Properties

Label 6080.2.a.ck.1.4
Level $6080$
Weight $2$
Character 6080.1
Self dual yes
Analytic conductor $48.549$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6080,2,Mod(1,6080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6080, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6080.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6080 = 2^{6} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6080.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.5490444289\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.2363492.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 11x^{3} - 6x^{2} + 14x + 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 3040)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.50919\) of defining polynomial
Character \(\chi\) \(=\) 6080.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.73033 q^{3} -1.00000 q^{5} +4.47310 q^{7} +4.45473 q^{9} +O(q^{10})\) \(q+2.73033 q^{3} -1.00000 q^{5} +4.47310 q^{7} +4.45473 q^{9} +4.94350 q^{11} +2.80521 q^{13} -2.73033 q^{15} +4.39823 q^{17} +1.00000 q^{19} +12.2131 q^{21} +4.47310 q^{23} +1.00000 q^{25} +3.97190 q^{27} -10.3261 q^{29} -3.88701 q^{31} +13.4974 q^{33} -4.47310 q^{35} -4.61140 q^{37} +7.65915 q^{39} +1.09054 q^{41} +3.85296 q^{43} -4.45473 q^{45} -11.3504 q^{47} +13.0086 q^{49} +12.0086 q^{51} +13.6017 q^{53} -4.94350 q^{55} +2.73033 q^{57} -7.09919 q^{59} -5.09325 q^{61} +19.9265 q^{63} -2.80521 q^{65} -3.40192 q^{67} +12.2131 q^{69} -0.909457 q^{71} -0.0281047 q^{73} +2.73033 q^{75} +22.1128 q^{77} -15.0785 q^{79} -2.51958 q^{81} -15.5589 q^{83} -4.39823 q^{85} -28.1936 q^{87} -2.51987 q^{89} +12.5480 q^{91} -10.6128 q^{93} -1.00000 q^{95} +9.13127 q^{97} +22.0220 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{3} - 5 q^{5} + 2 q^{7} + 19 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q + 2 q^{3} - 5 q^{5} + 2 q^{7} + 19 q^{9} + 10 q^{11} - 2 q^{15} + 4 q^{17} + 5 q^{19} - 10 q^{21} + 2 q^{23} + 5 q^{25} + 8 q^{27} - 10 q^{29} + 10 q^{31} + 10 q^{33} - 2 q^{35} - 2 q^{37} + 10 q^{39} + 12 q^{41} - 2 q^{43} - 19 q^{45} + 22 q^{47} + 19 q^{49} + 14 q^{51} + 18 q^{53} - 10 q^{55} + 2 q^{57} + 4 q^{59} - 6 q^{61} + 10 q^{63} + 20 q^{67} - 10 q^{69} + 2 q^{71} - 12 q^{73} + 2 q^{75} + 4 q^{77} + 14 q^{79} + 13 q^{81} - 14 q^{83} - 4 q^{85} - 12 q^{87} + 22 q^{89} + 40 q^{91} - 8 q^{93} - 5 q^{95} - 10 q^{97} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.73033 1.57636 0.788180 0.615445i \(-0.211024\pi\)
0.788180 + 0.615445i \(0.211024\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 4.47310 1.69067 0.845337 0.534234i \(-0.179400\pi\)
0.845337 + 0.534234i \(0.179400\pi\)
\(8\) 0 0
\(9\) 4.45473 1.48491
\(10\) 0 0
\(11\) 4.94350 1.49052 0.745261 0.666773i \(-0.232325\pi\)
0.745261 + 0.666773i \(0.232325\pi\)
\(12\) 0 0
\(13\) 2.80521 0.778024 0.389012 0.921233i \(-0.372816\pi\)
0.389012 + 0.921233i \(0.372816\pi\)
\(14\) 0 0
\(15\) −2.73033 −0.704969
\(16\) 0 0
\(17\) 4.39823 1.06673 0.533364 0.845886i \(-0.320928\pi\)
0.533364 + 0.845886i \(0.320928\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 12.2131 2.66511
\(22\) 0 0
\(23\) 4.47310 0.932706 0.466353 0.884599i \(-0.345568\pi\)
0.466353 + 0.884599i \(0.345568\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 3.97190 0.764392
\(28\) 0 0
\(29\) −10.3261 −1.91750 −0.958751 0.284248i \(-0.908256\pi\)
−0.958751 + 0.284248i \(0.908256\pi\)
\(30\) 0 0
\(31\) −3.88701 −0.698127 −0.349063 0.937099i \(-0.613500\pi\)
−0.349063 + 0.937099i \(0.613500\pi\)
\(32\) 0 0
\(33\) 13.4974 2.34960
\(34\) 0 0
\(35\) −4.47310 −0.756092
\(36\) 0 0
\(37\) −4.61140 −0.758109 −0.379055 0.925374i \(-0.623751\pi\)
−0.379055 + 0.925374i \(0.623751\pi\)
\(38\) 0 0
\(39\) 7.65915 1.22645
\(40\) 0 0
\(41\) 1.09054 0.170314 0.0851571 0.996368i \(-0.472861\pi\)
0.0851571 + 0.996368i \(0.472861\pi\)
\(42\) 0 0
\(43\) 3.85296 0.587571 0.293785 0.955871i \(-0.405085\pi\)
0.293785 + 0.955871i \(0.405085\pi\)
\(44\) 0 0
\(45\) −4.45473 −0.664072
\(46\) 0 0
\(47\) −11.3504 −1.65562 −0.827811 0.561007i \(-0.810414\pi\)
−0.827811 + 0.561007i \(0.810414\pi\)
\(48\) 0 0
\(49\) 13.0086 1.85838
\(50\) 0 0
\(51\) 12.0086 1.68155
\(52\) 0 0
\(53\) 13.6017 1.86833 0.934166 0.356838i \(-0.116145\pi\)
