Properties

Label 616.2.a.g.1.3
Level $616$
Weight $2$
Character 616.1
Self dual yes
Analytic conductor $4.919$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [616,2,Mod(1,616)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("616.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(616, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 616 = 2^{3} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 616.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,1,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.91878476451\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.229.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.254102\) of defining polynomial
Character \(\chi\) \(=\) 616.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.68133 q^{3} +2.68133 q^{5} +1.00000 q^{7} +4.18953 q^{9} +1.00000 q^{11} -2.50820 q^{13} +7.18953 q^{15} -6.37907 q^{17} -3.87086 q^{19} +2.68133 q^{21} -4.55220 q^{23} +2.18953 q^{25} +3.18953 q^{27} +3.01641 q^{29} +5.18953 q^{31} +2.68133 q^{33} +2.68133 q^{35} -6.55220 q^{37} -6.72532 q^{39} -4.34625 q^{41} -1.01641 q^{43} +11.2335 q^{45} +0.637339 q^{47} +1.00000 q^{49} -17.1044 q^{51} -3.01641 q^{53} +2.68133 q^{55} -10.3791 q^{57} +12.0440 q^{59} +15.6126 q^{61} +4.18953 q^{63} -6.72532 q^{65} +5.56860 q^{67} -12.2059 q^{69} +11.5358 q^{71} -13.3627 q^{73} +5.87086 q^{75} +1.00000 q^{77} +6.37907 q^{79} -4.01641 q^{81} +2.50820 q^{83} -17.1044 q^{85} +8.08798 q^{87} -12.9313 q^{89} -2.50820 q^{91} +13.9149 q^{93} -10.3791 q^{95} -10.8105 q^{97} +4.18953 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{3} + q^{5} + 3 q^{7} + 4 q^{9} + 3 q^{11} - 6 q^{13} + 13 q^{15} - 2 q^{17} + 4 q^{19} + q^{21} + 9 q^{23} - 2 q^{25} + q^{27} + 6 q^{29} + 7 q^{31} + q^{33} + q^{35} + 3 q^{37} + 8 q^{39}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.68133 1.54807 0.774033 0.633145i \(-0.218236\pi\)
0.774033 + 0.633145i \(0.218236\pi\)
\(4\) 0 0
\(5\) 2.68133 1.19913 0.599564 0.800327i \(-0.295341\pi\)
0.599564 + 0.800327i \(0.295341\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 4.18953 1.39651
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −2.50820 −0.695650 −0.347825 0.937559i \(-0.613080\pi\)
−0.347825 + 0.937559i \(0.613080\pi\)
\(14\) 0 0
\(15\) 7.18953 1.85633
\(16\) 0 0
\(17\) −6.37907 −1.54715 −0.773576 0.633704i \(-0.781534\pi\)
−0.773576 + 0.633704i \(0.781534\pi\)
\(18\) 0 0
\(19\) −3.87086 −0.888037 −0.444019 0.896018i \(-0.646448\pi\)
−0.444019 + 0.896018i \(0.646448\pi\)
\(20\) 0 0
\(21\) 2.68133 0.585114
\(22\) 0 0
\(23\) −4.55220 −0.949198 −0.474599 0.880202i \(-0.657407\pi\)
−0.474599 + 0.880202i \(0.657407\pi\)
\(24\) 0 0
\(25\) 2.18953 0.437907
\(26\) 0 0
\(27\) 3.18953 0.613826
\(28\) 0 0
\(29\) 3.01641 0.560133 0.280066 0.959981i \(-0.409644\pi\)
0.280066 + 0.959981i \(0.409644\pi\)
\(30\) 0 0
\(31\) 5.18953 0.932068 0.466034 0.884767i \(-0.345682\pi\)
0.466034 + 0.884767i \(0.345682\pi\)
\(32\) 0 0
\(33\) 2.68133 0.466760
\(34\) 0 0
\(35\) 2.68133 0.453228
\(36\) 0 0
\(37\) −6.55220 −1.07717 −0.538587 0.842570i \(-0.681042\pi\)
−0.538587 + 0.842570i \(0.681042\pi\)
\(38\) 0 0
\(39\) −6.72532 −1.07691
\(40\) 0 0
\(41\) −4.34625 −0.678771 −0.339385 0.940647i \(-0.610219\pi\)
−0.339385 + 0.940647i \(0.610219\pi\)
\(42\) 0 0
\(43\) −1.01641 −0.155001 −0.0775003 0.996992i \(-0.524694\pi\)
−0.0775003 + 0.996992i \(0.524694\pi\)
\(44\) 0 0
\(45\) 11.2335 1.67460
\(46\) 0 0
\(47\) 0.637339 0.0929654 0.0464827 0.998919i \(-0.485199\pi\)
0.0464827 + 0.998919i \(0.485199\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −17.1044 −2.39509
\(52\) 0 0
\(53\) −3.01641 −0.414335 −0.207168 0.978305i \(-0.566425\pi\)
−0.207168 + 0.978305i \(0.566425\pi\)
\(54\) 0 0
\(55\) 2.68133 0.361551
\(56\) 0 0
\(57\) −10.3791 −1.37474
\(58\) 0 0
\(59\) 12.0440 1.56799 0.783997 0.620764i \(-0.213178\pi\)
0.783997 + 0.620764i \(0.213178\pi\)
\(60\) 0 0
\(61\) 15.6126 1.99899 0.999494 0.0318107i \(-0.0101274\pi\)
0.999494 + 0.0318107i \(0.0101274\pi\)
\(62\) 0 0
\(63\) 4.18953 0.527832
\(64\) 0 0
\(65\) −6.72532 −0.834174
\(66\) 0 0
\(67\) 5.56860 0.680313 0.340157 0.940369i \(-0.389520\pi\)
0.340157 + 0.940369i \(0.389520\pi\)
