# Properties

 Label 6160.2.a.bi Level $6160$ Weight $2$ Character orbit 6160.a Self dual yes Analytic conductor $49.188$ Analytic rank $1$ Dimension $3$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$6160 = 2^{4} \cdot 5 \cdot 7 \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 6160.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$49.1878476451$$ Analytic rank: $$1$$ Dimension: $$3$$ Coefficient field: 3.3.892.1 Defining polynomial: $$x^{3} - x^{2} - 8 x + 10$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 770) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\beta_{1} q^{3} - q^{5} + q^{7} + ( 4 + \beta_{1} + \beta_{2} ) q^{9} +O(q^{10})$$ $$q -\beta_{1} q^{3} - q^{5} + q^{7} + ( 4 + \beta_{1} + \beta_{2} ) q^{9} - q^{11} + 2 \beta_{1} q^{13} + \beta_{1} q^{15} + ( -3 - \beta_{1} - \beta_{2} ) q^{17} + ( 1 + \beta_{2} ) q^{19} -\beta_{1} q^{21} + ( -1 - \beta_{2} ) q^{23} + q^{25} + ( -4 - 4 \beta_{1} ) q^{27} + ( 1 + 2 \beta_{1} - \beta_{2} ) q^{29} -6 q^{31} + \beta_{1} q^{33} - q^{35} + ( 1 - 2 \beta_{1} - \beta_{2} ) q^{37} + ( -14 - 2 \beta_{1} - 2 \beta_{2} ) q^{39} + ( -6 - \beta_{1} ) q^{41} + ( -3 + \beta_{1} - \beta_{2} ) q^{43} + ( -4 - \beta_{1} - \beta_{2} ) q^{45} + ( -1 + \beta_{1} - \beta_{2} ) q^{47} + q^{49} + ( 4 + 6 \beta_{1} ) q^{51} + ( 1 + 2 \beta_{1} - \beta_{2} ) q^{53} + q^{55} + ( 3 - 3 \beta_{1} + \beta_{2} ) q^{57} + ( -3 + 3 \beta_{1} + \beta_{2} ) q^{59} + ( 7 - \beta_{1} + \beta_{2} ) q^{61} + ( 4 + \beta_{1} + \beta_{2} ) q^{63} -2 \beta_{1} q^{65} -8 q^{67} + ( -3 + 3 \beta_{1} - \beta_{2} ) q^{69} + ( -2 + 2 \beta_{2} ) q^{71} + ( -1 - 3 \beta_{1} + \beta_{2} ) q^{73} -\beta_{1} q^{75} - q^{77} + ( 3 + 2 \beta_{1} + 3 \beta_{2} ) q^{79} + ( 16 + 5 \beta_{1} + \beta_{2} ) q^{81} + ( 8 - 2 \beta_{1} ) q^{83} + ( 3 + \beta_{1} + \beta_{2} ) q^{85} + ( -17 - \beta_{1} - 3 \beta_{2} ) q^{87} + ( -2 - 2 \beta_{1} ) q^{89} + 2 \beta_{1} q^{91} + 6 \beta_{1} q^{93} + ( -1 - \beta_{2} ) q^{95} + ( 3 + \beta_{2} ) q^{97} + ( -4 - \beta_{1} - \beta_{2} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3 q - 3 q^{5} + 3 q^{7} + 11 q^{9} + O(q^{10})$$ $$3 q - 3 q^{5} + 3 q^{7} + 11 q^{9} - 3 q^{11} - 8 q^{17} + 2 q^{19} - 2 q^{23} + 3 q^{25} - 12 q^{27} + 4 q^{29} - 18 q^{31} - 3 q^{35} + 4 q^{37} - 40 q^{39} - 18 q^{41} - 8 q^{43} - 11 q^{45} - 2 q^{47} + 3 q^{49} + 12 q^{51} + 4 q^{53} + 3 q^{55} + 8 q^{57} - 10 q^{59} + 20 q^{61} + 11 q^{63} - 24 q^{67} - 8 q^{69} - 8 q^{71} - 4 q^{73} - 3 q^{77} + 6 q^{79} + 47 q^{81} + 24 q^{83} + 8 q^{85} - 48 q^{87} - 6 q^{89} - 2 q^{95} + 8 q^{97} - 11 q^{99} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{3} - x^{2} - 8 x + 10$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu^{2} + \nu - 6$$ $$\beta_{2}$$ $$=$$ $$-\nu^{2} + \nu + 5$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{2} + \beta_{1} + 1$$$$)/2$$ $$\nu^{2}$$ $$=$$ $$($$$$-\beta_{2} + \beta_{1} + 11$$$$)/2$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 2.59774 −2.91729 1.31955
0 −3.34596 0 −1.00000 0 1.00000 0 8.19547 0
1.2 0 0.406728 0 −1.00000 0 1.00000 0 −2.83457 0
1.3 0 2.93923 0 −1.00000 0 1.00000 0 5.63910 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$1$$
$$7$$ $$-1$$
$$11$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6160.2.a.bi 3
4.b odd 2 1 770.2.a.l 3
12.b even 2 1 6930.2.a.cl 3
20.d odd 2 1 3850.2.a.bu 3
20.e even 4 2 3850.2.c.z 6
28.d even 2 1 5390.2.a.bz 3
44.c even 2 1 8470.2.a.cl 3

