Properties

Label 612.1.e
Level $612$
Weight $1$
Character orbit 612.e
Rep. character $\chi_{612}(271,\cdot)$
Character field $\Q$
Dimension $1$
Newform subspaces $1$
Sturm bound $108$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 612 = 2^{2} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 612.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 68 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(108\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(612, [\chi])\).

Total New Old
Modular forms 12 3 9
Cusp forms 4 1 3
Eisenstein series 8 2 6

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 1 0 0 0

Trace form

\( q + q^{2} + q^{4} + q^{8} + O(q^{10}) \) \( q + q^{2} + q^{4} + q^{8} - 2 q^{13} + q^{16} - q^{17} + q^{25} - 2 q^{26} + q^{32} - q^{34} - q^{49} + q^{50} - 2 q^{52} - 2 q^{53} + q^{64} - q^{68} + 2 q^{89} - q^{98} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(612, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
612.1.e.a 612.e 68.d $1$ $0.305$ \(\Q\) $D_{2}$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-17}) \) \(\Q(\sqrt{17}) \) 68.1.d.a \(1\) \(0\) \(0\) \(0\) \(q+q^{2}+q^{4}+q^{8}-2q^{13}+q^{16}-q^{17}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(612, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(612, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(204, [\chi])\)\(^{\oplus 2}\)