\(68\) 0 0
\(69\) −12.2059 −1.46942
\(70\) 0 0
\(71\) 11.5358 1.36905 0.684523 0.728991i \(-0.260010\pi\)
0.684523 + 0.728991i \(0.260010\pi\)
\(72\) 0 0
\(73\) −13.3627 −1.56398 −0.781991 0.623290i \(-0.785796\pi\)
−0.781991 + 0.623290i \(0.785796\pi\)
\(74\) 0 0
\(75\) 5.87086 0.677909
\(76\) 0 0
\(77\) 1.00000 0.113961
\(78\) 0 0
\(79\) 6.37907 0.717701 0.358851 0.933395i \(-0.383169\pi\)
0.358851 + 0.933395i \(0.383169\pi\)
\(80\) 0 0
\(81\) −4.01641 −0.446267
\(82\) 0 0
\(83\) 2.50820 0.275311 0.137656 0.990480i \(-0.456043\pi\)
0.137656 + 0.990480i \(0.456043\pi\)
\(84\) 0 0
\(85\) −17.1044 −1.85523
\(86\) 0 0
\(87\) 8.08798 0.867123
\(88\) 0 0
\(89\) −12.9313 −1.37071 −0.685356 0.728209i \(-0.740353\pi\)
−0.685356 + 0.728209i \(0.740353\pi\)
\(90\) 0 0
\(91\) −2.50820 −0.262931
\(92\) 0 0
\(93\) 13.9149 1.44290
\(94\) 0 0
\(95\) −10.3791 −1.06487
\(96\) 0 0
\(97\) −10.8105 −1.09764 −0.548818 0.835942i \(-0.684922\pi\)
−0.548818 + 0.835942i \(0.684922\pi\)
\(98\) 0 0
\(99\) 4.18953 0.421064
\(100\) 0 0
\(101\) 15.2663 1.51906 0.759529 0.650474i \(-0.225430\pi\)
0.759529 + 0.650474i \(0.225430\pi\)
\(102\) 0 0
\(103\) 19.3627 1.90786 0.953930 0.300030i \(-0.0969966\pi\)
0.953930 + 0.300030i \(0.0969966\pi\)
\(104\) 0 0
\(105\) 7.18953 0.701627
\(106\) 0 0
\(107\) 7.39547 0.714948 0.357474 0.933923i \(-0.383638\pi\)
0.357474 + 0.933923i \(0.383638\pi\)
\(108\) 0 0
\(109\) 4.37907 0.419439 0.209719 0.977762i \(-0.432745\pi\)
0.209719 + 0.977762i \(0.432745\pi\)
\(110\) 0 0
\(111\) −17.5686 −1.66754
\(112\) 0 0
\(113\) 0.843279 0.0793291 0.0396645 0.999213i \(-0.487371\pi\)
0.0396645 + 0.999213i \(0.487371\pi\)
\(114\) 0 0
\(115\) −12.2059 −1.13821
\(116\) 0 0
\(117\) −10.5082 −0.971484
\(118\) 0 0
\(119\) −6.37907 −0.584768
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −11.6537 −1.05078
\(124\) 0 0
\(125\) −7.53579 −0.674021
\(126\) 0 0
\(127\) −5.10439 −0.452941 −0.226471 0.974018i \(-0.572719\pi\)
−0.226471 + 0.974018i \(0.572719\pi\)
\(128\) 0 0
\(129\) −2.72532 −0.239951
\(130\) 0 0
\(131\) 15.6126 1.36408 0.682039 0.731315i \(-0.261093\pi\)
0.682039 + 0.731315i \(0.261093\pi\)
\(132\) 0 0
\(133\) −3.87086 −0.335647
\(134\) 0 0
\(135\) 8.55220 0.736056
\(136\) 0 0
\(137\) 17.2775 1.47612 0.738059 0.674736i \(-0.235743\pi\)
0.738059 + 0.674736i \(0.235743\pi\)
\(138\) 0 0
\(139\) −14.8545 −1.25994 −0.629969 0.776620i \(-0.716933\pi\)
−0.629969 + 0.776620i \(0.716933\pi\)
\(140\) 0 0
\(141\) 1.70892 0.143917
\(142\) 0 0
\(143\) −2.50820 −0.209747
\(144\) 0 0
\(145\) 8.08798 0.671671
\(146\) 0 0
\(147\) 2.68133 0.221152
\(148\) 0 0
\(149\) 2.25827 0.185005 0.0925024 0.995712i \(-0.470513\pi\)
0.0925024 + 0.995712i \(0.470513\pi\)
\(150\) 0 0
\(151\) −18.3791 −1.49567 −0.747834 0.663886i \(-0.768906\pi\)
−0.747834 + 0.663886i \(0.768906\pi\)
\(152\) 0 0
\(153\) −26.7253 −2.16061
\(154\) 0 0
\(155\) 13.9149 1.11767
\(156\) 0 0
\(157\) −23.7857 −1.89831 −0.949154 0.314813i \(-0.898058\pi\)
−0.949154 + 0.314813i \(0.898058\pi\)
\(158\) 0 0
\(159\) −8.08798 −0.641419
\(160\) 0 0
\(161\) −4.55220 −0.358763
\(162\) 0 0
\(163\) −15.7417 −1.23299 −0.616494 0.787360i \(-0.711447\pi\)
−0.616494 + 0.787360i \(0.711447\pi\)
\(164\) 0 0
\(165\) 7.18953 0.559704
\(166\) 0 0
\(167\) −6.63734 −0.513613 −0.256806 0.966463i \(-0.582670\pi\)
−0.256806 + 0.966463i \(0.582670\pi\)
\(168\) 0 0
\(169\) −6.70892 −0.516070
\(170\) 0 0
\(171\) −16.2171 −1.24015
\(172\) 0 0
\(173\) −15.2663 −1.16068 −0.580339 0.814375i \(-0.697080\pi\)
−0.580339 + 0.814375i \(0.697080\pi\)
\(174\) 0 0
\(175\) 2.18953 0.165513
\(176\) 0 0
\(177\) 32.2939 2.42736
\(178\) 0 0
\(179\) −16.8984 −1.26305 −0.631525 0.775356i \(-0.717571\pi\)
−0.631525 + 0.775356i \(0.717571\pi\)
\(180\) 0 0
\(181\) 0.0439919 0.00326989 0.00163495 0.999999i \(-0.499480\pi\)
0.00163495 + 0.999999i \(0.499480\pi\)
\(182\) 0 0
\(183\) 41.8625 3.09457
\(184\) 0 0
\(185\) −17.5686 −1.29167
\(186\) 0 0
\(187\) −6.37907 −0.466484
\(188\) 0 0
\(189\) 3.18953 0.232004
\(190\) 0 0
\(191\) 23.5358 1.70299 0.851495 0.524363i \(-0.175696\pi\)
0.851495 + 0.524363i \(0.175696\pi\)
\(192\) 0 0
\(193\) 16.7253 1.20392 0.601958 0.798528i \(-0.294388\pi\)
