$349$$ −34.0000 −1.81998 −0.909989 0.414632i $$-0.863910\pi$$
−0.909989 + 0.414632i $$0.863910\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ −14.0000 −0.745145 −0.372572 0.928003i $$-0.621524\pi$$
−0.372572 + 0.928003i $$0.621524\pi$$
$$354$$ 0 0
$$355$$ 8.00000 0.424596
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 16.0000 0.844448 0.422224 0.906492i $$-0.361250\pi$$
0.422224 + 0.906492i $$0.361250\pi$$
$$360$$ 0 0
$$361$$ −3.00000 −0.157895
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ −10.0000 −0.523424
$$366$$ 0 0
$$367$$ −20.0000 −1.04399 −0.521996 0.852948i $$-0.674812\pi$$
−0.521996 + 0.852948i $$0.674812\pi$$
$$368$$ 0 0
$$369$$ 18.0000 0.937043
$$370$$ 0 0
$$371$$ 2.00000 0.103835
$$372$$ 0 0
$$373$$ 34.0000 1.76045 0.880227 0.474554i $$-0.157390\pi$$
0.880227 + 0.474554i $$0.157390\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ −36.0000 −1.85409
$$378$$ 0 0
$$379$$ 12.0000 0.616399 0.308199 0.951322i $$-0.400274\pi$$
0.308199 + 0.951322i $$0.400274\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 28.0000 1.43073 0.715367 0.698749i $$-0.246260\pi$$
0.715367 + 0.698749i $$0.246260\pi$$
$$384$$ 0 0
$$385$$ −1.00000 −0.0509647
$$386$$ 0 0
$$387$$ −12.0000 −0.609994
$$388$$ 0 0
$$389$$ 6.00000 0.304212 0.152106 0.988364i $$-0.451394\pi$$
0.152106 + 0.988364i $$0.451394\pi$$
$$390$$ 0 0
$$391$$ −8.00000 −0.404577
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 8.00000 0.402524
$$396$$ 0 0
$$397$$ −34.0000 −1.70641 −0.853206 0.521575i $$-0.825345\pi$$
−0.853206 + 0.521575i $$0.825345\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 34.0000 1.69788 0.848939 0.528490i $$-0.177242\pi$$
0.848939 + 0.528490i $$0.177242\pi$$
$$402$$ 0 0
$$403$$ 0 0
$$404$$ 0 0
$$405$$ 9.00000 0.447214
$$406$$ 0 0
$$407$$ −2.00000 −0.0991363
$$408$$ 0 0
$$409$$ 34.0000 1.68119 0.840596 0.541663i $$-0.182205\pi$$
0.840596 + 0.541663i $$0.182205\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ 12.0000 0.590481
$$414$$ 0 0
$$415$$ 12.0000 0.589057
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ −12.0000 −0.586238 −0.293119 0.956076i $$-0.594693\pi$$
−0.293119 + 0.956076i $$0.594693\pi$$
$$420$$ 0 0
$$421$$ −26.0000 −1.26716 −0.633581 0.773676i $$-0.718416\pi$$
−0.633581 + 0.773676i $$0.718416\pi$$
$$422$$ 0 0
$$423$$ 12.0000 0.583460
$$424$$ 0 0
$$425$$ −2.00000 −0.0970143
$$426$$ 0 0
$$427$$ 2.00000 0.0967868
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ −8.00000 −0.385346 −0.192673 0.981263i $$-0.561716\pi$$
−0.192673 + 0.981263i $$0.561716\pi$$
$$432$$ 0 0
$$433$$ −6.00000 −0.288342 −0.144171 0.989553i $$-0.546051\pi$$
−0.144171 + 0.989553i $$0.546051\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 16.0000 0.765384
$$438$$ 0 0
$$439$$ 24.0000 1.14546 0.572729 0.819745i $$-0.305885\pi$$
0.572729 + 0.819745i $$0.305885\pi$$
$$440$$ 0 0
$$441$$ −3.00000 −0.142857
$$442$$ 0 0
$$443$$ −16.0000 −0.760183 −0.380091 0.924949i $$-0.624107\pi$$
−0.380091 + 0.924949i $$0.624107\pi$$
$$444$$ 0 0
$$445$$ 10.0000 0.474045
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 2.00000 0.0943858 0.0471929 0.998886i $$-0.484972\pi$$
0.0471929 + 0.998886i $$0.484972\pi$$
$$450$$ 0 0
$$451$$ −6.00000 −0.282529