0.934166 + 0.356838i \(0.116145\pi\)
\(54\) 0 0
\(55\) −4.94350 −0.666582
\(56\) 0 0
\(57\) 2.73033 0.361642
\(58\) 0 0
\(59\) −7.09919 −0.924235 −0.462118 0.886819i \(-0.652910\pi\)
−0.462118 + 0.886819i \(0.652910\pi\)
\(60\) 0 0
\(61\) −5.09325 −0.652123 −0.326062 0.945349i \(-0.605722\pi\)
−0.326062 + 0.945349i \(0.605722\pi\)
\(62\) 0 0
\(63\) 19.9265 2.51050
\(64\) 0 0
\(65\) −2.80521 −0.347943
\(66\) 0 0
\(67\) −3.40192 −0.415611 −0.207805 0.978170i \(-0.566632\pi\)
−0.207805 + 0.978170i \(0.566632\pi\)
\(68\) 0 0
\(69\) 12.2131 1.47028
\(70\) 0 0
\(71\) −0.909457 −0.107933 −0.0539663 0.998543i \(-0.517186\pi\)
−0.0539663 + 0.998543i \(0.517186\pi\)
\(72\) 0 0
\(73\) −0.0281047 −0.00328941 −0.00164470 0.999999i \(-0.500524\pi\)
−0.00164470 + 0.999999i \(0.500524\pi\)
\(74\) 0 0
\(75\) 2.73033 0.315272
\(76\) 0 0
\(77\) 22.1128 2.51999
\(78\) 0 0
\(79\) −15.0785 −1.69646 −0.848230 0.529629i \(-0.822331\pi\)
−0.848230 + 0.529629i \(0.822331\pi\)
\(80\) 0 0
\(81\) −2.51958 −0.279953
\(82\) 0 0
\(83\) −15.5589 −1.70781 −0.853904 0.520430i \(-0.825772\pi\)
−0.853904 + 0.520430i \(0.825772\pi\)
\(84\) 0 0
\(85\) −4.39823 −0.477055
\(86\) 0 0
\(87\) −28.1936 −3.02267
\(88\) 0 0
\(89\) −2.51987 −0.267106 −0.133553 0.991042i \(-0.542639\pi\)
−0.133553 + 0.991042i \(0.542639\pi\)
\(90\) 0 0
\(91\) 12.5480 1.31539
\(92\) 0 0
\(93\) −10.6128 −1.10050
\(94\) 0 0
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) 9.13127 0.927140 0.463570 0.886060i \(-0.346568\pi\)
0.463570 + 0.886060i \(0.346568\pi\)
\(98\) 0 0
\(99\) 22.0220 2.21329
\(100\) 0 0
\(101\) −15.9852 −1.59059 −0.795294 0.606224i \(-0.792684\pi\)
−0.795294 + 0.606224i \(0.792684\pi\)
\(102\) 0 0
\(103\) −5.81764 −0.573229 −0.286614 0.958046i \(-0.592530\pi\)
−0.286614 + 0.958046i \(0.592530\pi\)
\(104\) 0 0
\(105\) −12.2131 −1.19187
\(106\) 0 0
\(107\) −3.26967 −0.316090 −0.158045 0.987432i \(-0.550519\pi\)
−0.158045 + 0.987432i \(0.550519\pi\)
\(108\) 0 0
\(109\) −4.47040 −0.428187 −0.214093 0.976813i \(-0.568680\pi\)
−0.214093 + 0.976813i \(0.568680\pi\)
\(110\) 0 0
\(111\) −12.5907 −1.19505
\(112\) 0 0
\(113\) −0.209928 −0.0197484 −0.00987419 0.999951i \(-0.503143\pi\)
−0.00987419 + 0.999951i \(0.503143\pi\)
\(114\) 0 0
\(115\) −4.47310 −0.417119
\(116\) 0 0
\(117\) 12.4964 1.15530
\(118\) 0 0
\(119\) 19.6737 1.80349
\(120\) 0 0
\(121\) 13.4382 1.22166
\(122\) 0 0
\(123\) 2.97755 0.268477
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 15.5236 1.37749 0.688746 0.725002i \(-0.258161\pi\)
0.688746 + 0.725002i \(0.258161\pi\)
\(128\) 0 0
\(129\) 10.5199 0.926223
\(130\) 0 0
\(131\) −8.58796 −0.750334 −0.375167 0.926957i \(-0.622415\pi\)
−0.375167 + 0.926957i \(0.622415\pi\)
\(132\) 0 0
\(133\) 4.47310 0.387867
\(134\) 0 0
\(135\) −3.97190 −0.341846
\(136\) 0 0
\(137\) −5.48877 −0.468938 −0.234469 0.972124i \(-0.575335\pi\)
−0.234469 + 0.972124i \(0.575335\pi\)
\(138\) 0 0
\(139\) −13.6838 −1.16064 −0.580320 0.814388i \(-0.697073\pi\)
−0.580320 + 0.814388i \(0.697073\pi\)
\(140\) 0 0
\(141\) −30.9903 −2.60986
\(142\) 0 0
\(143\) 13.8675 1.15966
\(144\) 0 0
\(145\) 10.3261 0.857533
\(146\) 0 0
\(147\) 35.5180 2.92947
\(148\) 0 0
\(149\) −16.0146 −1.31197 −0.655983 0.754776i \(-0.727746\pi\)
−0.655983 + 0.754776i \(0.727746\pi\)
\(150\) 0 0
\(151\) −6.24525 −0.508231 −0.254116 0.967174i \(-0.581784\pi\)
−0.254116 + 0.967174i \(0.581784\pi\)
\(152\) 0 0
\(153\) 19.5929 1.58399
\(154\) 0 0
\(155\) 3.88701 0.312212
\(156\) 0 0
\(157\) 4.03675 0.322168 0.161084 0.986941i \(-0.448501\pi\)
0.161084 + 0.986941i \(0.448501\pi\)
\(158\) 0 0
\(159\) 37.1371 2.94516
\(160\) 0 0
\(161\) 20.0086 1.57690
\(162\) 0 0
\(163\) −1.18137 −0.0925324 −0.0462662 0.998929i \(-0.514732\pi\)
−0.0462662 + 0.998929i \(0.514732\pi\)
\(164\) 0 0
\(165\) −13.4974 −1.05077
\(166\) 0 0
\(167\) −12.8520 −0.994516 −0.497258 0.867603i \(-0.665660\pi\)
−0.497258 + 0.867603i \(0.665660\pi\)
\(168\) 0 0
\(169\) −5.13082 −0.394678
\(170\) 0 0
\(171\) 4.45473 0.340662
\(172\) 0 0
\(173\) 13.1745 1.00164 0.500819 0.865552i \(-0.333032\pi\)
0.500819 + 0.865552i \(0.333032\pi\)
\(174\) 0 0
\(175\) 4.47310 0.338135
\(176\) 0 0
\(177\) −19.3832 −1.45693
\(178\) 0 0
\(179\) −7.16659 −0.535656 −0.267828 0.963467i \(-0.586306\pi\)