0.601958 + 0.798528i \(0.294388\pi\)
\(194\) 0 0
\(195\) −18.0328 −1.29136
\(196\) 0 0
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) 2.67015 0.189282 0.0946410 0.995511i \(-0.469830\pi\)
0.0946410 + 0.995511i \(0.469830\pi\)
\(200\) 0 0
\(201\) 14.9313 1.05317
\(202\) 0 0
\(203\) 3.01641 0.211710
\(204\) 0 0
\(205\) −11.6537 −0.813933
\(206\) 0 0
\(207\) −19.0716 −1.32557
\(208\) 0 0
\(209\) −3.87086 −0.267753
\(210\) 0 0
\(211\) −14.0552 −0.967598 −0.483799 0.875179i \(-0.660743\pi\)
−0.483799 + 0.875179i \(0.660743\pi\)
\(212\) 0 0
\(213\) 30.9313 2.11938
\(214\) 0 0
\(215\) −2.72532 −0.185865
\(216\) 0 0
\(217\) 5.18953 0.352289
\(218\) 0 0
\(219\) −35.8297 −2.42115
\(220\) 0 0
\(221\) 16.0000 1.07628
\(222\) 0 0
\(223\) 16.9313 1.13380 0.566901 0.823786i \(-0.308142\pi\)
0.566901 + 0.823786i \(0.308142\pi\)
\(224\) 0 0
\(225\) 9.17313 0.611542
\(226\) 0 0
\(227\) −9.49180 −0.629993 −0.314996 0.949093i \(-0.602003\pi\)
−0.314996 + 0.949093i \(0.602003\pi\)
\(228\) 0 0
\(229\) −0.648517 −0.0428552 −0.0214276 0.999770i \(-0.506821\pi\)
−0.0214276 + 0.999770i \(0.506821\pi\)
\(230\) 0 0
\(231\) 2.68133 0.176419
\(232\) 0 0
\(233\) 14.6925 0.962538 0.481269 0.876573i \(-0.340176\pi\)
0.481269 + 0.876573i \(0.340176\pi\)
\(234\) 0 0
\(235\) 1.70892 0.111477
\(236\) 0 0
\(237\) 17.1044 1.11105
\(238\) 0 0
\(239\) −16.7581 −1.08399 −0.541997 0.840381i \(-0.682332\pi\)
−0.541997 + 0.840381i \(0.682332\pi\)
\(240\) 0 0
\(241\) −20.7581 −1.33715 −0.668575 0.743645i \(-0.733095\pi\)
−0.668575 + 0.743645i \(0.733095\pi\)
\(242\) 0 0
\(243\) −20.3379 −1.30468
\(244\) 0 0
\(245\) 2.68133 0.171304
\(246\) 0 0
\(247\) 9.70892 0.617764
\(248\) 0 0
\(249\) 6.72532 0.426200
\(250\) 0 0
\(251\) −7.69774 −0.485877 −0.242938 0.970042i \(-0.578111\pi\)
−0.242938 + 0.970042i \(0.578111\pi\)
\(252\) 0 0
\(253\) −4.55220 −0.286194
\(254\) 0 0
\(255\) −45.8625 −2.87202
\(256\) 0 0
\(257\) 25.4835 1.58961 0.794807 0.606862i \(-0.207572\pi\)
0.794807 + 0.606862i \(0.207572\pi\)
\(258\) 0 0
\(259\) −6.55220 −0.407134
\(260\) 0 0
\(261\) 12.6373 0.782232
\(262\) 0 0
\(263\) 27.8297 1.71605 0.858027 0.513605i \(-0.171690\pi\)
0.858027 + 0.513605i \(0.171690\pi\)
\(264\) 0 0
\(265\) −8.08798 −0.496841
\(266\) 0 0
\(267\) −34.6730 −2.12195
\(268\) 0 0
\(269\) 4.76647 0.290617 0.145309 0.989386i \(-0.453583\pi\)
0.145309 + 0.989386i \(0.453583\pi\)
\(270\) 0 0
\(271\) 12.0000 0.728948 0.364474 0.931214i \(-0.381249\pi\)
0.364474 + 0.931214i \(0.381249\pi\)
\(272\) 0 0
\(273\) −6.72532 −0.407035
\(274\) 0 0
\(275\) 2.18953 0.132034
\(276\) 0 0
\(277\) −18.0880 −1.08680 −0.543401 0.839473i \(-0.682864\pi\)
−0.543401 + 0.839473i \(0.682864\pi\)
\(278\) 0 0
\(279\) 21.7417 1.30164
\(280\) 0 0
\(281\) 18.3463 1.09445 0.547223 0.836987i \(-0.315685\pi\)
0.547223 + 0.836987i \(0.315685\pi\)
\(282\) 0 0
\(283\) 32.7170 1.94482 0.972411 0.233272i \(-0.0749434\pi\)
0.972411 + 0.233272i \(0.0749434\pi\)
\(284\) 0 0
\(285\) −27.8297 −1.64849
\(286\) 0 0
\(287\) −4.34625 −0.256551
\(288\) 0 0
\(289\) 23.6925 1.39368
\(290\) 0 0
\(291\) −28.9864 −1.69921
\(292\) 0 0
\(293\) 10.1619 0.593667 0.296834 0.954929i \(-0.404069\pi\)
0.296834 + 0.954929i \(0.404069\pi\)
\(294\) 0 0
\(295\) 32.2939 1.88022
\(296\) 0 0
\(297\) 3.18953 0.185076
\(298\) 0 0
\(299\) 11.4178 0.660310
\(300\) 0 0
\(301\) −1.01641 −0.0585847
\(302\) 0 0
\(303\) 40.9341 2.35160
\(304\) 0 0
\(305\) 41.8625 2.39704
\(306\) 0 0
\(307\) −12.2171 −0.697268 −0.348634 0.937259i \(-0.613354\pi\)
−0.348634 + 0.937259i \(0.613354\pi\)
\(308\) 0 0
\(309\) 51.9177 2.95349
\(310\) 0 0
\(311\) −17.8297 −1.01103 −0.505515 0.862818i \(-0.668698\pi\)
−0.505515 + 0.862818i \(0.668698\pi\)
\(312\) 0 0
\(313\) −15.9149 −0.899561 −0.449780 0.893139i \(-0.648498\pi\)
−0.449780 + 0.893139i \(0.648498\pi\)
\(314\) 0 0
\(315\) 11.2335 0.632937
\(316\) 0 0
\(317\) 19.3103 1.08458 0.542288 0.840193i \(-0.317558\pi\)
0.542288 + 0.840193i \(0.317558\pi\)
\(318\) 0 0
\(319\) 3.01641 0.168886
\(320\) 0 0
\(321\) 19.8297 1.10679
\(322\) 0 0
\(323\) 24.6925 1.37393
\(324\) 0 0
\(325\) −5.49180 −0.304630
\(326\) 0 0
\(327\) 11.7417 0.649319
\(328\) 0 0
\(329\) 0.637339 0.0351376
