Properties

Label 6080.2.a.cj.1.4
Level $6080$
Weight $2$
Character 6080.1
Self dual yes
Analytic conductor $48.549$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6080,2,Mod(1,6080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6080, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6080.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6080 = 2^{6} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6080.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.5490444289\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.2363492.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 11x^{3} - 6x^{2} + 14x + 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 3040)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.82337\) of defining polynomial
Character \(\chi\) \(=\) 6080.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.52807 q^{3} -1.00000 q^{5} -4.03789 q^{7} +3.39116 q^{9} +O(q^{10})\) \(q+2.52807 q^{3} -1.00000 q^{5} -4.03789 q^{7} +3.39116 q^{9} +1.67610 q^{11} +4.79476 q^{13} -2.52807 q^{15} -3.28494 q^{17} -1.00000 q^{19} -10.2081 q^{21} -4.03789 q^{23} +1.00000 q^{25} +0.988885 q^{27} -1.14411 q^{29} -9.35221 q^{31} +4.23731 q^{33} +4.03789 q^{35} +4.43297 q^{37} +12.1215 q^{39} +3.21768 q^{41} +4.89378 q^{43} -3.39116 q^{45} -6.65647 q^{47} +9.30458 q^{49} -8.30458 q^{51} +0.224876 q^{53} -1.67610 q^{55} -2.52807 q^{57} +5.52226 q^{59} -12.9696 q^{61} -13.6931 q^{63} -4.79476 q^{65} -11.5555 q^{67} -10.2081 q^{69} -1.21768 q^{71} -4.98888 q^{73} +2.52807 q^{75} -6.76793 q^{77} -6.00783 q^{79} -7.67351 q^{81} -10.6813 q^{83} +3.28494 q^{85} -2.89240 q^{87} -4.37184 q^{89} -19.3607 q^{91} -23.6431 q^{93} +1.00000 q^{95} +1.93887 q^{97} +5.68394 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{3} - 5 q^{5} - 2 q^{7} + 19 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 2 q^{3} - 5 q^{5} - 2 q^{7} + 19 q^{9} - 10 q^{11} + 2 q^{15} + 4 q^{17} - 5 q^{19} - 10 q^{21} - 2 q^{23} + 5 q^{25} - 8 q^{27} - 10 q^{29} - 10 q^{31} + 10 q^{33} + 2 q^{35} - 2 q^{37} - 10 q^{39} + 12 q^{41} + 2 q^{43} - 19 q^{45} - 22 q^{47} + 19 q^{49} - 14 q^{51} + 18 q^{53} + 10 q^{55} + 2 q^{57} - 4 q^{59} - 6 q^{61} - 10 q^{63} - 20 q^{67} - 10 q^{69} - 2 q^{71} - 12 q^{73} - 2 q^{75} + 4 q^{77} - 14 q^{79} + 13 q^{81} + 14 q^{83} - 4 q^{85} + 12 q^{87} + 22 q^{89} - 40 q^{91} - 8 q^{93} + 5 q^{95} - 10 q^{97} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.52807 1.45958 0.729792 0.683669i \(-0.239617\pi\)
0.729792 + 0.683669i \(0.239617\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −4.03789 −1.52618 −0.763090 0.646292i \(-0.776319\pi\)
−0.763090 + 0.646292i \(0.776319\pi\)
\(8\) 0 0
\(9\) 3.39116 1.13039
\(10\) 0 0
\(11\) 1.67610 0.505364 0.252682 0.967549i \(-0.418687\pi\)
0.252682 + 0.967549i \(0.418687\pi\)
\(12\) 0 0
\(13\) 4.79476 1.32983 0.664914 0.746920i \(-0.268468\pi\)
0.664914 + 0.746920i \(0.268468\pi\)
\(14\) 0 0
\(15\) −2.52807 −0.652746
\(16\) 0 0
\(17\) −3.28494 −0.796715 −0.398358 0.917230i \(-0.630420\pi\)
−0.398358 + 0.917230i \(0.630420\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −10.2081 −2.22759
\(22\) 0 0
\(23\) −4.03789 −0.841959 −0.420979 0.907070i \(-0.638314\pi\)
−0.420979 + 0.907070i \(0.638314\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0.988885 0.190311
\(28\) 0 0
\(29\) −1.14411 −0.212456 −0.106228 0.994342i \(-0.533877\pi\)
−0.106228 + 0.994342i \(0.533877\pi\)
\(30\) 0 0
\(31\) −9.35221 −1.67971 −0.839853 0.542814i \(-0.817359\pi\)
−0.839853 + 0.542814i \(0.817359\pi\)
\(32\) 0 0
\(33\) 4.23731 0.737622
\(34\) 0 0
\(35\) 4.03789 0.682528
\(36\) 0 0
\(37\) 4.43297 0.728776 0.364388 0.931247i \(-0.381278\pi\)