−0.267828 + 0.963467i \(0.586306\pi\)
\(180\) 0 0
\(181\) −9.36516 −0.696107 −0.348054 0.937475i \(-0.613157\pi\)
−0.348054 + 0.937475i \(0.613157\pi\)
\(182\) 0 0
\(183\) −13.9063 −1.02798
\(184\) 0 0
\(185\) 4.61140 0.339037
\(186\) 0 0
\(187\) 21.7427 1.58998
\(188\) 0 0
\(189\) 17.7667 1.29234
\(190\) 0 0
\(191\) 12.8405 0.929108 0.464554 0.885545i \(-0.346215\pi\)
0.464554 + 0.885545i \(0.346215\pi\)
\(192\) 0 0
\(193\) −19.5381 −1.40639 −0.703193 0.710999i \(-0.748243\pi\)
−0.703193 + 0.710999i \(0.748243\pi\)
\(194\) 0 0
\(195\) −7.65915 −0.548483
\(196\) 0 0
\(197\) −17.7353 −1.26359 −0.631794 0.775137i \(-0.717681\pi\)
−0.631794 + 0.775137i \(0.717681\pi\)
\(198\) 0 0
\(199\) 26.7275 1.89466 0.947332 0.320252i \(-0.103768\pi\)
0.947332 + 0.320252i \(0.103768\pi\)
\(200\) 0 0
\(201\) −9.28838 −0.655152
\(202\) 0 0
\(203\) −46.1895 −3.24187
\(204\) 0 0
\(205\) −1.09054 −0.0761669
\(206\) 0 0
\(207\) 19.9265 1.38498
\(208\) 0 0
\(209\) 4.94350 0.341949
\(210\) 0 0
\(211\) 6.17785 0.425301 0.212650 0.977128i \(-0.431790\pi\)
0.212650 + 0.977128i \(0.431790\pi\)
\(212\) 0 0
\(213\) −2.48312 −0.170141
\(214\) 0 0
\(215\) −3.85296 −0.262770
\(216\) 0 0
\(217\) −17.3870 −1.18030
\(218\) 0 0
\(219\) −0.0767352 −0.00518529
\(220\) 0 0
\(221\) 12.3379 0.829940
\(222\) 0 0
\(223\) 13.1404 0.879950 0.439975 0.898010i \(-0.354987\pi\)
0.439975 + 0.898010i \(0.354987\pi\)
\(224\) 0 0
\(225\) 4.45473 0.296982
\(226\) 0 0
\(227\) 1.82088 0.120856 0.0604280 0.998173i \(-0.480753\pi\)
0.0604280 + 0.998173i \(0.480753\pi\)
\(228\) 0 0
\(229\) −4.22309 −0.279069 −0.139535 0.990217i \(-0.544561\pi\)
−0.139535 + 0.990217i \(0.544561\pi\)
\(230\) 0 0
\(231\) 60.3753 3.97240
\(232\) 0 0
\(233\) 8.85070 0.579829 0.289914 0.957053i \(-0.406373\pi\)
0.289914 + 0.957053i \(0.406373\pi\)
\(234\) 0 0
\(235\) 11.3504 0.740417
\(236\) 0 0
\(237\) −41.1692 −2.67423
\(238\) 0 0
\(239\) 25.2841 1.63550 0.817748 0.575577i \(-0.195222\pi\)
0.817748 + 0.575577i \(0.195222\pi\)
\(240\) 0 0
\(241\) −2.67158 −0.172092 −0.0860459 0.996291i \(-0.527423\pi\)
−0.0860459 + 0.996291i \(0.527423\pi\)
\(242\) 0 0
\(243\) −18.7950 −1.20570
\(244\) 0 0
\(245\) −13.0086 −0.831092
\(246\) 0 0
\(247\) 2.80521 0.178491
\(248\) 0 0
\(249\) −42.4809 −2.69212
\(250\) 0 0
\(251\) −30.7008 −1.93781 −0.968907 0.247424i \(-0.920416\pi\)
−0.968907 + 0.247424i \(0.920416\pi\)
\(252\) 0 0
\(253\) 22.1128 1.39022
\(254\) 0 0
\(255\) −12.0086 −0.752010
\(256\) 0 0
\(257\) 26.2043 1.63458 0.817290 0.576226i \(-0.195475\pi\)
0.817290 + 0.576226i \(0.195475\pi\)
\(258\) 0 0
\(259\) −20.6273 −1.28172
\(260\) 0 0
\(261\) −45.9998 −2.84732
\(262\) 0 0
\(263\) 3.93854 0.242861 0.121430 0.992600i \(-0.461252\pi\)
0.121430 + 0.992600i \(0.461252\pi\)
\(264\) 0 0
\(265\) −13.6017 −0.835544
\(266\) 0 0
\(267\) −6.88009 −0.421054
\(268\) 0 0
\(269\) 15.4293 0.940743 0.470371 0.882469i \(-0.344120\pi\)
0.470371 + 0.882469i \(0.344120\pi\)
\(270\) 0 0
\(271\) 14.2279 0.864281 0.432140 0.901806i \(-0.357759\pi\)
0.432140 + 0.901806i \(0.357759\pi\)
\(272\) 0 0
\(273\) 34.2602 2.07352
\(274\) 0 0
\(275\) 4.94350 0.298104
\(276\) 0 0
\(277\) 19.7308 1.18551 0.592754 0.805384i \(-0.298041\pi\)
0.592754 + 0.805384i \(0.298041\pi\)
\(278\) 0 0
\(279\) −17.3156 −1.03666
\(280\) 0 0
\(281\) 21.8308 1.30232 0.651158 0.758942i \(-0.274283\pi\)
0.651158 + 0.758942i \(0.274283\pi\)
\(282\) 0 0
\(283\) 26.0394 1.54788 0.773942 0.633256i \(-0.218282\pi\)
0.773942 + 0.633256i \(0.218282\pi\)
\(284\) 0 0
\(285\) −2.73033 −0.161731
\(286\) 0 0
\(287\) 4.87811 0.287946
\(288\) 0 0
\(289\) 2.34444 0.137908
\(290\) 0 0
\(291\) 24.9314 1.46151
\(292\) 0 0
\(293\) 26.3219 1.53774 0.768870 0.639405i \(-0.220819\pi\)
0.768870 + 0.639405i \(0.220819\pi\)
\(294\) 0 0
\(295\) 7.09919 0.413331
\(296\) 0 0
\(297\) 19.6351 1.13934
\(298\) 0 0
\(299\) 12.5480 0.725668
\(300\) 0 0
\(301\) 17.2347 0.993390
\(302\) 0 0
\(303\) −43.6450 −2.50734
\(304\) 0 0
\(305\) 5.09325 0.291638
\(306\) 0 0
\(307\) 31.6309 1.80527 0.902637 0.430403i \(-0.141629\pi\)
0.902637 + 0.430403i \(0.141629\pi\)
\(308\) 0 0
\(309\) −15.8841 −0.903615
\(310\) 0 0
\(311\) 20.0468 1.13675 0.568374 0.822770i \(-0.307573\pi\)