\(330\) 0 0
\(331\) 8.89845 0.489103 0.244552 0.969636i \(-0.421359\pi\)
0.244552 + 0.969636i \(0.421359\pi\)
\(332\) 0 0
\(333\) −27.4506 −1.50429
\(334\) 0 0
\(335\) 14.9313 0.815782
\(336\) 0 0
\(337\) −16.0328 −0.873363 −0.436682 0.899616i \(-0.643846\pi\)
−0.436682 + 0.899616i \(0.643846\pi\)
\(338\) 0 0
\(339\) 2.26111 0.122807
\(340\) 0 0
\(341\) 5.18953 0.281029
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −32.7282 −1.76203
\(346\) 0 0
\(347\) 0.604525 0.0324526 0.0162263 0.999868i \(-0.494835\pi\)
0.0162263 + 0.999868i \(0.494835\pi\)
\(348\) 0 0
\(349\) 18.5962 0.995431 0.497716 0.867340i \(-0.334172\pi\)
0.497716 + 0.867340i \(0.334172\pi\)
\(350\) 0 0
\(351\) −8.00000 −0.427008
\(352\) 0 0
\(353\) 26.5522 1.41323 0.706615 0.707598i \(-0.250221\pi\)
0.706615 + 0.707598i \(0.250221\pi\)
\(354\) 0 0
\(355\) 30.9313 1.64166
\(356\) 0 0
\(357\) −17.1044 −0.905260
\(358\) 0 0
\(359\) 25.4506 1.34323 0.671617 0.740899i \(-0.265600\pi\)
0.671617 + 0.740899i \(0.265600\pi\)
\(360\) 0 0
\(361\) −4.01641 −0.211390
\(362\) 0 0
\(363\) 2.68133 0.140733
\(364\) 0 0
\(365\) −35.8297 −1.87541
\(366\) 0 0
\(367\) −24.7610 −1.29251 −0.646256 0.763120i \(-0.723666\pi\)
−0.646256 + 0.763120i \(0.723666\pi\)
\(368\) 0 0
\(369\) −18.2088 −0.947911
\(370\) 0 0
\(371\) −3.01641 −0.156604
\(372\) 0 0
\(373\) 18.4119 0.953331 0.476666 0.879085i \(-0.341845\pi\)
0.476666 + 0.879085i \(0.341845\pi\)
\(374\) 0 0
\(375\) −20.2059 −1.04343
\(376\) 0 0
\(377\) −7.56576 −0.389657
\(378\) 0 0
\(379\) 11.9477 0.613711 0.306855 0.951756i \(-0.400723\pi\)
0.306855 + 0.951756i \(0.400723\pi\)
\(380\) 0 0
\(381\) −13.6866 −0.701184
\(382\) 0 0
\(383\) −16.2611 −0.830904 −0.415452 0.909615i \(-0.636377\pi\)
−0.415452 + 0.909615i \(0.636377\pi\)
\(384\) 0 0
\(385\) 2.68133 0.136653
\(386\) 0 0
\(387\) −4.25827 −0.216460
\(388\) 0 0
\(389\) −8.67299 −0.439738 −0.219869 0.975529i \(-0.570563\pi\)
−0.219869 + 0.975529i \(0.570563\pi\)
\(390\) 0 0
\(391\) 29.0388 1.46855
\(392\) 0 0
\(393\) 41.8625 2.11169
\(394\) 0 0
\(395\) 17.1044 0.860615
\(396\) 0 0
\(397\) −23.2335 −1.16606 −0.583029 0.812452i \(-0.698132\pi\)
−0.583029 + 0.812452i \(0.698132\pi\)
\(398\) 0 0
\(399\) −10.3791 −0.519603
\(400\) 0 0
\(401\) 37.7417 1.88473 0.942366 0.334584i \(-0.108596\pi\)
0.942366 + 0.334584i \(0.108596\pi\)
\(402\) 0 0
\(403\) −13.0164 −0.648393
\(404\) 0 0
\(405\) −10.7693 −0.535132
\(406\) 0 0
\(407\) −6.55220 −0.324780
\(408\) 0 0
\(409\) −19.0716 −0.943029 −0.471514 0.881858i \(-0.656292\pi\)
−0.471514 + 0.881858i \(0.656292\pi\)
\(410\) 0 0
\(411\) 46.3267 2.28513
\(412\) 0 0
\(413\) 12.0440 0.592646
\(414\) 0 0
\(415\) 6.72532 0.330133
\(416\) 0 0
\(417\) −39.8297 −1.95047
\(418\) 0 0
\(419\) −24.5962 −1.20160 −0.600801 0.799398i \(-0.705152\pi\)
−0.600801 + 0.799398i \(0.705152\pi\)
\(420\) 0 0
\(421\) −19.7089 −0.960554 −0.480277 0.877117i \(-0.659464\pi\)
−0.480277 + 0.877117i \(0.659464\pi\)
\(422\) 0 0
\(423\) 2.67015 0.129827
\(424\) 0 0
\(425\) −13.9672 −0.677508
\(426\) 0 0
\(427\) 15.6126 0.755546
\(428\) 0 0
\(429\) −6.72532 −0.324702
\(430\) 0 0
\(431\) 8.06563 0.388508 0.194254 0.980951i \(-0.437771\pi\)
0.194254 + 0.980951i \(0.437771\pi\)
\(432\) 0 0
\(433\) −23.5686 −1.13263 −0.566317 0.824187i \(-0.691632\pi\)
−0.566317 + 0.824187i \(0.691632\pi\)
\(434\) 0 0
\(435\) 21.6866 1.03979
\(436\) 0 0
\(437\) 17.6209 0.842923
\(438\) 0 0
\(439\) −4.41188 −0.210568 −0.105284 0.994442i \(-0.533575\pi\)
−0.105284 + 0.994442i \(0.533575\pi\)
\(440\) 0 0
\(441\) 4.18953 0.199502
\(442\) 0 0
\(443\) 20.5522 0.976464 0.488232 0.872714i \(-0.337642\pi\)
0.488232 + 0.872714i \(0.337642\pi\)
\(444\) 0 0
\(445\) −34.6730 −1.64366
\(446\) 0 0
\(447\) 6.05517 0.286400
\(448\) 0 0
\(449\) 10.2059 0.481648 0.240824 0.970569i \(-0.422582\pi\)
0.240824 + 0.970569i \(0.422582\pi\)
\(450\) 0 0
\(451\) −4.34625 −0.204657
\(452\) 0 0
\(453\) −49.2804 −2.31539
\(454\) 0 0
\(455\) −6.72532 −0.315288
\(456\) 0 0
\(457\) 17.8297 0.834039 0.417019 0.908898i \(-0.363075\pi\)
0.417019 + 0.908898i \(0.363075\pi\)
\(458\) 0 0
\(459\) −20.3463 −0.949682
\(460\) 0 0
\(461\) −25.6454 −1.19443 −0.597213 0.802083i \(-0.703725\pi\)
