Properties

Label 616.4.a.h
Level $616$
Weight $4$
Character orbit 616.a
Self dual yes
Analytic conductor $36.345$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [616,4,Mod(1,616)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(616, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("616.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 616 = 2^{3} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 616.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.3451765635\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 94x^{4} + 161x^{3} + 533x^{2} - 384x - 468 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + ( - \beta_{3} - 2) q^{5} + 7 q^{7} + (\beta_{5} + \beta_{3} + \beta_1 + 4) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{2} q^{3} + ( - \beta_{3} - 2) q^{5} + 7 q^{7} + (\beta_{5} + \beta_{3} + \beta_1 + 4) q^{9} - 11 q^{11} + ( - 2 \beta_{5} - \beta_{4} + \cdots - 12) q^{13}+ \cdots + ( - 11 \beta_{5} - 11 \beta_{3} + \cdots - 44) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 14 q^{5} + 42 q^{7} + 28 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 14 q^{5} + 42 q^{7} + 28 q^{9} - 66 q^{11} - 70 q^{13} - 50 q^{15} - 102 q^{17} - 136 q^{19} - 146 q^{23} + 44 q^{25} - 30 q^{27} - 148 q^{29} + 308 q^{31} - 98 q^{35} - 6 q^{37} - 540 q^{39} - 90 q^{41} - 396 q^{43} - 812 q^{45} - 346 q^{47} + 294 q^{49} - 600 q^{51} - 984 q^{53} + 154 q^{55} - 1580 q^{57} - 44 q^{59} - 1414 q^{61} + 196 q^{63} - 1208 q^{65} - 926 q^{67} - 2550 q^{69} - 1478 q^{71} - 678 q^{73} - 1350 q^{75} - 462 q^{77} - 700 q^{79} - 966 q^{81} - 1192 q^{83} - 1596 q^{85} + 1900 q^{87} - 3314 q^{89} - 490 q^{91} - 2330 q^{93} + 668 q^{95} - 346 q^{97} - 308 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 94x^{4} + 161x^{3} + 533x^{2} - 384x - 468 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -13\nu^{5} + 558\nu^{4} + 1098\nu^{3} - 51127\nu^{2} + 40754\nu + 149353 ) / 4879 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 81\nu^{5} - 99\nu^{4} - 7592\nu^{3} + 14186\nu^{2} + 37310\nu - 14458 ) / 4879 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -895\nu^{5} + 1636\nu^{4} + 81598\nu^{3} - 221318\nu^{2} - 182819\nu + 713910 ) / 43911 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 409\nu^{5} - 1042\nu^{4} - 36046\nu^{3} + 121565\nu^{2} - 26404\nu - 158778 ) / 14637 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 232\nu^{5} - 361\nu^{4} - 21418\nu^{3} + 49856\nu^{2} + 99179\nu - 120576 ) / 6273 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + \beta_{3} - \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} - 4\beta_{4} - 11\beta_{3} - 9\beta_{2} + 128 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 77\beta_{5} + 29\beta_{4} + 83\beta_{3} - 117\beta_{2} + 9\beta _1 - 177 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 21\beta_{5} - 354\beta_{4} - 1059\beta_{3} - 745\beta_{2} + 38\beta _1 + 10410 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 6607\beta_{5} + 2986\beta_{4} + 7951\beta_{3} - 9599\beta_{2} + 890\beta _1 - 25570 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
8.86203
−0.720307
−9.73714
−1.85526
3.17071
1.27998
0 −7.54674 0 5.43104 0 7.00000 0 29.9532 0
1.2 0 −6.39012 0 −17.9615 0 7.00000 0 13.8336 0
1.3 0 −0.761718 0 15.6409 0 7.00000 0 −26.4198 0
1.4 0 2.18857 0 2.34292 0 7.00000 0 −22.2102 0
1.5 0 4.18220 0 −10.8550 0 7.00000 0 −9.50917 0
1.6 0 8.32780 0 −8.59838 0 7.00000 0 42.3523 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 616.4.a.h 6
4.b odd 2 1 1232.4.a.ba 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
616.4.a.h 6 1.a even 1 1 trivial
1232.4.a.ba 6 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(616))\):

\( T_{3}^{6} - 95T_{3}^{4} + 10T_{3}^{3} + 2000T_{3}^{2} - 2200T_{3} - 2800 \) Copy content Toggle raw display
\( T_{5}^{6} + 14T_{5}^{5} - 299T_{5}^{4} - 3864T_{5}^{3} + 12768T_{5}^{2} + 137056T_{5} - 333648 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - 95 T^{4} + \cdots - 2800 \) Copy content Toggle raw display
$5$ \( T^{6} + 14 T^{5} + \cdots - 333648 \) Copy content Toggle raw display
$7$ \( (T - 7)^{6} \) Copy content Toggle raw display
$11$ \( (T + 11)^{6} \) Copy content Toggle raw display
$13$ \( T^{6} + 70 T^{5} + \cdots + 187342848 \) Copy content Toggle raw display
$17$ \( T^{6} + 102 T^{5} + \cdots + 131616128 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 271652713984 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 1351057464576 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 25321485504 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 91303824924816 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 21235930324496 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 81213123421568 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 1651816972288 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 7070543379456 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 10489649778496 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 493861378249872 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 633825171314432 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 14\!\cdots\!88 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots + 83591455802624 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 61\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 89\!\cdots\!88 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 40\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 23\!\cdots\!32 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 41\!\cdots\!96 \) Copy content Toggle raw display
show more
show less