0.568374 + 0.822770i \(0.307573\pi\)
\(312\) 0 0
\(313\) −4.83645 −0.273372 −0.136686 0.990614i \(-0.543645\pi\)
−0.136686 + 0.990614i \(0.543645\pi\)
\(314\) 0 0
\(315\) −19.9265 −1.12273
\(316\) 0 0
\(317\) −22.6553 −1.27245 −0.636223 0.771505i \(-0.719504\pi\)
−0.636223 + 0.771505i \(0.719504\pi\)
\(318\) 0 0
\(319\) −51.0469 −2.85808
\(320\) 0 0
\(321\) −8.92728 −0.498272
\(322\) 0 0
\(323\) 4.39823 0.244724
\(324\) 0 0
\(325\) 2.80521 0.155605
\(326\) 0 0
\(327\) −12.2057 −0.674976
\(328\) 0 0
\(329\) −50.7714 −2.79912
\(330\) 0 0
\(331\) −21.6578 −1.19042 −0.595210 0.803571i \(-0.702931\pi\)
−0.595210 + 0.803571i \(0.702931\pi\)
\(332\) 0 0
\(333\) −20.5425 −1.12572
\(334\) 0 0
\(335\) 3.40192 0.185867
\(336\) 0 0
\(337\) 18.3292 0.998455 0.499228 0.866471i \(-0.333617\pi\)
0.499228 + 0.866471i \(0.333617\pi\)
\(338\) 0 0
\(339\) −0.573174 −0.0311305
\(340\) 0 0
\(341\) −19.2154 −1.04057
\(342\) 0 0
\(343\) 26.8773 1.45124
\(344\) 0 0
\(345\) −12.2131 −0.657529
\(346\) 0 0
\(347\) −9.51958 −0.511038 −0.255519 0.966804i \(-0.582246\pi\)
−0.255519 + 0.966804i \(0.582246\pi\)
\(348\) 0 0
\(349\) −11.3228 −0.606096 −0.303048 0.952975i \(-0.598004\pi\)
−0.303048 + 0.952975i \(0.598004\pi\)
\(350\) 0 0
\(351\) 11.1420 0.594715
\(352\) 0 0
\(353\) 19.3758 1.03127 0.515634 0.856809i \(-0.327556\pi\)
0.515634 + 0.856809i \(0.327556\pi\)
\(354\) 0 0
\(355\) 0.909457 0.0482689
\(356\) 0 0
\(357\) 53.7159 2.84295
\(358\) 0 0
\(359\) 14.3214 0.755854 0.377927 0.925835i \(-0.376637\pi\)
0.377927 + 0.925835i \(0.376637\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 36.6908 1.92577
\(364\) 0 0
\(365\) 0.0281047 0.00147107
\(366\) 0 0
\(367\) 3.99082 0.208319 0.104160 0.994561i \(-0.466785\pi\)
0.104160 + 0.994561i \(0.466785\pi\)
\(368\) 0 0
\(369\) 4.85807 0.252901
\(370\) 0 0
\(371\) 60.8417 3.15874
\(372\) 0 0
\(373\) 8.10228 0.419520 0.209760 0.977753i \(-0.432732\pi\)
0.209760 + 0.977753i \(0.432732\pi\)
\(374\) 0 0
\(375\) −2.73033 −0.140994
\(376\) 0 0
\(377\) −28.9667 −1.49186
\(378\) 0 0
\(379\) 10.5480 0.541813 0.270907 0.962606i \(-0.412677\pi\)
0.270907 + 0.962606i \(0.412677\pi\)
\(380\) 0 0
\(381\) 42.3845 2.17142
\(382\) 0 0
\(383\) 38.1059 1.94712 0.973561 0.228429i \(-0.0733589\pi\)
0.973561 + 0.228429i \(0.0733589\pi\)
\(384\) 0 0
\(385\) −22.1128 −1.12697
\(386\) 0 0
\(387\) 17.1639 0.872489
\(388\) 0 0
\(389\) −10.5998 −0.537433 −0.268717 0.963219i \(-0.586600\pi\)
−0.268717 + 0.963219i \(0.586600\pi\)
\(390\) 0 0
\(391\) 19.6737 0.994944
\(392\) 0 0
\(393\) −23.4480 −1.18280
\(394\) 0 0
\(395\) 15.0785 0.758680
\(396\) 0 0
\(397\) 35.1584 1.76455 0.882276 0.470733i \(-0.156011\pi\)
0.882276 + 0.470733i \(0.156011\pi\)
\(398\) 0 0
\(399\) 12.2131 0.611418
\(400\) 0 0
\(401\) −12.9267 −0.645531 −0.322765 0.946479i \(-0.604612\pi\)
−0.322765 + 0.946479i \(0.604612\pi\)
\(402\) 0 0
\(403\) −10.9039 −0.543159
\(404\) 0 0
\(405\) 2.51958 0.125199
\(406\) 0 0
\(407\) −22.7965 −1.12998
\(408\) 0 0
\(409\) 4.58148 0.226540 0.113270 0.993564i \(-0.463868\pi\)
0.113270 + 0.993564i \(0.463868\pi\)
\(410\) 0 0
\(411\) −14.9862 −0.739214
\(412\) 0 0
\(413\) −31.7554 −1.56258
\(414\) 0 0
\(415\) 15.5589 0.763755
\(416\) 0 0
\(417\) −37.3612 −1.82959
\(418\) 0 0
\(419\) 5.12926 0.250581 0.125290 0.992120i \(-0.460014\pi\)
0.125290 + 0.992120i \(0.460014\pi\)
\(420\) 0 0
\(421\) 13.3991 0.653033 0.326516 0.945192i \(-0.394125\pi\)
0.326516 + 0.945192i \(0.394125\pi\)
\(422\) 0 0
\(423\) −50.5628 −2.45845
\(424\) 0 0
\(425\) 4.39823 0.213346
\(426\) 0 0
\(427\) −22.7826 −1.10253
\(428\) 0 0
\(429\) 37.8630 1.82804
\(430\) 0 0
\(431\) −33.4780 −1.61258 −0.806288 0.591523i \(-0.798527\pi\)
−0.806288 + 0.591523i \(0.798527\pi\)
\(432\) 0 0
\(433\) 5.46465 0.262614 0.131307 0.991342i \(-0.458083\pi\)
0.131307 + 0.991342i \(0.458083\pi\)
\(434\) 0 0
\(435\) 28.1936 1.35178
\(436\) 0 0
\(437\) 4.47310 0.213977
\(438\) 0 0
\(439\) 17.1915 0.820503 0.410252 0.911972i \(-0.365441\pi\)
0.410252 + 0.911972i \(0.365441\pi\)
\(440\) 0 0
\(441\) 57.9500 2.75952
\(442\) 0 0
\(443\) 32.5492 1.54646 0.773230 0.634126i \(-0.218640\pi\)
0.773230 + 0.634126i \(0.218640\pi\)
\(444\) 0 0
\(445\) 2.51987 0.119453
\(446\) 0 0
\(447\) −43.7252 −2.06813
\(448\) 0 0