−0.597213 + 0.802083i \(0.703725\pi\)
\(462\) 0 0
\(463\) −3.25516 −0.151280 −0.0756401 0.997135i \(-0.524100\pi\)
−0.0756401 + 0.997135i \(0.524100\pi\)
\(464\) 0 0
\(465\) 37.3103 1.73023
\(466\) 0 0
\(467\) −24.1320 −1.11669 −0.558347 0.829607i \(-0.688564\pi\)
−0.558347 + 0.829607i \(0.688564\pi\)
\(468\) 0 0
\(469\) 5.56860 0.257134
\(470\) 0 0
\(471\) −63.7774 −2.93871
\(472\) 0 0
\(473\) −1.01641 −0.0467344
\(474\) 0 0
\(475\) −8.47539 −0.388878
\(476\) 0 0
\(477\) −12.6373 −0.578624
\(478\) 0 0
\(479\) −7.67610 −0.350730 −0.175365 0.984503i \(-0.556111\pi\)
−0.175365 + 0.984503i \(0.556111\pi\)
\(480\) 0 0
\(481\) 16.4342 0.749337
\(482\) 0 0
\(483\) −12.2059 −0.555390
\(484\) 0 0
\(485\) −28.9864 −1.31621
\(486\) 0 0
\(487\) −14.5850 −0.660910 −0.330455 0.943822i \(-0.607202\pi\)
−0.330455 + 0.943822i \(0.607202\pi\)
\(488\) 0 0
\(489\) −42.2088 −1.90875
\(490\) 0 0
\(491\) −39.3132 −1.77418 −0.887089 0.461598i \(-0.847276\pi\)
−0.887089 + 0.461598i \(0.847276\pi\)
\(492\) 0 0
\(493\) −19.2419 −0.866610
\(494\) 0 0
\(495\) 11.2335 0.504909
\(496\) 0 0
\(497\) 11.5358 0.517451
\(498\) 0 0
\(499\) 2.29108 0.102563 0.0512815 0.998684i \(-0.483669\pi\)
0.0512815 + 0.998684i \(0.483669\pi\)
\(500\) 0 0
\(501\) −17.7969 −0.795107
\(502\) 0 0
\(503\) 6.03281 0.268990 0.134495 0.990914i \(-0.457059\pi\)
0.134495 + 0.990914i \(0.457059\pi\)
\(504\) 0 0
\(505\) 40.9341 1.82154
\(506\) 0 0
\(507\) −17.9888 −0.798912
\(508\) 0 0
\(509\) −5.23069 −0.231846 −0.115923 0.993258i \(-0.536983\pi\)
−0.115923 + 0.993258i \(0.536983\pi\)
\(510\) 0 0
\(511\) −13.3627 −0.591129
\(512\) 0 0
\(513\) −12.3463 −0.545100
\(514\) 0 0
\(515\) 51.9177 2.28777
\(516\) 0 0
\(517\) 0.637339 0.0280301
\(518\) 0 0
\(519\) −40.9341 −1.79681
\(520\) 0 0
\(521\) 29.3655 1.28653 0.643263 0.765645i \(-0.277580\pi\)
0.643263 + 0.765645i \(0.277580\pi\)
\(522\) 0 0
\(523\) 25.9260 1.13367 0.566833 0.823833i \(-0.308168\pi\)
0.566833 + 0.823833i \(0.308168\pi\)
\(524\) 0 0
\(525\) 5.87086 0.256226
\(526\) 0 0
\(527\) −33.1044 −1.44205
\(528\) 0 0
\(529\) −2.27752 −0.0990225
\(530\) 0 0
\(531\) 50.4587 2.18972
\(532\) 0 0
\(533\) 10.9013 0.472187
\(534\) 0 0
\(535\) 19.8297 0.857313
\(536\) 0 0
\(537\) −45.3103 −1.95529
\(538\) 0 0
\(539\) 1.00000 0.0430730
\(540\) 0 0
\(541\) 5.82971 0.250639 0.125319 0.992116i \(-0.460004\pi\)
0.125319 + 0.992116i \(0.460004\pi\)
\(542\) 0 0
\(543\) 0.117957 0.00506202
\(544\) 0 0
\(545\) 11.7417 0.502960
\(546\) 0 0
\(547\) −17.2747 −0.738612 −0.369306 0.929308i \(-0.620405\pi\)
−0.369306 + 0.929308i \(0.620405\pi\)
\(548\) 0 0
\(549\) 65.4095 2.79161
\(550\) 0 0
\(551\) −11.6761 −0.497419
\(552\) 0 0
\(553\) 6.37907 0.271266
\(554\) 0 0
\(555\) −47.1072 −1.99959
\(556\) 0 0
\(557\) 12.0328 0.509847 0.254923 0.966961i \(-0.417950\pi\)
0.254923 + 0.966961i \(0.417950\pi\)
\(558\) 0 0
\(559\) 2.54935 0.107826
\(560\) 0 0
\(561\) −17.1044 −0.722148
\(562\) 0 0
\(563\) −21.2335 −0.894886 −0.447443 0.894312i \(-0.647665\pi\)
−0.447443 + 0.894312i \(0.647665\pi\)
\(564\) 0 0
\(565\) 2.26111 0.0951257
\(566\) 0 0
\(567\) −4.01641 −0.168673
\(568\) 0 0
\(569\) −15.5163 −0.650476 −0.325238 0.945632i \(-0.605444\pi\)
−0.325238 + 0.945632i \(0.605444\pi\)
\(570\) 0 0
\(571\) 17.4506 0.730287 0.365143 0.930951i \(-0.381020\pi\)
0.365143 + 0.930951i \(0.381020\pi\)
\(572\) 0 0
\(573\) 63.1072 2.63634
\(574\) 0 0
\(575\) −9.96719 −0.415660
\(576\) 0 0
\(577\) 32.9969 1.37368 0.686839 0.726809i \(-0.258998\pi\)
0.686839 + 0.726809i \(0.258998\pi\)
\(578\) 0 0
\(579\) 44.8461 1.86374
\(580\) 0 0
\(581\) 2.50820 0.104058
\(582\) 0 0
\(583\) −3.01641 −0.124927
\(584\) 0 0
\(585\) −28.1760 −1.16493
\(586\) 0 0
\(587\) −4.59619 −0.189705 −0.0948525 0.995491i \(-0.530238\pi\)
−0.0948525 + 0.995491i \(0.530238\pi\)
\(588\) 0 0
\(589\) −20.0880 −0.827711
\(590\) 0 0
\(591\) 5.36266 0.220590
\(592\) 0 0
\(593\) −5.87920 −0.241430 −0.120715 0.992687i \(-0.538519\pi\)
−0.120715 + 0.992687i \(0.538519\pi\)
\(594\) 0 0
\(595\) −17.1044 −0.701212
\(596\) 0 0
\(597\) 7.15956 0.293021
\(598\) 0 0
\(599\) 8.43424 0.344614 0.172307 0.985043i \(-0.444878\pi\)
0.172307 + 0.985043i \(0.444878\pi\)