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 6.00000 0.281284
$$456$$ 0 0
$$457$$ −26.0000 −1.21623 −0.608114 0.793849i $$-0.708074\pi$$
−0.608114 + 0.793849i $$0.708074\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 6.00000 0.279448 0.139724 0.990190i $$-0.455378\pi$$
0.139724 + 0.990190i $$0.455378\pi$$
$$462$$ 0 0
$$463$$ −20.0000 −0.929479 −0.464739 0.885448i $$-0.653852\pi$$
−0.464739 + 0.885448i $$0.653852\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$468$$ 0 0
$$469$$ −8.00000 −0.369406
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ 4.00000 0.183920
$$474$$ 0 0
$$475$$ 4.00000 0.183533
$$476$$ 0 0
$$477$$ 6.00000 0.274721
$$478$$ 0 0
$$479$$ 24.0000 1.09659 0.548294 0.836286i $$-0.315277\pi$$
0.548294 + 0.836286i $$0.315277\pi$$
$$480$$ 0 0
$$481$$ 12.0000 0.547153
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ −6.00000 −0.272446
$$486$$ 0 0
$$487$$ 28.0000 1.26880 0.634401 0.773004i $$-0.281247\pi$$
0.634401 + 0.773004i $$0.281247\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ −20.0000 −0.902587 −0.451294 0.892375i $$-0.649037\pi$$
−0.451294 + 0.892375i $$0.649037\pi$$
$$492$$ 0 0
$$493$$ −12.0000 −0.540453
$$494$$ 0 0
$$495$$ −3.00000 −0.134840
$$496$$ 0 0
$$497$$ −8.00000 −0.358849
$$498$$ 0 0
$$499$$ −28.0000 −1.25345 −0.626726 0.779240i $$-0.715605\pi$$
−0.626726 + 0.779240i $$0.715605\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 8.00000 0.356702 0.178351 0.983967i $$-0.442924\pi$$
0.178351 + 0.983967i $$0.442924\pi$$
$$504$$ 0 0
$$505$$ 14.0000 0.622992
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ −2.00000 −0.0886484 −0.0443242 0.999017i $$-0.514113\pi$$
−0.0443242 + 0.999017i $$0.514113\pi$$
$$510$$ 0 0
$$511$$ 10.0000 0.442374
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 4.00000 0.176261
$$516$$ 0 0
$$517$$ −4.00000 −0.175920
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ −22.0000 −0.963837 −0.481919 0.876216i $$-0.660060\pi$$
−0.481919 + 0.876216i $$0.660060\pi$$
$$522$$ 0 0
$$523$$ 12.0000 0.524723 0.262362 0.964970i $$-0.415499\pi$$
0.262362 + 0.964970i $$0.415499\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 0 0
$$528$$ 0 0
$$529$$ −7.00000 −0.304348
$$530$$ 0 0
$$531$$ 36.0000 1.56227
$$532$$ 0 0
$$533$$ 36.0000 1.55933
$$534$$ 0 0
$$535$$ −4.00000 −0.172935
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ 1.00000 0.0430730
$$540$$ 0 0
$$541$$ −18.0000 −0.773880 −0.386940 0.922105i $$-0.626468\pi$$
−0.386940 + 0.922105i $$0.626468\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 14.0000 0.599694
$$546$$ 0 0
$$547$$ −36.0000 −1.53925 −0.769624 0.638497i $$-0.779557\pi$$
−0.769624 + 0.638497i $$0.779557\pi$$
$$548$$ 0 0
$$549$$ 6.00000 0.256074
$$550$$ 0 0
$$551$$ 24.0000 1.02243
$$552$$ 0 0
$$553$$ −8.00000 −0.340195
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ −6.00000 −0.254228 −0.127114 0.991888i $$-0.540571\pi$$
−0.127114 + 0.991888i $$0.540571\pi$$
$$558$$ 0 0
$$559$$ −24.0000 −1.01509
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ 4.00000 0.168580 0.0842900 0.996441i $$-0.473138\pi$$
0.0842900 + 0.996441i $$0.473138\pi$$
$$564$$ 0 0
$$565$$ −6.00000 −0.252422
$$566$$ 0 0
$$567$$ −9.00000 −0.377964
$$568$$ 0 0
$$569$$ 42.0000 1.76073 0.880366 0.474295i $$-0.157297\pi$$