\(449\) −18.4188 −0.869235 −0.434617 0.900615i \(-0.643116\pi\)
−0.434617 + 0.900615i \(0.643116\pi\)
\(450\) 0 0
\(451\) 5.39110 0.253857
\(452\) 0 0
\(453\) −17.0516 −0.801155
\(454\) 0 0
\(455\) −12.5480 −0.588258
\(456\) 0 0
\(457\) 16.9503 0.792904 0.396452 0.918056i \(-0.370241\pi\)
0.396452 + 0.918056i \(0.370241\pi\)
\(458\) 0 0
\(459\) 17.4693 0.815398
\(460\) 0 0
\(461\) 2.40885 0.112191 0.0560956 0.998425i \(-0.482135\pi\)
0.0560956 + 0.998425i \(0.482135\pi\)
\(462\) 0 0
\(463\) −19.6499 −0.913207 −0.456603 0.889670i \(-0.650934\pi\)
−0.456603 + 0.889670i \(0.650934\pi\)
\(464\) 0 0
\(465\) 10.6128 0.492158
\(466\) 0 0
\(467\) 7.57637 0.350592 0.175296 0.984516i \(-0.443912\pi\)
0.175296 + 0.984516i \(0.443912\pi\)
\(468\) 0 0
\(469\) −15.2171 −0.702662
\(470\) 0 0
\(471\) 11.0217 0.507852
\(472\) 0 0
\(473\) 19.0471 0.875787
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) 0 0
\(477\) 60.5917 2.77430
\(478\) 0 0
\(479\) −27.4891 −1.25601 −0.628005 0.778210i \(-0.716128\pi\)
−0.628005 + 0.778210i \(0.716128\pi\)
\(480\) 0 0
\(481\) −12.9359 −0.589827
\(482\) 0 0
\(483\) 54.6303 2.48576
\(484\) 0 0
\(485\) −9.13127 −0.414629
\(486\) 0 0
\(487\) 13.8002 0.625344 0.312672 0.949861i \(-0.398776\pi\)
0.312672 + 0.949861i \(0.398776\pi\)
\(488\) 0 0
\(489\) −3.22555 −0.145864
\(490\) 0 0
\(491\) −38.6208 −1.74293 −0.871466 0.490457i \(-0.836830\pi\)
−0.871466 + 0.490457i \(0.836830\pi\)
\(492\) 0 0
\(493\) −45.4164 −2.04545
\(494\) 0 0
\(495\) −22.0220 −0.989814
\(496\) 0 0
\(497\) −4.06809 −0.182479
\(498\) 0 0
\(499\) −5.80806 −0.260004 −0.130002 0.991514i \(-0.541498\pi\)
−0.130002 + 0.991514i \(0.541498\pi\)
\(500\) 0 0
\(501\) −35.0902 −1.56771
\(502\) 0 0
\(503\) 35.3944 1.57816 0.789080 0.614290i \(-0.210558\pi\)
0.789080 + 0.614290i \(0.210558\pi\)
\(504\) 0 0
\(505\) 15.9852 0.711333
\(506\) 0 0
\(507\) −14.0089 −0.622155
\(508\) 0 0
\(509\) −32.0685 −1.42141 −0.710705 0.703490i \(-0.751624\pi\)
−0.710705 + 0.703490i \(0.751624\pi\)
\(510\) 0 0
\(511\) −0.125715 −0.00556131
\(512\) 0 0
\(513\) 3.97190 0.175363
\(514\) 0 0
\(515\) 5.81764 0.256356
\(516\) 0 0
\(517\) −56.1106 −2.46774
\(518\) 0 0
\(519\) 35.9708 1.57894
\(520\) 0 0
\(521\) −42.5996 −1.86632 −0.933162 0.359456i \(-0.882962\pi\)
−0.933162 + 0.359456i \(0.882962\pi\)
\(522\) 0 0
\(523\) 28.4555 1.24427 0.622136 0.782909i \(-0.286265\pi\)
0.622136 + 0.782909i \(0.286265\pi\)
\(524\) 0 0
\(525\) 12.2131 0.533022
\(526\) 0 0
\(527\) −17.0959 −0.744711
\(528\) 0 0
\(529\) −2.99136 −0.130059
\(530\) 0 0
\(531\) −31.6249 −1.37241
\(532\) 0 0
\(533\) 3.05920 0.132509
\(534\) 0 0
\(535\) 3.26967 0.141360
\(536\) 0 0
\(537\) −19.5672 −0.844386
\(538\) 0 0
\(539\) 64.3083 2.76995
\(540\) 0 0
\(541\) 9.12262 0.392212 0.196106 0.980583i \(-0.437170\pi\)
0.196106 + 0.980583i \(0.437170\pi\)
\(542\) 0 0
\(543\) −25.5700 −1.09732
\(544\) 0 0
\(545\) 4.47040 0.191491
\(546\) 0 0
\(547\) −39.4646 −1.68738 −0.843692 0.536827i \(-0.819623\pi\)
−0.843692 + 0.536827i \(0.819623\pi\)
\(548\) 0 0
\(549\) −22.6890 −0.968344
\(550\) 0 0
\(551\) −10.3261 −0.439905
\(552\) 0 0
\(553\) −67.4475 −2.86816
\(554\) 0 0
\(555\) 12.5907 0.534444
\(556\) 0 0
\(557\) −20.2450 −0.857810 −0.428905 0.903350i \(-0.641101\pi\)
−0.428905 + 0.903350i \(0.641101\pi\)
\(558\) 0 0
\(559\) 10.8083 0.457144
\(560\) 0 0
\(561\) 59.3648 2.50638
\(562\) 0 0
\(563\) 21.7982 0.918684 0.459342 0.888260i \(-0.348085\pi\)
0.459342 + 0.888260i \(0.348085\pi\)
\(564\) 0 0
\(565\) 0.209928 0.00883174
\(566\) 0 0
\(567\) −11.2703 −0.473310
\(568\) 0 0
\(569\) −38.3987 −1.60976 −0.804879 0.593439i \(-0.797770\pi\)
−0.804879 + 0.593439i \(0.797770\pi\)
\(570\) 0 0
\(571\) 31.4383 1.31565 0.657826 0.753170i \(-0.271476\pi\)
0.657826 + 0.753170i \(0.271476\pi\)
\(572\) 0 0
\(573\) 35.0589 1.46461
\(574\) 0 0
\(575\) 4.47310 0.186541
\(576\) 0 0
\(577\) −23.7902 −0.990400 −0.495200 0.868779i \(-0.664905\pi\)
−0.495200 + 0.868779i \(0.664905\pi\)
\(578\) 0 0
\(579\) −53.3457 −2.21697
\(580\) 0 0
\(581\) −69.5964 −2.88735
\(582\) 0 0
\(583\) 67.2399 2.78479
\(584\) 0 0
\(585\) −12.4964 −0.516664
\(586\) 0 0
\(587\) −17.8162 −0.735354 −0.367677 0.929954i \(-0.619847\pi\)
−0.367677 + 0.929954i \(0.619847\pi\)
\(588\) 0 0