\(600\) 0 0
\(601\) 2.46705 0.100633 0.0503166 0.998733i \(-0.483977\pi\)
0.0503166 + 0.998733i \(0.483977\pi\)
\(602\) 0 0
\(603\) 23.3298 0.950065
\(604\) 0 0
\(605\) 2.68133 0.109012
\(606\) 0 0
\(607\) 4.34625 0.176409 0.0882045 0.996102i \(-0.471887\pi\)
0.0882045 + 0.996102i \(0.471887\pi\)
\(608\) 0 0
\(609\) 8.08798 0.327742
\(610\) 0 0
\(611\) −1.59858 −0.0646714
\(612\) 0 0
\(613\) 36.8133 1.48688 0.743438 0.668805i \(-0.233194\pi\)
0.743438 + 0.668805i \(0.233194\pi\)
\(614\) 0 0
\(615\) −31.2475 −1.26002
\(616\) 0 0
\(617\) −13.0492 −0.525342 −0.262671 0.964885i \(-0.584603\pi\)
−0.262671 + 0.964885i \(0.584603\pi\)
\(618\) 0 0
\(619\) 12.2143 0.490933 0.245467 0.969405i \(-0.421059\pi\)
0.245467 + 0.969405i \(0.421059\pi\)
\(620\) 0 0
\(621\) −14.5194 −0.582643
\(622\) 0 0
\(623\) −12.9313 −0.518080
\(624\) 0 0
\(625\) −31.1536 −1.24614
\(626\) 0 0
\(627\) −10.3791 −0.414500
\(628\) 0 0
\(629\) 41.7969 1.66655
\(630\) 0 0
\(631\) 4.52984 0.180330 0.0901650 0.995927i \(-0.471261\pi\)
0.0901650 + 0.995927i \(0.471261\pi\)
\(632\) 0 0
\(633\) −37.6866 −1.49791
\(634\) 0 0
\(635\) −13.6866 −0.543135
\(636\) 0 0
\(637\) −2.50820 −0.0993786
\(638\) 0 0
\(639\) 48.3296 1.91189
\(640\) 0 0
\(641\) −6.11796 −0.241645 −0.120822 0.992674i \(-0.538553\pi\)
−0.120822 + 0.992674i \(0.538553\pi\)
\(642\) 0 0
\(643\) −38.6647 −1.52479 −0.762393 0.647115i \(-0.775975\pi\)
−0.762393 + 0.647115i \(0.775975\pi\)
\(644\) 0 0
\(645\) −7.30749 −0.287732
\(646\) 0 0
\(647\) −11.7389 −0.461503 −0.230752 0.973013i \(-0.574118\pi\)
−0.230752 + 0.973013i \(0.574118\pi\)
\(648\) 0 0
\(649\) 12.0440 0.472768
\(650\) 0 0
\(651\) 13.9149 0.545366
\(652\) 0 0
\(653\) −34.9864 −1.36912 −0.684562 0.728954i \(-0.740007\pi\)
−0.684562 + 0.728954i \(0.740007\pi\)
\(654\) 0 0
\(655\) 41.8625 1.63570
\(656\) 0 0
\(657\) −55.9833 −2.18412
\(658\) 0 0
\(659\) 2.12080 0.0826145 0.0413073 0.999146i \(-0.486848\pi\)
0.0413073 + 0.999146i \(0.486848\pi\)
\(660\) 0 0
\(661\) −22.1424 −0.861241 −0.430620 0.902533i \(-0.641705\pi\)
−0.430620 + 0.902533i \(0.641705\pi\)
\(662\) 0 0
\(663\) 42.9013 1.66615
\(664\) 0 0
\(665\) −10.3791 −0.402483
\(666\) 0 0
\(667\) −13.7313 −0.531677
\(668\) 0 0
\(669\) 45.3983 1.75520
\(670\) 0 0
\(671\) 15.6126 0.602718
\(672\) 0 0
\(673\) −30.5222 −1.17655 −0.588273 0.808663i \(-0.700192\pi\)
−0.588273 + 0.808663i \(0.700192\pi\)
\(674\) 0 0
\(675\) 6.98359 0.268799
\(676\) 0 0
\(677\) 1.32151 0.0507897 0.0253949 0.999677i \(-0.491916\pi\)
0.0253949 + 0.999677i \(0.491916\pi\)
\(678\) 0 0
\(679\) −10.8105 −0.414868
\(680\) 0 0
\(681\) −25.4506 −0.975271
\(682\) 0 0
\(683\) 48.9341 1.87241 0.936206 0.351452i \(-0.114312\pi\)
0.936206 + 0.351452i \(0.114312\pi\)
\(684\) 0 0
\(685\) 46.3267 1.77005
\(686\) 0 0
\(687\) −1.73889 −0.0663427
\(688\) 0 0
\(689\) 7.56576 0.288233
\(690\) 0 0
\(691\) −0.714144 −0.0271673 −0.0135837 0.999908i \(-0.504324\pi\)
−0.0135837 + 0.999908i \(0.504324\pi\)
\(692\) 0 0
\(693\) 4.18953 0.159147
\(694\) 0 0
\(695\) −39.8297 −1.51083
\(696\) 0 0
\(697\) 27.7251 1.05016
\(698\) 0 0
\(699\) 39.3955 1.49007
\(700\) 0 0
\(701\) −23.0388 −0.870162 −0.435081 0.900391i \(-0.643280\pi\)
−0.435081 + 0.900391i \(0.643280\pi\)
\(702\) 0 0
\(703\) 25.3627 0.956571
\(704\) 0 0
\(705\) 4.58217 0.172574
\(706\) 0 0
\(707\) 15.2663 0.574150
\(708\) 0 0
\(709\) −13.5358 −0.508347 −0.254174 0.967159i \(-0.581803\pi\)
−0.254174 + 0.967159i \(0.581803\pi\)
\(710\) 0 0
\(711\) 26.7253 1.00228
\(712\) 0 0
\(713\) −23.6238 −0.884717
\(714\) 0 0
\(715\) −6.72532 −0.251513
\(716\) 0 0
\(717\) −44.9341 −1.67809
\(718\) 0 0
\(719\) −52.5027 −1.95802 −0.979010 0.203811i \(-0.934667\pi\)
−0.979010 + 0.203811i \(0.934667\pi\)
\(720\) 0 0
\(721\) 19.3627 0.721103
\(722\) 0 0
\(723\) −55.6594 −2.07000
\(724\) 0 0
\(725\) 6.60453 0.245286
\(726\) 0 0
\(727\) 22.0133 0.816428 0.408214 0.912886i \(-0.366152\pi\)
0.408214 + 0.912886i \(0.366152\pi\)
\(728\) 0 0
\(729\) −42.4835 −1.57346
\(730\) 0 0
\(731\) 6.48373 0.239809
\(732\) 0 0
\(733\) −30.9424 −1.14289 −0.571443 0.820642i \(-0.693616\pi\)
−0.571443 + 0.820642i \(0.693616\pi\)
\(734\) 0 0
\(735\) 7.18953 0.265190
\(736\) 0 0
