# Properties

 Label 6080.2.a.w Level $6080$ Weight $2$ Character orbit 6080.a Self dual yes Analytic conductor $48.549$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [6080,2,Mod(1,6080)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(6080, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("6080.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$6080 = 2^{6} \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 6080.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$48.5490444289$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 760) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + 3 q^{3} - q^{5} + q^{7} + 6 q^{9}+O(q^{10})$$ q + 3 * q^3 - q^5 + q^7 + 6 * q^9 $$q + 3 q^{3} - q^{5} + q^{7} + 6 q^{9} + 4 q^{11} - q^{13} - 3 q^{15} - 7 q^{17} - q^{19} + 3 q^{21} + 5 q^{23} + q^{25} + 9 q^{27} - 7 q^{29} + 2 q^{31} + 12 q^{33} - q^{35} + 6 q^{37} - 3 q^{39} + 6 q^{41} + 10 q^{43} - 6 q^{45} + 8 q^{47} - 6 q^{49} - 21 q^{51} + 3 q^{53} - 4 q^{55} - 3 q^{57} + 5 q^{59} + 8 q^{61} + 6 q^{63} + q^{65} + 11 q^{67} + 15 q^{69} + 12 q^{71} - 9 q^{73} + 3 q^{75} + 4 q^{77} - 6 q^{79} + 9 q^{81} + 14 q^{83} + 7 q^{85} - 21 q^{87} - 6 q^{89} - q^{91} + 6 q^{93} + q^{95} - 2 q^{97} + 24 q^{99}+O(q^{100})$$ q + 3 * q^3 - q^5 + q^7 + 6 * q^9 + 4 * q^11 - q^13 - 3 * q^15 - 7 * q^17 - q^19 + 3 * q^21 + 5 * q^23 + q^25 + 9 * q^27 - 7 * q^29 + 2 * q^31 + 12 * q^33 - q^35 + 6 * q^37 - 3 * q^39 + 6 * q^41 + 10 * q^43 - 6 * q^45 + 8 * q^47 - 6 * q^49 - 21 * q^51 + 3 * q^53 - 4 * q^55 - 3 * q^57 + 5 * q^59 + 8 * q^61 + 6 * q^63 + q^65 + 11 * q^67 + 15 * q^69 + 12 * q^71 - 9 * q^73 + 3 * q^75 + 4 * q^77 - 6 * q^79 + 9 * q^81 + 14 * q^83 + 7 * q^85 - 21 * q^87 - 6 * q^89 - q^91 + 6 * q^93 + q^95 - 2 * q^97 + 24 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 3.00000 0 −1.00000 0 1.00000 0 6.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$1$$
$$19$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6080.2.a.w 1
4.b odd 2 1 6080.2.a.a 1
8.b even 2 1 1520.2.a.a 1
8.d odd 2 1 760.2.a.e 1
24.f even 2 1 6840.2.a.c 1
40.e odd 2 1 3800.2.a.a 1
40.f even 2 1 7600.2.a.t 1
40.k even 4 2 3800.2.d.a 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
760.2.a.e 1 8.d odd 2 1
1520.2.a.a 1 8.b even 2 1
3800.2.a.a 1 40.e odd 2 1
3800.2.d.a 2 40.k even 4 2
6080.2.a.a 1 4.b odd 2 1
6080.2.a.w 1 1.a even 1 1 trivial
6840.2.a.c 1 24.f even 2 1
7600.2.a.t 1 40.f even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(6080))$$:

 $$T_{3} - 3$$ T3 - 3 $$T_{7} - 1$$ T7 - 1 $$T_{11} - 4$$ T11 - 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T - 3$$
$5$ $$T + 1$$
$7$ $$T - 1$$
$11$ $$T - 4$$
$13$ $$T + 1$$
$17$ $$T + 7$$
$19$ $$T + 1$$
$23$ $$T - 5$$
$29$ $$T + 7$$
$31$ $$T - 2$$
$37$ $$T - 6$$
$41$ $$T - 6$$
$43$ $$T - 10$$
$47$ $$T - 8$$
$53$ $$T - 3$$
$59$ $$T - 5$$
$61$ $$T - 8$$
$67$ $$T - 11$$
$71$ $$T - 12$$
$73$ $$T + 9$$
$79$ $$T + 6$$
$83$ $$T - 14$$
$89$ $$T + 6$$
$97$ $$T + 2$$