0.880366 + 0.474295i $$0.157297\pi$$
$$570$$ 0 0
$$571$$ −4.00000 −0.167395 −0.0836974 0.996491i $$-0.526673\pi$$
−0.0836974 + 0.996491i $$0.526673\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 4.00000 0.166812
$$576$$ 0 0
$$577$$ −38.0000 −1.58196 −0.790980 0.611842i $$-0.790429\pi$$
−0.790980 + 0.611842i $$0.790429\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ −12.0000 −0.497844
$$582$$ 0 0
$$583$$ −2.00000 −0.0828315
$$584$$ 0 0
$$585$$ 18.0000 0.744208
$$586$$ 0 0
$$587$$ −8.00000 −0.330195 −0.165098 0.986277i $$-0.552794\pi$$
−0.165098 + 0.986277i $$0.552794\pi$$
$$588$$ 0 0
$$589$$ 0 0
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 30.0000 1.23195 0.615976 0.787765i $$-0.288762\pi$$
0.615976 + 0.787765i $$0.288762\pi$$
$$594$$ 0 0
$$595$$ 2.00000 0.0819920
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 40.0000 1.63436 0.817178 0.576386i $$-0.195537\pi$$
0.817178 + 0.576386i $$0.195537\pi$$
$$600$$ 0 0
$$601$$ 26.0000 1.06056 0.530281 0.847822i $$-0.322086\pi$$
0.530281 + 0.847822i $$0.322086\pi$$
$$602$$ 0 0
$$603$$ −24.0000 −0.977356
$$604$$ 0 0
$$605$$ 1.00000 0.0406558
$$606$$ 0 0
$$607$$ −40.0000 −1.62355 −0.811775 0.583970i $$-0.801498\pi$$
−0.811775 + 0.583970i $$0.801498\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 24.0000 0.970936
$$612$$ 0 0
$$613$$ 34.0000 1.37325 0.686624 0.727013i $$-0.259092\pi$$
0.686624 + 0.727013i $$0.259092\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 34.0000 1.36879 0.684394 0.729112i $$-0.260067\pi$$
0.684394 + 0.729112i $$0.260067\pi$$
$$618$$ 0 0
$$619$$ −4.00000 −0.160774 −0.0803868 0.996764i $$-0.525616\pi$$
−0.0803868 + 0.996764i $$0.525616\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ −10.0000 −0.400642
$$624$$ 0 0
$$625$$ 1.00000 0.0400000
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 4.00000 0.159490
$$630$$ 0 0
$$631$$ −8.00000 −0.318475 −0.159237 0.987240i $$-0.550904\pi$$
−0.159237 + 0.987240i $$0.550904\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ 8.00000 0.317470
$$636$$ 0 0
$$637$$ −6.00000 −0.237729
$$638$$ 0 0
$$639$$ −24.0000 −0.949425
$$640$$ 0 0
$$641$$ −30.0000 −1.18493 −0.592464 0.805597i $$-0.701845\pi$$
−0.592464 + 0.805597i $$0.701845\pi$$
$$642$$ 0 0
$$643$$ −32.0000 −1.26196 −0.630978 0.775800i $$-0.717346\pi$$
−0.630978 + 0.775800i $$0.717346\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 12.0000 0.471769 0.235884 0.971781i $$-0.424201\pi$$
0.235884 + 0.971781i $$0.424201\pi$$
$$648$$ 0 0
$$649$$ −12.0000 −0.471041
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ −42.0000 −1.64359 −0.821794 0.569785i $$-0.807026\pi$$
−0.821794 + 0.569785i $$0.807026\pi$$
$$654$$ 0 0
$$655$$ 12.0000 0.468879
$$656$$ 0 0
$$657$$ 30.0000 1.17041
$$658$$ 0 0
$$659$$ −36.0000 −1.40236 −0.701180 0.712984i $$-0.747343\pi$$
−0.701180 + 0.712984i $$0.747343\pi$$
$$660$$ 0 0
$$661$$ 22.0000 0.855701 0.427850 0.903850i $$-0.359271\pi$$
0.427850 + 0.903850i $$0.359271\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ −4.00000 −0.155113
$$666$$ 0 0
$$667$$ 24.0000 0.929284
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ −2.00000 −0.0772091
$$672$$ 0 0
$$673$$ −10.0000 −0.385472 −0.192736 0.981251i $$-0.561736\pi$$