\(737\) 5.56860 0.205122
\(738\) 0 0
\(739\) 17.0388 0.626781 0.313391 0.949624i \(-0.398535\pi\)
0.313391 + 0.949624i \(0.398535\pi\)
\(740\) 0 0
\(741\) 26.0328 0.956339
\(742\) 0 0
\(743\) 22.2088 0.814761 0.407381 0.913258i \(-0.366442\pi\)
0.407381 + 0.913258i \(0.366442\pi\)
\(744\) 0 0
\(745\) 6.05517 0.221844
\(746\) 0 0
\(747\) 10.5082 0.384475
\(748\) 0 0
\(749\) 7.39547 0.270225
\(750\) 0 0
\(751\) 17.8269 0.650512 0.325256 0.945626i \(-0.394550\pi\)
0.325256 + 0.945626i \(0.394550\pi\)
\(752\) 0 0
\(753\) −20.6402 −0.752170
\(754\) 0 0
\(755\) −49.2804 −1.79350
\(756\) 0 0
\(757\) 8.98359 0.326514 0.163257 0.986584i \(-0.447800\pi\)
0.163257 + 0.986584i \(0.447800\pi\)
\(758\) 0 0
\(759\) −12.2059 −0.443048
\(760\) 0 0
\(761\) 42.9669 1.55755 0.778775 0.627304i \(-0.215841\pi\)
0.778775 + 0.627304i \(0.215841\pi\)
\(762\) 0 0
\(763\) 4.37907 0.158533
\(764\) 0 0
\(765\) −71.6594 −2.59085
\(766\) 0 0
\(767\) −30.2088 −1.09078
\(768\) 0 0
\(769\) 42.9669 1.54943 0.774713 0.632313i \(-0.217894\pi\)
0.774713 + 0.632313i \(0.217894\pi\)
\(770\) 0 0
\(771\) 68.3296 2.46083
\(772\) 0 0
\(773\) −26.4587 −0.951654 −0.475827 0.879539i \(-0.657851\pi\)
−0.475827 + 0.879539i \(0.657851\pi\)
\(774\) 0 0
\(775\) 11.3627 0.408159
\(776\) 0 0
\(777\) −17.5686 −0.630270
\(778\) 0 0
\(779\) 16.8238 0.602774
\(780\) 0 0
\(781\) 11.5358 0.412783
\(782\) 0 0
\(783\) 9.62093 0.343824
\(784\) 0 0
\(785\) −63.7774 −2.27631
\(786\) 0 0
\(787\) −30.5962 −1.09064 −0.545318 0.838229i \(-0.683591\pi\)
−0.545318 + 0.838229i \(0.683591\pi\)
\(788\) 0 0
\(789\) 74.6207 2.65657
\(790\) 0 0
\(791\) 0.843279 0.0299836
\(792\) 0 0
\(793\) −39.1596 −1.39060
\(794\) 0 0
\(795\) −21.6866 −0.769143
\(796\) 0 0
\(797\) −29.7529 −1.05390 −0.526951 0.849896i \(-0.676665\pi\)
−0.526951 + 0.849896i \(0.676665\pi\)
\(798\) 0 0
\(799\) −4.06563 −0.143832
\(800\) 0 0
\(801\) −54.1760 −1.91421
\(802\) 0 0
\(803\) −13.3627 −0.471558
\(804\) 0 0
\(805\) −12.2059 −0.430203
\(806\) 0 0
\(807\) 12.7805 0.449895
\(808\) 0 0
\(809\) 24.0328 0.844949 0.422474 0.906375i \(-0.361162\pi\)
0.422474 + 0.906375i \(0.361162\pi\)
\(810\) 0 0
\(811\) −2.59619 −0.0911645 −0.0455822 0.998961i \(-0.514514\pi\)
−0.0455822 + 0.998961i \(0.514514\pi\)
\(812\) 0 0
\(813\) 32.1760 1.12846
\(814\) 0 0
\(815\) −42.2088 −1.47851
\(816\) 0 0
\(817\) 3.93437 0.137646
\(818\) 0 0
\(819\) −10.5082 −0.367186
\(820\) 0 0
\(821\) −3.01641 −0.105273 −0.0526367 0.998614i \(-0.516763\pi\)
−0.0526367 + 0.998614i \(0.516763\pi\)
\(822\) 0 0
\(823\) 1.67326 0.0583262 0.0291631 0.999575i \(-0.490716\pi\)
0.0291631 + 0.999575i \(0.490716\pi\)
\(824\) 0 0
\(825\) 5.87086 0.204397
\(826\) 0 0
\(827\) −20.6925 −0.719549 −0.359775 0.933039i \(-0.617146\pi\)
−0.359775 + 0.933039i \(0.617146\pi\)
\(828\) 0 0
\(829\) −4.10962 −0.142733 −0.0713665 0.997450i \(-0.522736\pi\)
−0.0713665 + 0.997450i \(0.522736\pi\)
\(830\) 0 0
\(831\) −48.4999 −1.68244
\(832\) 0 0
\(833\) −6.37907 −0.221022
\(834\) 0 0
\(835\) −17.7969 −0.615887
\(836\) 0 0
\(837\) 16.5522 0.572128
\(838\) 0 0
\(839\) −51.1177 −1.76478 −0.882389 0.470520i \(-0.844066\pi\)
−0.882389 + 0.470520i \(0.844066\pi\)
\(840\) 0 0
\(841\) −19.9013 −0.686251
\(842\) 0 0
\(843\) 49.1924 1.69428
\(844\) 0 0
\(845\) −17.9888 −0.618834
\(846\) 0 0
\(847\) 1.00000 0.0343604
\(848\) 0 0
\(849\) 87.7251 3.01072
\(850\) 0 0
\(851\) 29.8269 1.02245
\(852\) 0 0
\(853\) −37.8214 −1.29498 −0.647490 0.762074i \(-0.724181\pi\)
−0.647490 + 0.762074i \(0.724181\pi\)
\(854\) 0 0
\(855\) −43.4835 −1.48710
\(856\) 0 0
\(857\) 36.9997 1.26389 0.631943 0.775015i \(-0.282258\pi\)
0.631943 + 0.775015i \(0.282258\pi\)
\(858\) 0 0
\(859\) 13.0604 0.445615 0.222808 0.974862i \(-0.428478\pi\)
0.222808 + 0.974862i \(0.428478\pi\)
\(860\) 0 0
\(861\) −11.6537 −0.397159
\(862\) 0 0
\(863\) 41.8849 1.42578 0.712889 0.701277i \(-0.247386\pi\)
0.712889 + 0.701277i \(0.247386\pi\)
\(864\) 0 0
\(865\) −40.9341 −1.39180
\(866\) 0 0
\(867\) 63.5275 2.15751
\(868\) 0 0
\(869\) 6.37907 0.216395
\(870\) 0 0
\(871\) −13.9672 −0.473260
\(872\) 0 0
\(873\) −45.2908 −1.53286
\(874\) 0 0
\(875\) −7.53579 −0.254756
\(876\) 0 0
\(877\) 18.7581 0.633417 0.316709 0.948523i \(-0.397422\pi\)