\(589\) −3.88701 −0.160161
\(590\) 0 0
\(591\) −48.4233 −1.99187
\(592\) 0 0
\(593\) 34.0238 1.39719 0.698594 0.715518i \(-0.253809\pi\)
0.698594 + 0.715518i \(0.253809\pi\)
\(594\) 0 0
\(595\) −19.6737 −0.806545
\(596\) 0 0
\(597\) 72.9751 2.98667
\(598\) 0 0
\(599\) −2.32886 −0.0951545 −0.0475772 0.998868i \(-0.515150\pi\)
−0.0475772 + 0.998868i \(0.515150\pi\)
\(600\) 0 0
\(601\) 20.2351 0.825408 0.412704 0.910865i \(-0.364584\pi\)
0.412704 + 0.910865i \(0.364584\pi\)
\(602\) 0 0
\(603\) −15.1546 −0.617144
\(604\) 0 0
\(605\) −13.4382 −0.546341
\(606\) 0 0
\(607\) −1.53544 −0.0623216 −0.0311608 0.999514i \(-0.509920\pi\)
−0.0311608 + 0.999514i \(0.509920\pi\)
\(608\) 0 0
\(609\) −126.113 −5.11035
\(610\) 0 0
\(611\) −31.8401 −1.28811
\(612\) 0 0
\(613\) 7.90449 0.319259 0.159630 0.987177i \(-0.448970\pi\)
0.159630 + 0.987177i \(0.448970\pi\)
\(614\) 0 0
\(615\) −2.97755 −0.120066
\(616\) 0 0
\(617\) −5.58555 −0.224866 −0.112433 0.993659i \(-0.535864\pi\)
−0.112433 + 0.993659i \(0.535864\pi\)
\(618\) 0 0
\(619\) −14.2050 −0.570948 −0.285474 0.958386i \(-0.592151\pi\)
−0.285474 + 0.958386i \(0.592151\pi\)
\(620\) 0 0
\(621\) 17.7667 0.712953
\(622\) 0 0
\(623\) −11.2716 −0.451588
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 13.4974 0.539035
\(628\) 0 0
\(629\) −20.2820 −0.808696
\(630\) 0 0
\(631\) 1.39273 0.0554437 0.0277219 0.999616i \(-0.491175\pi\)
0.0277219 + 0.999616i \(0.491175\pi\)
\(632\) 0 0
\(633\) 16.8676 0.670427
\(634\) 0 0
\(635\) −15.5236 −0.616034
\(636\) 0 0
\(637\) 36.4919 1.44586
\(638\) 0 0
\(639\) −4.05138 −0.160270
\(640\) 0 0
\(641\) −29.1491 −1.15132 −0.575660 0.817689i \(-0.695255\pi\)
−0.575660 + 0.817689i \(0.695255\pi\)
\(642\) 0 0
\(643\) 18.8627 0.743874 0.371937 0.928258i \(-0.378694\pi\)
0.371937 + 0.928258i \(0.378694\pi\)
\(644\) 0 0
\(645\) −10.5199 −0.414219
\(646\) 0 0
\(647\) −38.0485 −1.49584 −0.747921 0.663788i \(-0.768948\pi\)
−0.747921 + 0.663788i \(0.768948\pi\)
\(648\) 0 0
\(649\) −35.0948 −1.37759
\(650\) 0 0
\(651\) −47.4723 −1.86058
\(652\) 0 0
\(653\) 34.2524 1.34040 0.670200 0.742180i \(-0.266208\pi\)
0.670200 + 0.742180i \(0.266208\pi\)
\(654\) 0 0
\(655\) 8.58796 0.335559
\(656\) 0 0
\(657\) −0.125199 −0.00488447
\(658\) 0 0
\(659\) −11.0927 −0.432111 −0.216055 0.976381i \(-0.569319\pi\)
−0.216055 + 0.976381i \(0.569319\pi\)
\(660\) 0 0
\(661\) −36.6437 −1.42527 −0.712637 0.701532i \(-0.752500\pi\)
−0.712637 + 0.701532i \(0.752500\pi\)
\(662\) 0 0
\(663\) 33.6867 1.30828
\(664\) 0 0
\(665\) −4.47310 −0.173459
\(666\) 0 0
\(667\) −46.1895 −1.78847
\(668\) 0 0
\(669\) 35.8778 1.38712
\(670\) 0 0
\(671\) −25.1785 −0.972004
\(672\) 0 0
\(673\) 28.5036 1.09873 0.549367 0.835581i \(-0.314869\pi\)
0.549367 + 0.835581i \(0.314869\pi\)
\(674\) 0 0
\(675\) 3.97190 0.152878
\(676\) 0 0
\(677\) −17.2369 −0.662470 −0.331235 0.943548i \(-0.607465\pi\)
−0.331235 + 0.943548i \(0.607465\pi\)
\(678\) 0 0
\(679\) 40.8451 1.56749
\(680\) 0 0
\(681\) 4.97161 0.190512
\(682\) 0 0
\(683\) −33.8742 −1.29616 −0.648081 0.761572i \(-0.724428\pi\)
−0.648081 + 0.761572i \(0.724428\pi\)
\(684\) 0 0
\(685\) 5.48877 0.209715
\(686\) 0 0
\(687\) −11.5304 −0.439914
\(688\) 0 0
\(689\) 38.1555 1.45361
\(690\) 0 0
\(691\) 2.73697 0.104119 0.0520597 0.998644i \(-0.483421\pi\)
0.0520597 + 0.998644i \(0.483421\pi\)
\(692\) 0 0
\(693\) 98.5065 3.74195
\(694\) 0 0
\(695\) 13.6838 0.519054
\(696\) 0 0
\(697\) 4.79646 0.181679
\(698\) 0 0
\(699\) 24.1654 0.914018
\(700\) 0 0
\(701\) 13.7838 0.520606 0.260303 0.965527i \(-0.416178\pi\)
0.260303 + 0.965527i \(0.416178\pi\)
\(702\) 0 0
\(703\) −4.61140 −0.173922
\(704\) 0 0
\(705\) 30.9903 1.16716
\(706\) 0 0
\(707\) −71.5035 −2.68917
\(708\) 0 0
\(709\) 3.62229 0.136038 0.0680191 0.997684i \(-0.478332\pi\)
0.0680191 + 0.997684i \(0.478332\pi\)
\(710\) 0 0
\(711\) −67.1704 −2.51909
\(712\) 0 0
\(713\) −17.3870 −0.651147
\(714\) 0 0
\(715\) −13.8675 −0.518617
\(716\) 0 0
\(717\) 69.0342 2.57813
\(718\) 0 0
\(719\) −13.7721 −0.513614 −0.256807 0.966463i \(-0.582671\pi\)
−0.256807 + 0.966463i \(0.582671\pi\)
\(720\) 0 0
\(721\) −26.0229 −0.969143
\(722\) 0 0
\(723\) −7.29432 −0.271279
\(724\) 0 0
\(725\) −10.3261 −0.383500
\(726\) 0 0
\(727\) 8.42623 0.312511 0.156256 0.987717i \(-0.450058\pi\)