−0.192736 + 0.981251i $$0.561736\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ −14.0000 −0.538064 −0.269032 0.963131i $$-0.586704\pi$$
−0.269032 + 0.963131i $$0.586704\pi$$
$$678$$ 0 0
$$679$$ 6.00000 0.230259
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ −24.0000 −0.918334 −0.459167 0.888350i $$-0.651852\pi$$
−0.459167 + 0.888350i $$0.651852\pi$$
$$684$$ 0 0
$$685$$ 18.0000 0.687745
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ 12.0000 0.457164
$$690$$ 0 0
$$691$$ 36.0000 1.36950 0.684752 0.728776i $$-0.259910\pi$$
0.684752 + 0.728776i $$0.259910\pi$$
$$692$$ 0 0
$$693$$ 3.00000 0.113961
$$694$$ 0 0
$$695$$ 20.0000 0.758643
$$696$$ 0 0
$$697$$ 12.0000 0.454532
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ −42.0000 −1.58632 −0.793159 0.609015i $$-0.791565\pi$$
−0.793159 + 0.609015i $$0.791565\pi$$
$$702$$ 0 0
$$703$$ −8.00000 −0.301726
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ −14.0000 −0.526524
$$708$$ 0 0
$$709$$ 22.0000 0.826227 0.413114 0.910679i $$-0.364441\pi$$
0.413114 + 0.910679i $$0.364441\pi$$
$$710$$ 0 0
$$711$$ −24.0000 −0.900070
$$712$$ 0 0
$$713$$ 0 0
$$714$$ 0 0
$$715$$ −6.00000 −0.224387
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 40.0000 1.49175 0.745874 0.666087i $$-0.232032\pi$$
0.745874 + 0.666087i $$0.232032\pi$$
$$720$$ 0 0
$$721$$ −4.00000 −0.148968
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ 6.00000 0.222834
$$726$$ 0 0
$$727$$ 12.0000 0.445055 0.222528 0.974926i $$-0.428569\pi$$
0.222528 + 0.974926i $$0.428569\pi$$
$$728$$ 0 0
$$729$$ −27.0000 −1.00000
$$730$$ 0 0
$$731$$ −8.00000 −0.295891
$$732$$ 0 0
$$733$$ −46.0000 −1.69905 −0.849524 0.527549i $$-0.823111\pi$$
−0.849524 + 0.527549i $$0.823111\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 8.00000 0.294684
$$738$$ 0 0
$$739$$ 12.0000 0.441427 0.220714 0.975339i $$-0.429161\pi$$
0.220714 + 0.975339i $$0.429161\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$744$$ 0 0
$$745$$ 6.00000 0.219823
$$746$$ 0 0
$$747$$ −36.0000 −1.31717
$$748$$ 0 0
$$749$$ 4.00000 0.146157
$$750$$ 0 0
$$751$$ 32.0000 1.16770 0.583848 0.811863i $$-0.301546\pi$$
0.583848 + 0.811863i $$0.301546\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ −8.00000 −0.291150
$$756$$ 0 0
$$757$$ 6.00000 0.218074 0.109037 0.994038i $$-0.465223\pi$$
0.109037 + 0.994038i $$0.465223\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ −14.0000 −0.507500 −0.253750 0.967270i $$-0.581664\pi$$
−0.253750 + 0.967270i $$0.581664\pi$$
$$762$$ 0 0
$$763$$ −14.0000 −0.506834
$$764$$ 0 0
$$765$$ 6.00000 0.216930
$$766$$ 0 0
$$767$$ 72.0000 2.59977
$$768$$ 0 0
$$769$$ −14.0000 −0.504853 −0.252426 0.967616i $$-0.581229\pi$$
−0.252426 + 0.967616i $$0.581229\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ 30.0000 1.07903 0.539513 0.841978i $$-0.318609\pi$$
0.539513 + 0.841978i $$0.318609\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ −24.0000 −0.859889
$$780$$ 0 0
$$781$$ 8.00000 0.286263
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ −2.00000 −0.0713831
$$786$$ 0 0
$$787$$ −28.0000 −0.998092 −0.499046 0.866575i $$-0.666316\pi$$
−0.499046 + 0.866575i $$0.666316\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 6.00000 0.213335
$$792$$ 0 0
$$793$$ 12.0000 0.426132
