Properties

Label 6084.2.b.b
Level $6084$
Weight $2$
Character orbit 6084.b
Analytic conductor $48.581$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6084,2,Mod(4393,6084)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6084, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6084.4393"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6084 = 2^{2} \cdot 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6084.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-8,0,0,0,0,0,12,0,2,0,0,0,-12, 0,0,0,0,0,-4,0,0,0,0,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(43)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.5809845897\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 156)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 i q^{5} + i q^{7} - 2 i q^{11} - 4 q^{17} - 4 i q^{19} + 6 q^{23} + q^{25} - 6 q^{29} + i q^{31} - 2 q^{35} + 10 i q^{37} - 4 i q^{41} - q^{43} + 10 i q^{47} + 6 q^{49} - 8 q^{53} + 4 q^{55} + 2 i q^{59} + \cdots - 13 i q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{17} + 12 q^{23} + 2 q^{25} - 12 q^{29} - 4 q^{35} - 2 q^{43} + 12 q^{49} - 16 q^{53} + 8 q^{55} - 10 q^{61} + 4 q^{77} + 34 q^{79} + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6084\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(3043\) \(3889\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4393.1
1.00000i
1.00000i
0 0 0 2.00000i 0 1.00000i 0 0 0
4393.2 0 0 0 2.00000i 0 1.00000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6084.2.b.b 2
3.b odd 2 1 2028.2.b.c 2
13.b even 2 1 inner 6084.2.b.b 2
13.d odd 4 1 6084.2.a.e 1
13.d odd 4 1 6084.2.a.l 1
13.f odd 12 2 468.2.l.b 2
39.d odd 2 1 2028.2.b.c 2
39.f even 4 1 2028.2.a.a 1
39.f even 4 1 2028.2.a.b 1
39.h odd 6 2 2028.2.q.g 4
39.i odd 6 2 2028.2.q.g 4
39.k even 12 2 156.2.i.a 2
39.k even 12 2 2028.2.i.f 2
52.l even 12 2 1872.2.t.e 2
156.l odd 4 1 8112.2.a.u 1
156.l odd 4 1 8112.2.a.bd 1
156.v odd 12 2 624.2.q.d 2
195.bc odd 12 2 3900.2.by.c 4
195.bh even 12 2 3900.2.q.e 2
195.bn odd 12 2 3900.2.by.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
156.2.i.a 2 39.k even 12 2
468.2.l.b 2 13.f odd 12 2
624.2.q.d 2 156.v odd 12 2
1872.2.t.e 2 52.l even 12 2
2028.2.a.a 1 39.f even 4 1
2028.2.a.b 1 39.f even 4 1
2028.2.b.c 2 3.b odd 2 1
2028.2.b.c 2 39.d odd 2 1
2028.2.i.f 2 39.k even 12 2
2028.2.q.g 4 39.h odd 6 2
2028.2.q.g 4 39.i odd 6 2
3900.2.q.e 2 195.bh even 12 2
3900.2.by.c 4 195.bc odd 12 2
3900.2.by.c 4 195.bn odd 12 2
6084.2.a.e 1 13.d odd 4 1
6084.2.a.l 1 13.d odd 4 1
6084.2.b.b 2 1.a even 1 1 trivial
6084.2.b.b 2 13.b even 2 1 inner
8112.2.a.u 1 156.l odd 4 1
8112.2.a.bd 1 156.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(6084, [\chi])\):

\( T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{2} + 1 \) Copy content Toggle raw display
\( T_{11}^{2} + 4 \) Copy content Toggle raw display
\( T_{23} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 4 \) Copy content Toggle raw display
$7$ \( T^{2} + 1 \) Copy content Toggle raw display
$11$ \( T^{2} + 4 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T + 4)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 16 \) Copy content Toggle raw display
$23$ \( (T - 6)^{2} \) Copy content Toggle raw display
$29$ \( (T + 6)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 1 \) Copy content Toggle raw display
$37$ \( T^{2} + 100 \) Copy content Toggle raw display
$41$ \( T^{2} + 16 \) Copy content Toggle raw display
$43$ \( (T + 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 100 \) Copy content Toggle raw display
$53$ \( (T + 8)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 4 \) Copy content Toggle raw display
$61$ \( (T + 5)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 49 \) Copy content Toggle raw display
$71$ \( T^{2} + 100 \) Copy content Toggle raw display
$73$ \( T^{2} + 49 \) Copy content Toggle raw display
$79$ \( (T - 17)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 144 \) Copy content Toggle raw display
$89$ \( T^{2} + 256 \) Copy content Toggle raw display
$97$ \( T^{2} + 169 \) Copy content Toggle raw display
show more
show less