0.156256 + 0.987717i \(0.450058\pi\)
\(728\) 0 0
\(729\) −43.7579 −1.62066
\(730\) 0 0
\(731\) 16.9462 0.626778
\(732\) 0 0
\(733\) 32.1690 1.18819 0.594095 0.804395i \(-0.297510\pi\)
0.594095 + 0.804395i \(0.297510\pi\)
\(734\) 0 0
\(735\) −35.5180 −1.31010
\(736\) 0 0
\(737\) −16.8174 −0.619477
\(738\) 0 0
\(739\) 50.1245 1.84386 0.921929 0.387358i \(-0.126612\pi\)
0.921929 + 0.387358i \(0.126612\pi\)
\(740\) 0 0
\(741\) 7.65915 0.281366
\(742\) 0 0
\(743\) −30.4116 −1.11569 −0.557846 0.829944i \(-0.688372\pi\)
−0.557846 + 0.829944i \(0.688372\pi\)
\(744\) 0 0
\(745\) 16.0146 0.586729
\(746\) 0 0
\(747\) −69.3106 −2.53594
\(748\) 0 0
\(749\) −14.6255 −0.534406
\(750\) 0 0
\(751\) 1.24284 0.0453517 0.0226758 0.999743i \(-0.492781\pi\)
0.0226758 + 0.999743i \(0.492781\pi\)
\(752\) 0 0
\(753\) −83.8233 −3.05469
\(754\) 0 0
\(755\) 6.24525 0.227288
\(756\) 0 0
\(757\) 33.9263 1.23307 0.616536 0.787327i \(-0.288535\pi\)
0.616536 + 0.787327i \(0.288535\pi\)
\(758\) 0 0
\(759\) 60.3753 2.19149
\(760\) 0 0
\(761\) 44.5699 1.61566 0.807829 0.589416i \(-0.200642\pi\)
0.807829 + 0.589416i \(0.200642\pi\)
\(762\) 0 0
\(763\) −19.9966 −0.723924
\(764\) 0 0
\(765\) −19.5929 −0.708384
\(766\) 0 0
\(767\) −19.9147 −0.719077
\(768\) 0 0
\(769\) 0.479153 0.0172787 0.00863934 0.999963i \(-0.497250\pi\)
0.00863934 + 0.999963i \(0.497250\pi\)
\(770\) 0 0
\(771\) 71.5466 2.57669
\(772\) 0 0
\(773\) −46.9785 −1.68970 −0.844850 0.535004i \(-0.820310\pi\)
−0.844850 + 0.535004i \(0.820310\pi\)
\(774\) 0 0
\(775\) −3.88701 −0.139625
\(776\) 0 0
\(777\) −56.3193 −2.02044
\(778\) 0 0
\(779\) 1.09054 0.0390728
\(780\) 0 0
\(781\) −4.49590 −0.160876
\(782\) 0 0
\(783\) −41.0140 −1.46572
\(784\) 0 0
\(785\) −4.03675 −0.144078
\(786\) 0 0
\(787\) −21.1172 −0.752746 −0.376373 0.926468i \(-0.622829\pi\)
−0.376373 + 0.926468i \(0.622829\pi\)
\(788\) 0 0
\(789\) 10.7535 0.382836
\(790\) 0 0
\(791\) −0.939030 −0.0333881
\(792\) 0 0
\(793\) −14.2876 −0.507368
\(794\) 0 0
\(795\) −37.1371 −1.31712
\(796\) 0 0
\(797\) −11.9178 −0.422149 −0.211074 0.977470i \(-0.567696\pi\)
−0.211074 + 0.977470i \(0.567696\pi\)
\(798\) 0 0
\(799\) −49.9216 −1.76610
\(800\) 0 0
\(801\) −11.2253 −0.396628
\(802\) 0 0
\(803\) −0.138936 −0.00490293
\(804\) 0 0
\(805\) −20.0086 −0.705212
\(806\) 0 0
\(807\) 42.1272 1.48295
\(808\) 0 0
\(809\) −28.2632 −0.993682 −0.496841 0.867842i \(-0.665507\pi\)
−0.496841 + 0.867842i \(0.665507\pi\)
\(810\) 0 0
\(811\) −9.58879 −0.336708 −0.168354 0.985727i \(-0.553845\pi\)
−0.168354 + 0.985727i \(0.553845\pi\)
\(812\) 0 0
\(813\) 38.8468 1.36242
\(814\) 0 0
\(815\) 1.18137 0.0413818
\(816\) 0 0
\(817\) 3.85296 0.134798
\(818\) 0 0
\(819\) 55.8978 1.95323
\(820\) 0 0
\(821\) 44.5031 1.55317 0.776584 0.630014i \(-0.216951\pi\)
0.776584 + 0.630014i \(0.216951\pi\)
\(822\) 0 0
\(823\) 14.4951 0.505268 0.252634 0.967562i \(-0.418703\pi\)
0.252634 + 0.967562i \(0.418703\pi\)
\(824\) 0 0
\(825\) 13.4974 0.469920
\(826\) 0 0
\(827\) 5.28695 0.183845 0.0919227 0.995766i \(-0.470699\pi\)
0.0919227 + 0.995766i \(0.470699\pi\)
\(828\) 0 0
\(829\) −16.2444 −0.564192 −0.282096 0.959386i \(-0.591030\pi\)
−0.282096 + 0.959386i \(0.591030\pi\)
\(830\) 0 0
\(831\) 53.8716 1.86879
\(832\) 0 0
\(833\) 57.2150 1.98238
\(834\) 0 0
\(835\) 12.8520 0.444761
\(836\) 0 0
\(837\) −15.4388 −0.533642
\(838\) 0 0
\(839\) −17.6884 −0.610672 −0.305336 0.952245i \(-0.598769\pi\)
−0.305336 + 0.952245i \(0.598769\pi\)
\(840\) 0 0
\(841\) 77.6275 2.67681
\(842\) 0 0
\(843\) 59.6054 2.05292
\(844\) 0 0
\(845\) 5.13082 0.176506
\(846\) 0 0
\(847\) 60.1105 2.06542
\(848\) 0 0
\(849\) 71.0964 2.44002
\(850\) 0 0
\(851\) −20.6273 −0.707093
\(852\) 0 0
\(853\) 22.0681 0.755597 0.377799 0.925888i \(-0.376681\pi\)
0.377799 + 0.925888i \(0.376681\pi\)
\(854\) 0 0
\(855\) −4.45473 −0.152348
\(856\) 0 0
\(857\) −38.5101 −1.31548 −0.657740 0.753245i \(-0.728487\pi\)
−0.657740 + 0.753245i \(0.728487\pi\)
\(858\) 0 0
\(859\) 27.0152 0.921747 0.460873 0.887466i \(-0.347536\pi\)
0.460873 + 0.887466i \(0.347536\pi\)
\(860\) 0 0
\(861\) 13.3189 0.453906
\(862\) 0 0
\(863\) 31.7035 1.07920 0.539601 0.841921i \(-0.318575\pi\)
0.539601 + 0.841921i \(0.318575\pi\)
\(864\) 0 0