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ −34.0000 −1.20434 −0.602171 0.798367i $$-0.705697\pi$$
−0.602171 + 0.798367i $$0.705697\pi$$
$$798$$ 0 0
$$799$$ 8.00000 0.283020
$$800$$ 0 0
$$801$$ −30.0000 −1.06000
$$802$$ 0 0
$$803$$ −10.0000 −0.352892
$$804$$ 0 0
$$805$$ −4.00000 −0.140981
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ −46.0000 −1.61727 −0.808637 0.588308i $$-0.799794\pi$$
−0.808637 + 0.588308i $$0.799794\pi$$
$$810$$ 0 0
$$811$$ −52.0000 −1.82597 −0.912983 0.407997i $$-0.866228\pi$$
−0.912983 + 0.407997i $$0.866228\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ −8.00000 −0.280228
$$816$$ 0 0
$$817$$ 16.0000 0.559769
$$818$$ 0 0
$$819$$ −18.0000 −0.628971
$$820$$ 0 0
$$821$$ 30.0000 1.04701 0.523504 0.852023i $$-0.324625\pi$$
0.523504 + 0.852023i $$0.324625\pi$$
$$822$$ 0 0
$$823$$ −4.00000 −0.139431 −0.0697156 0.997567i $$-0.522209\pi$$
−0.0697156 + 0.997567i $$0.522209\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 12.0000 0.417281 0.208640 0.977992i $$-0.433096\pi$$
0.208640 + 0.977992i $$0.433096\pi$$
$$828$$ 0 0
$$829$$ 30.0000 1.04194 0.520972 0.853574i $$-0.325570\pi$$
0.520972 + 0.853574i $$0.325570\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ −2.00000 −0.0692959
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ 40.0000 1.38095 0.690477 0.723355i $$-0.257401\pi$$
0.690477 + 0.723355i $$0.257401\pi$$
$$840$$ 0 0
$$841$$ 7.00000 0.241379
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ 23.0000 0.791224
$$846$$ 0 0
$$847$$ −1.00000 −0.0343604
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ −8.00000 −0.274236
$$852$$ 0 0
$$853$$ −6.00000 −0.205436 −0.102718 0.994711i $$-0.532754\pi$$
−0.102718 + 0.994711i $$0.532754\pi$$
$$854$$ 0 0
$$855$$ −12.0000 −0.410391
$$856$$ 0 0
$$857$$ −42.0000 −1.43469 −0.717346 0.696717i $$-0.754643\pi$$
−0.717346 + 0.696717i $$0.754643\pi$$
$$858$$ 0 0
$$859$$ 44.0000 1.50126 0.750630 0.660722i $$-0.229750\pi$$
0.750630 + 0.660722i $$0.229750\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ 52.0000 1.77010 0.885050 0.465495i $$-0.154124\pi$$
0.885050 + 0.465495i $$0.154124\pi$$
$$864$$ 0 0
$$865$$ −14.0000 −0.476014
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ 8.00000 0.271381
$$870$$ 0 0
$$871$$ −48.0000 −1.62642
$$872$$ 0 0
$$873$$ 18.0000 0.609208
$$874$$ 0 0
$$875$$ −1.00000 −0.0338062
$$876$$ 0 0
$$877$$ 10.0000 0.337676 0.168838 0.985644i $$-0.445999\pi$$
0.168838 + 0.985644i $$0.445999\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ 2.00000 0.0673817 0.0336909 0.999432i $$-0.489274\pi$$
0.0336909 + 0.999432i $$0.489274\pi$$
$$882$$ 0 0
$$883$$ −56.0000 −1.88455 −0.942275 0.334840i $$-0.891318\pi$$
−0.942275 + 0.334840i $$0.891318\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 48.0000 1.61168 0.805841 0.592132i $$-0.201714\pi$$
0.805841 + 0.592132i $$0.201714\pi$$
$$888$$ 0 0
$$889$$ −8.00000 −0.268311
$$890$$ 0 0
$$891$$ 9.00000 0.301511
$$892$$ 0 0
$$893$$ −16.0000 −0.535420
$$894$$ 0 0
$$895$$ −20.0000 −0.668526
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 0 0
$$900$$ 0 0
$$901$$ 4.00000 0.133259
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 6.00000 0.199447
$$906$$ 0 0
$$907$$ −32.0000 −1.06254 −0.531271 0.847202i $$-0.678286\pi$$
