Properties

Label 616.4.a.d
Level $616$
Weight $4$
Character orbit 616.a
Self dual yes
Analytic conductor $36.345$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [616,4,Mod(1,616)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(616, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("616.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 616 = 2^{3} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 616.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.3451765635\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{5}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 3 \beta - 1) q^{3} + (\beta + 3) q^{5} - 7 q^{7} + (6 \beta + 19) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - 3 \beta - 1) q^{3} + (\beta + 3) q^{5} - 7 q^{7} + (6 \beta + 19) q^{9} - 11 q^{11} + (7 \beta - 45) q^{13} + ( - 10 \beta - 18) q^{15} + (16 \beta + 72) q^{17} + ( - 3 \beta + 41) q^{19} + (21 \beta + 7) q^{21} + (44 \beta - 88) q^{23} + (6 \beta - 111) q^{25} + (18 \beta - 82) q^{27} + (54 \beta + 148) q^{29} + ( - 102 \beta - 72) q^{31} + (33 \beta + 11) q^{33} + ( - 7 \beta - 21) q^{35} + (20 \beta - 258) q^{37} + (128 \beta - 60) q^{39} + (124 \beta + 204) q^{41} + (110 \beta + 202) q^{43} + (37 \beta + 87) q^{45} + ( - 50 \beta - 224) q^{47} + 49 q^{49} + ( - 232 \beta - 312) q^{51} + ( - 18 \beta + 224) q^{53} + ( - 11 \beta - 33) q^{55} + ( - 120 \beta + 4) q^{57} + (63 \beta - 199) q^{59} + ( - 15 \beta - 591) q^{61} + ( - 42 \beta - 133) q^{63} + ( - 24 \beta - 100) q^{65} + ( - 258 \beta + 350) q^{67} + (220 \beta - 572) q^{69} + ( - 234 \beta - 602) q^{71} + (130 \beta - 378) q^{73} + (327 \beta + 21) q^{75} + 77 q^{77} + (164 \beta - 852) q^{79} + (66 \beta - 701) q^{81} + ( - 423 \beta + 61) q^{83} + (120 \beta + 296) q^{85} + ( - 498 \beta - 958) q^{87} + ( - 544 \beta - 70) q^{89} + ( - 49 \beta + 315) q^{91} + (318 \beta + 1602) q^{93} + (32 \beta + 108) q^{95} + ( - 158 \beta + 304) q^{97} + ( - 66 \beta - 209) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 6 q^{5} - 14 q^{7} + 38 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} + 6 q^{5} - 14 q^{7} + 38 q^{9} - 22 q^{11} - 90 q^{13} - 36 q^{15} + 144 q^{17} + 82 q^{19} + 14 q^{21} - 176 q^{23} - 222 q^{25} - 164 q^{27} + 296 q^{29} - 144 q^{31} + 22 q^{33} - 42 q^{35} - 516 q^{37} - 120 q^{39} + 408 q^{41} + 404 q^{43} + 174 q^{45} - 448 q^{47} + 98 q^{49} - 624 q^{51} + 448 q^{53} - 66 q^{55} + 8 q^{57} - 398 q^{59} - 1182 q^{61} - 266 q^{63} - 200 q^{65} + 700 q^{67} - 1144 q^{69} - 1204 q^{71} - 756 q^{73} + 42 q^{75} + 154 q^{77} - 1704 q^{79} - 1402 q^{81} + 122 q^{83} + 592 q^{85} - 1916 q^{87} - 140 q^{89} + 630 q^{91} + 3204 q^{93} + 216 q^{95} + 608 q^{97} - 418 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
0 −7.70820 0 5.23607 0 −7.00000 0 32.4164 0
1.2 0 5.70820 0 0.763932 0 −7.00000 0 5.58359 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 616.4.a.d 2
4.b odd 2 1 1232.4.a.l 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
616.4.a.d 2 1.a even 1 1 trivial
1232.4.a.l 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(616))\):

\( T_{3}^{2} + 2T_{3} - 44 \) Copy content Toggle raw display
\( T_{5}^{2} - 6T_{5} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 2T - 44 \) Copy content Toggle raw display
$5$ \( T^{2} - 6T + 4 \) Copy content Toggle raw display
$7$ \( (T + 7)^{2} \) Copy content Toggle raw display
$11$ \( (T + 11)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 90T + 1780 \) Copy content Toggle raw display
$17$ \( T^{2} - 144T + 3904 \) Copy content Toggle raw display
$19$ \( T^{2} - 82T + 1636 \) Copy content Toggle raw display
$23$ \( T^{2} + 176T - 1936 \) Copy content Toggle raw display
$29$ \( T^{2} - 296T + 7324 \) Copy content Toggle raw display
$31$ \( T^{2} + 144T - 46836 \) Copy content Toggle raw display
$37$ \( T^{2} + 516T + 64564 \) Copy content Toggle raw display
$41$ \( T^{2} - 408T - 35264 \) Copy content Toggle raw display
$43$ \( T^{2} - 404T - 19696 \) Copy content Toggle raw display
$47$ \( T^{2} + 448T + 37676 \) Copy content Toggle raw display
$53$ \( T^{2} - 448T + 48556 \) Copy content Toggle raw display
$59$ \( T^{2} + 398T + 19756 \) Copy content Toggle raw display
$61$ \( T^{2} + 1182 T + 348156 \) Copy content Toggle raw display
$67$ \( T^{2} - 700T - 210320 \) Copy content Toggle raw display
$71$ \( T^{2} + 1204T + 88624 \) Copy content Toggle raw display
$73$ \( T^{2} + 756T + 58384 \) Copy content Toggle raw display
$79$ \( T^{2} + 1704 T + 591424 \) Copy content Toggle raw display
$83$ \( T^{2} - 122T - 890924 \) Copy content Toggle raw display
$89$ \( T^{2} + 140 T - 1474780 \) Copy content Toggle raw display
$97$ \( T^{2} - 608T - 32404 \) Copy content Toggle raw display
show more
show less