\(865\) −13.1745 −0.447946
\(866\) 0 0
\(867\) 6.40109 0.217393
\(868\) 0 0
\(869\) −74.5404 −2.52861
\(870\) 0 0
\(871\) −9.54308 −0.323355
\(872\) 0 0
\(873\) 40.6773 1.37672
\(874\) 0 0
\(875\) −4.47310 −0.151218
\(876\) 0 0
\(877\) 30.2484 1.02142 0.510708 0.859754i \(-0.329383\pi\)
0.510708 + 0.859754i \(0.329383\pi\)
\(878\) 0 0
\(879\) 71.8676 2.42403
\(880\) 0 0
\(881\) 27.1738 0.915508 0.457754 0.889079i \(-0.348654\pi\)
0.457754 + 0.889079i \(0.348654\pi\)
\(882\) 0 0
\(883\) 45.4457 1.52937 0.764684 0.644405i \(-0.222895\pi\)
0.764684 + 0.644405i \(0.222895\pi\)
\(884\) 0 0
\(885\) 19.3832 0.651558
\(886\) 0 0
\(887\) 18.7206 0.628576 0.314288 0.949328i \(-0.398234\pi\)
0.314288 + 0.949328i \(0.398234\pi\)
\(888\) 0 0
\(889\) 69.4385 2.32889
\(890\) 0 0
\(891\) −12.4556 −0.417277
\(892\) 0 0
\(893\) −11.3504 −0.379826
\(894\) 0 0
\(895\) 7.16659 0.239553
\(896\) 0 0
\(897\) 34.2602 1.14391
\(898\) 0 0
\(899\) 40.1375 1.33866
\(900\) 0 0
\(901\) 59.8233 1.99300
\(902\) 0 0
\(903\) 47.0564 1.56594
\(904\) 0 0
\(905\) 9.36516 0.311309
\(906\) 0 0
\(907\) −6.71648 −0.223017 −0.111509 0.993763i \(-0.535568\pi\)
−0.111509 + 0.993763i \(0.535568\pi\)
\(908\) 0 0
\(909\) −71.2098 −2.36188
\(910\) 0 0
\(911\) −8.19662 −0.271566 −0.135783 0.990739i \(-0.543355\pi\)
−0.135783 + 0.990739i \(0.543355\pi\)
\(912\) 0 0
\(913\) −76.9154 −2.54553
\(914\) 0 0
\(915\) 13.9063 0.459727
\(916\) 0 0
\(917\) −38.4148 −1.26857
\(918\) 0 0
\(919\) 4.63203 0.152796 0.0763982 0.997077i \(-0.475658\pi\)
0.0763982 + 0.997077i \(0.475658\pi\)
\(920\) 0 0
\(921\) 86.3631 2.84576
\(922\) 0 0
\(923\) −2.55121 −0.0839742
\(924\) 0 0
\(925\) −4.61140 −0.151622
\(926\) 0 0
\(927\) −25.9160 −0.851193
\(928\) 0 0
\(929\) 28.3717 0.930846 0.465423 0.885088i \(-0.345902\pi\)
0.465423 + 0.885088i \(0.345902\pi\)
\(930\) 0 0
\(931\) 13.0086 0.426341
\(932\) 0 0
\(933\) 54.7344 1.79192
\(934\) 0 0
\(935\) −21.7427 −0.711061
\(936\) 0 0
\(937\) −25.3176 −0.827090 −0.413545 0.910484i \(-0.635710\pi\)
−0.413545 + 0.910484i \(0.635710\pi\)
\(938\) 0 0
\(939\) −13.2051 −0.430933
\(940\) 0 0
\(941\) 6.90754 0.225179 0.112590 0.993642i \(-0.464085\pi\)
0.112590 + 0.993642i \(0.464085\pi\)
\(942\) 0 0
\(943\) 4.87811 0.158853
\(944\) 0 0
\(945\) −17.7667 −0.577951
\(946\) 0 0
\(947\) 37.9219 1.23230 0.616149 0.787630i \(-0.288692\pi\)
0.616149 + 0.787630i \(0.288692\pi\)
\(948\) 0 0
\(949\) −0.0788395 −0.00255924
\(950\) 0 0
\(951\) −61.8564 −2.00583
\(952\) 0 0
\(953\) −23.9147 −0.774675 −0.387337 0.921938i \(-0.626605\pi\)
−0.387337 + 0.921938i \(0.626605\pi\)
\(954\) 0 0
\(955\) −12.8405 −0.415510
\(956\) 0 0
\(957\) −139.375 −4.50536
\(958\) 0 0
\(959\) −24.5518 −0.792821
\(960\) 0 0
\(961\) −15.8912 −0.512619
\(962\) 0 0
\(963\) −14.5655 −0.469366
\(964\) 0 0
\(965\) 19.5381 0.628955
\(966\) 0 0
\(967\) −33.7253 −1.08453 −0.542267 0.840206i \(-0.682434\pi\)
−0.542267 + 0.840206i \(0.682434\pi\)
\(968\) 0 0
\(969\) 12.0086 0.385773
\(970\) 0 0
\(971\) −5.30080 −0.170111 −0.0850554 0.996376i \(-0.527107\pi\)
−0.0850554 + 0.996376i \(0.527107\pi\)
\(972\) 0 0
\(973\) −61.2088 −1.96227
\(974\) 0 0
\(975\) 7.65915 0.245289
\(976\) 0 0
\(977\) −29.0358 −0.928936 −0.464468 0.885590i \(-0.653754\pi\)
−0.464468 + 0.885590i \(0.653754\pi\)
\(978\) 0 0
\(979\) −12.4570 −0.398127
\(980\) 0 0
\(981\) −19.9144 −0.635818
\(982\) 0 0
\(983\) 21.1679 0.675150 0.337575 0.941299i \(-0.390393\pi\)
0.337575 + 0.941299i \(0.390393\pi\)
\(984\) 0 0
\(985\) 17.7353 0.565093
\(986\) 0 0
\(987\) −138.623 −4.41242
\(988\) 0 0
\(989\) 17.2347 0.548031
\(990\) 0 0
\(991\) 25.3926 0.806622 0.403311 0.915063i \(-0.367859\pi\)
0.403311 + 0.915063i \(0.367859\pi\)
\(992\) 0 0
\(993\) −59.1330 −1.87653
\(994\) 0 0
\(995\) −26.7275 −0.847320
\(996\) 0 0
\(997\) 12.4402 0.393985 0.196992 0.980405i \(-0.436883\pi\)
0.196992 + 0.980405i \(0.436883\pi\)
\(998\) 0 0
\(999\) −18.3160 −0.579492
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6080.2.a.ck.1.4 5
4.3 odd 2 6080.2.a.cj.1.2 5
8.3 odd 2 3040.2.a.w.1.4 yes 5
8.5 even 2 3040.2.a.v.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3040.2.a.v.1.2 5 8.5 even 2
3040.2.a.w.1.4 yes 5 8.3 odd 2
6080.2.a.cj.1.2 5 4.3 odd 2
6080.2.a.ck.1.4 5 1.1 even 1 trivial