−0.531271 + 0.847202i $$0.678286\pi$$
$$908$$ 0 0
$$909$$ −42.0000 −1.39305
$$910$$ 0 0
$$911$$ 40.0000 1.32526 0.662630 0.748947i $$-0.269440\pi$$
0.662630 + 0.748947i $$0.269440\pi$$
$$912$$ 0 0
$$913$$ 12.0000 0.397142
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ −12.0000 −0.396275
$$918$$ 0 0
$$919$$ 40.0000 1.31948 0.659739 0.751495i $$-0.270667\pi$$
0.659739 + 0.751495i $$0.270667\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ −48.0000 −1.57994
$$924$$ 0 0
$$925$$ −2.00000 −0.0657596
$$926$$ 0 0
$$927$$ −12.0000 −0.394132
$$928$$ 0 0
$$929$$ −30.0000 −0.984268 −0.492134 0.870519i $$-0.663783\pi$$
−0.492134 + 0.870519i $$0.663783\pi$$
$$930$$ 0 0
$$931$$ 4.00000 0.131095
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ −2.00000 −0.0654070
$$936$$ 0 0
$$937$$ −50.0000 −1.63343 −0.816714 0.577042i $$-0.804207\pi$$
−0.816714 + 0.577042i $$0.804207\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ 38.0000 1.23876 0.619382 0.785090i $$-0.287383\pi$$
0.619382 + 0.785090i $$0.287383\pi$$
$$942$$ 0 0
$$943$$ −24.0000 −0.781548
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ −24.0000 −0.779895 −0.389948 0.920837i $$-0.627507\pi$$
−0.389948 + 0.920837i $$0.627507\pi$$
$$948$$ 0 0
$$949$$ 60.0000 1.94768
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ 22.0000 0.712650 0.356325 0.934362i $$-0.384030\pi$$
0.356325 + 0.934362i $$0.384030\pi$$
$$954$$ 0 0
$$955$$ −8.00000 −0.258874
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ −18.0000 −0.581250
$$960$$ 0 0
$$961$$ −31.0000 −1.00000
$$962$$ 0 0
$$963$$ 12.0000 0.386695
$$964$$ 0 0
$$965$$ 6.00000 0.193147
$$966$$ 0 0
$$967$$ 32.0000 1.02905 0.514525 0.857475i $$-0.327968\pi$$
0.514525 + 0.857475i $$0.327968\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ 52.0000 1.66876 0.834380 0.551190i $$-0.185826\pi$$
0.834380 + 0.551190i $$0.185826\pi$$
$$972$$ 0 0
$$973$$ −20.0000 −0.641171
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ −54.0000 −1.72761 −0.863807 0.503824i $$-0.831926\pi$$
−0.863807 + 0.503824i $$0.831926\pi$$
$$978$$ 0 0
$$979$$ 10.0000 0.319601
$$980$$ 0 0
$$981$$ −42.0000 −1.34096
$$982$$ 0 0
$$983$$ 4.00000 0.127580 0.0637901 0.997963i $$-0.479681\pi$$
0.0637901 + 0.997963i $$0.479681\pi$$
$$984$$ 0 0
$$985$$ 18.0000 0.573528
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ 16.0000 0.508770
$$990$$ 0 0
$$991$$ 40.0000 1.27064 0.635321 0.772248i $$-0.280868\pi$$
0.635321 + 0.772248i $$0.280868\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ 24.0000 0.760851
$$996$$ 0 0
$$997$$ 10.0000 0.316703 0.158352 0.987383i $$-0.449382\pi$$
0.158352 + 0.987383i $$0.449382\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6160.2.a.e.1.1 1
4.3 odd 2 770.2.a.d.1.1 1
12.11 even 2 6930.2.a.x.1.1 1
20.3 even 4 3850.2.c.m.1849.2 2
20.7 even 4 3850.2.c.m.1849.1 2
20.19 odd 2 3850.2.a.s.1.1 1
28.27 even 2 5390.2.a.j.1.1 1
44.43 even 2 8470.2.a.z.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
770.2.a.d.1.1 1 4.3 odd 2
3850.2.a.s.1.1 1 20.19 odd 2
3850.2.c.m.1849.1 2 20.7 even 4
3850.2.c.m.1849.2 2 20.3 even 4
5390.2.a.j.1.1 1 28.27 even 2
6160.2.a.e.1.1 1 1.1 even 1 trivial
6930.2.a.x.1.1 1 12.11 even 2
8470.2.a.z.1.1 1 44.43 even 2