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
770.2.a.l 3 4.b odd 2 1
3850.2.a.bu 3 20.d odd 2 1
3850.2.c.z 6 20.e even 4 2
5390.2.a.bz 3 28.d even 2 1
6160.2.a.bi 3 1.a even 1 1 trivial
6930.2.a.cl 3 12.b even 2 1
8470.2.a.cl 3 44.c even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(6160))$$:

 $$T_{3}^{3} - 10 T_{3} + 4$$ $$T_{13}^{3} - 40 T_{13} - 32$$ $$T_{17}^{3} + 8 T_{17}^{2} - 12 T_{17} - 128$$ $$T_{19}^{3} - 2 T_{19}^{2} - 30 T_{19} + 56$$ $$T_{23}^{3} + 2 T_{23}^{2} - 30 T_{23} - 56$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{3}$$
$3$ $$4 - 10 T + T^{3}$$
$5$ $$( 1 + T )^{3}$$
$7$ $$( -1 + T )^{3}$$
$11$ $$( 1 + T )^{3}$$
$13$ $$-32 - 40 T + T^{3}$$
$17$ $$-128 - 12 T + 8 T^{2} + T^{3}$$
$19$ $$56 - 30 T - 2 T^{2} + T^{3}$$
$23$ $$-56 - 30 T + 2 T^{2} + T^{3}$$
$29$ $$428 - 82 T - 4 T^{2} + T^{3}$$
$31$ $$( 6 + T )^{3}$$
$37$ $$124 - 50 T - 4 T^{2} + T^{3}$$
$41$ $$160 + 98 T + 18 T^{2} + T^{3}$$
$43$ $$-16 - 28 T + 8 T^{2} + T^{3}$$
$47$ $$64 - 48 T + 2 T^{2} + T^{3}$$
$53$ $$428 - 82 T - 4 T^{2} + T^{3}$$
$59$ $$-608 - 64 T + 10 T^{2} + T^{3}$$
$61$ $$-64 + 84 T - 20 T^{2} + T^{3}$$
$67$ $$( 8 + T )^{3}$$
$71$ $$-32 - 104 T + 8 T^{2} + T^{3}$$
$73$ $$-784 - 140 T + 4 T^{2} + T^{3}$$
$79$ $$2272 - 262 T - 6 T^{2} + T^{3}$$
$83$ $$-160 + 152 T - 24 T^{2} + T^{3}$$
$89$ $$-40 - 28 T + 6 T^{2} + T^{3}$$
$97$ $$100 - 10 T - 8 T^{2} + T^{3}$$