Defining parameters
Level: | \( N \) | \(=\) | \( 612 = 2^{2} \cdot 3^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 612.e (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 68 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(108\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(612, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 12 | 3 | 9 |
Cusp forms | 4 | 1 | 3 |
Eisenstein series | 8 | 2 | 6 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 1 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(612, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
612.1.e.a | $1$ | $0.305$ | \(\Q\) | $D_{2}$ | \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-17}) \) | \(\Q(\sqrt{17}) \) | \(1\) | \(0\) | \(0\) | \(0\) | \(q+q^{2}+q^{4}+q^{8}-2q^{13}+q^{16}-q^{17}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(612, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(612, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(204, [\chi])\)\(^{\oplus 2}\)