0.316709 + 0.948523i \(0.397422\pi\)
\(878\) 0 0
\(879\) 27.2475 0.919037
\(880\) 0 0
\(881\) −18.7282 −0.630968 −0.315484 0.948931i \(-0.602167\pi\)
−0.315484 + 0.948931i \(0.602167\pi\)
\(882\) 0 0
\(883\) −24.9341 −0.839099 −0.419550 0.907732i \(-0.637812\pi\)
−0.419550 + 0.907732i \(0.637812\pi\)
\(884\) 0 0
\(885\) 86.5907 2.91071
\(886\) 0 0
\(887\) 0.0879839 0.00295421 0.00147710 0.999999i \(-0.499530\pi\)
0.00147710 + 0.999999i \(0.499530\pi\)
\(888\) 0 0
\(889\) −5.10439 −0.171196
\(890\) 0 0
\(891\) −4.01641 −0.134555
\(892\) 0 0
\(893\) −2.46705 −0.0825567
\(894\) 0 0
\(895\) −45.3103 −1.51456
\(896\) 0 0
\(897\) 30.6150 1.02220
\(898\) 0 0
\(899\) 15.6537 0.522082
\(900\) 0 0
\(901\) 19.2419 0.641039
\(902\) 0 0
\(903\) −2.72532 −0.0906931
\(904\) 0 0
\(905\) 0.117957 0.00392102
\(906\) 0 0
\(907\) 54.0161 1.79358 0.896788 0.442460i \(-0.145894\pi\)
0.896788 + 0.442460i \(0.145894\pi\)
\(908\) 0 0
\(909\) 63.9588 2.12138
\(910\) 0 0
\(911\) 48.2416 1.59832 0.799158 0.601121i \(-0.205279\pi\)
0.799158 + 0.601121i \(0.205279\pi\)
\(912\) 0 0
\(913\) 2.50820 0.0830094
\(914\) 0 0
\(915\) 112.247 3.71078
\(916\) 0 0
\(917\) 15.6126 0.515573
\(918\) 0 0
\(919\) 18.2088 0.600652 0.300326 0.953837i \(-0.402904\pi\)
0.300326 + 0.953837i \(0.402904\pi\)
\(920\) 0 0
\(921\) −32.7581 −1.07942
\(922\) 0 0
\(923\) −28.9341 −0.952378
\(924\) 0 0
\(925\) −14.3463 −0.471702
\(926\) 0 0
\(927\) 81.1205 2.66435
\(928\) 0 0
\(929\) 27.7089 0.909100 0.454550 0.890721i \(-0.349800\pi\)
0.454550 + 0.890721i \(0.349800\pi\)
\(930\) 0 0
\(931\) −3.87086 −0.126862
\(932\) 0 0
\(933\) −47.8074 −1.56514
\(934\) 0 0
\(935\) −17.1044 −0.559373
\(936\) 0 0
\(937\) 37.1267 1.21288 0.606439 0.795130i \(-0.292597\pi\)
0.606439 + 0.795130i \(0.292597\pi\)
\(938\) 0 0
\(939\) −42.6730 −1.39258
\(940\) 0 0
\(941\) 23.0961 0.752910 0.376455 0.926435i \(-0.377143\pi\)
0.376455 + 0.926435i \(0.377143\pi\)
\(942\) 0 0
\(943\) 19.7850 0.644288
\(944\) 0 0
\(945\) 8.55220 0.278203
\(946\) 0 0
\(947\) −41.7222 −1.35579 −0.677895 0.735159i \(-0.737108\pi\)
−0.677895 + 0.735159i \(0.737108\pi\)
\(948\) 0 0
\(949\) 33.5163 1.08798
\(950\) 0 0
\(951\) 51.7774 1.67900
\(952\) 0 0
\(953\) 13.8297 0.447988 0.223994 0.974590i \(-0.428090\pi\)
0.223994 + 0.974590i \(0.428090\pi\)
\(954\) 0 0
\(955\) 63.1072 2.04210
\(956\) 0 0
\(957\) 8.08798 0.261447
\(958\) 0 0
\(959\) 17.2775 0.557920
\(960\) 0 0
\(961\) −4.06874 −0.131250
\(962\) 0 0
\(963\) 30.9836 0.998432
\(964\) 0 0
\(965\) 44.8461 1.44365
\(966\) 0 0
\(967\) 18.3791 0.591031 0.295515 0.955338i \(-0.404509\pi\)
0.295515 + 0.955338i \(0.404509\pi\)
\(968\) 0 0
\(969\) 66.2088 2.12693
\(970\) 0 0
\(971\) −32.5439 −1.04438 −0.522191 0.852829i \(-0.674885\pi\)
−0.522191 + 0.852829i \(0.674885\pi\)
\(972\) 0 0
\(973\) −14.8545 −0.476212
\(974\) 0 0
\(975\) −14.7253 −0.471588
\(976\) 0 0
\(977\) 21.7941 0.697254 0.348627 0.937262i \(-0.386648\pi\)
0.348627 + 0.937262i \(0.386648\pi\)
\(978\) 0 0
\(979\) −12.9313 −0.413285
\(980\) 0 0
\(981\) 18.3463 0.585751
\(982\) 0 0
\(983\) 24.6730 0.786946 0.393473 0.919336i \(-0.371273\pi\)
0.393473 + 0.919336i \(0.371273\pi\)
\(984\) 0 0
\(985\) 5.36266 0.170869
\(986\) 0 0
\(987\) 1.70892 0.0543954
\(988\) 0 0
\(989\) 4.62688 0.147126
\(990\) 0 0
\(991\) −38.5327 −1.22403 −0.612015 0.790846i \(-0.709641\pi\)
−0.612015 + 0.790846i \(0.709641\pi\)
\(992\) 0 0
\(993\) 23.8597 0.757164
\(994\) 0 0
\(995\) 7.15956 0.226973
\(996\) 0 0
\(997\) −59.6350 −1.88866 −0.944329 0.329003i \(-0.893287\pi\)
−0.944329 + 0.329003i \(0.893287\pi\)
\(998\) 0 0
\(999\) −20.8984 −0.661198
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 616.2.a.g.1.3 3
3.2 odd 2 5544.2.a.bj.1.1 3
4.3 odd 2 1232.2.a.q.1.1 3
7.6 odd 2 4312.2.a.w.1.1 3
8.3 odd 2 4928.2.a.bz.1.3 3
8.5 even 2 4928.2.a.bw.1.1 3
11.10 odd 2 6776.2.a.y.1.3 3
28.27 even 2 8624.2.a.cm.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
616.2.a.g.1.3 3 1.1 even 1 trivial
1232.2.a.q.1.1 3 4.3 odd 2
4312.2.a.w.1.1 3 7.6 odd 2
4928.2.a.bw.1.1 3 8.5 even 2
4928.2.a.bz.1.3 3 8.3 odd 2
5544.2.a.bj.1.1 3 3.2 odd 2
6776.2.a.y.1.3 3 11.10 odd 2
8624.2.a.cm.1.3 3 28.27 even 2