0.364388 + 0.931247i \(0.381278\pi\)
\(38\) 0 0
\(39\) 12.1215 1.94100
\(40\) 0 0
\(41\) 3.21768 0.502517 0.251258 0.967920i \(-0.419156\pi\)
0.251258 + 0.967920i \(0.419156\pi\)
\(42\) 0 0
\(43\) 4.89378 0.746295 0.373147 0.927772i \(-0.378279\pi\)
0.373147 + 0.927772i \(0.378279\pi\)
\(44\) 0 0
\(45\) −3.39116 −0.505524
\(46\) 0 0
\(47\) −6.65647 −0.970945 −0.485473 0.874252i \(-0.661352\pi\)
−0.485473 + 0.874252i \(0.661352\pi\)
\(48\) 0 0
\(49\) 9.30458 1.32923
\(50\) 0 0
\(51\) −8.30458 −1.16287
\(52\) 0 0
\(53\) 0.224876 0.0308891 0.0154446 0.999881i \(-0.495084\pi\)
0.0154446 + 0.999881i \(0.495084\pi\)
\(54\) 0 0
\(55\) −1.67610 −0.226006
\(56\) 0 0
\(57\) −2.52807 −0.334852
\(58\) 0 0
\(59\) 5.52226 0.718936 0.359468 0.933157i \(-0.382958\pi\)
0.359468 + 0.933157i \(0.382958\pi\)
\(60\) 0 0
\(61\) −12.9696 −1.66058 −0.830291 0.557330i \(-0.811826\pi\)
−0.830291 + 0.557330i \(0.811826\pi\)
\(62\) 0 0
\(63\) −13.6931 −1.72517
\(64\) 0 0
\(65\) −4.79476 −0.594717
\(66\) 0 0
\(67\) −11.5555 −1.41173 −0.705867 0.708344i \(-0.749442\pi\)
−0.705867 + 0.708344i \(0.749442\pi\)
\(68\) 0 0
\(69\) −10.2081 −1.22891
\(70\) 0 0
\(71\) −1.21768 −0.144512 −0.0722559 0.997386i \(-0.523020\pi\)
−0.0722559 + 0.997386i \(0.523020\pi\)
\(72\) 0 0
\(73\) −4.98888 −0.583905 −0.291952 0.956433i \(-0.594305\pi\)
−0.291952 + 0.956433i \(0.594305\pi\)
\(74\) 0 0
\(75\) 2.52807 0.291917
\(76\) 0 0
\(77\) −6.76793 −0.771277
\(78\) 0 0
\(79\) −6.00783 −0.675934 −0.337967 0.941158i \(-0.609739\pi\)
−0.337967 + 0.941158i \(0.609739\pi\)
\(80\) 0 0
\(81\) −7.67351 −0.852612
\(82\) 0 0
\(83\) −10.6813 −1.17243 −0.586215 0.810156i \(-0.699383\pi\)
−0.586215 + 0.810156i \(0.699383\pi\)
\(84\) 0 0
\(85\) 3.28494 0.356302
\(86\) 0 0
\(87\) −2.89240 −0.310098
\(88\) 0 0
\(89\) −4.37184 −0.463414 −0.231707 0.972786i \(-0.574431\pi\)
−0.231707 + 0.972786i \(0.574431\pi\)
\(90\) 0 0
\(91\) −19.3607 −2.02956
\(92\) 0 0
\(93\) −23.6431 −2.45167
\(94\) 0 0
\(95\) 1.00000 0.102598
\(96\) 0 0
\(97\) 1.93887 0.196863 0.0984313 0.995144i \(-0.468618\pi\)
0.0984313 + 0.995144i \(0.468618\pi\)
\(98\) 0 0
\(99\) 5.68394 0.571257
\(100\) 0 0
\(101\) 12.9774 1.29130 0.645650 0.763634i \(-0.276587\pi\)
0.645650 + 0.763634i \(0.276587\pi\)
\(102\) 0 0
\(103\) 17.8888 1.76264 0.881318 0.472524i \(-0.156657\pi\)
0.881318 + 0.472524i \(0.156657\pi\)
\(104\) 0 0
\(105\) 10.2081 0.996208
\(106\) 0 0
\(107\) 8.52807 0.824440 0.412220 0.911084i \(-0.364753\pi\)
0.412220 + 0.911084i \(0.364753\pi\)
\(108\) 0 0
\(109\) 1.71400 0.164171 0.0820855 0.996625i \(-0.473842\pi\)
0.0820855 + 0.996625i \(0.473842\pi\)
\(110\) 0 0
\(111\) 11.2069 1.06371
\(112\) 0 0
\(113\) −14.0512 −1.32182 −0.660911 0.750464i \(-0.729830\pi\)
−0.660911 + 0.750464i \(0.729830\pi\)
\(114\) 0 0
\(115\) 4.03789 0.376535
\(116\) 0 0
\(117\) 16.2598 1.50322
\(118\) 0 0
\(119\) 13.2642 1.21593
\(120\) 0 0
\(121\) −8.19068 −0.744607
\(122\) 0 0
\(123\) 8.13453 0.733466
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −10.1012 −0.896340 −0.448170 0.893948i \(-0.647924\pi\)
−0.448170 + 0.893948i \(0.647924\pi\)
\(128\) 0 0
\(129\) 12.3718 1.08928
\(130\) 0 0
\(131\) 1.45499 0.127123 0.0635616 0.997978i \(-0.479754\pi\)
0.0635616 + 0.997978i \(0.479754\pi\)
\(132\) 0 0
\(133\) 4.03789 0.350130
\(134\) 0 0
\(135\) −0.988885 −0.0851097
\(136\) 0 0
\(137\) 0.0672644 0.00574679 0.00287339 0.999996i \(-0.499085\pi\)
0.00287339 + 0.999996i \(0.499085\pi\)
\(138\) 0 0
\(139\) −18.2238 −1.54572 −0.772859 0.634577i \(-0.781174\pi\)
−0.772859 + 0.634577i \(0.781174\pi\)
\(140\) 0 0
\(141\) −16.8280 −1.41718
\(142\) 0 0
\(143\) 8.03651 0.672047
\(144\) 0 0
\(145\) 1.14411 0.0950133
\(146\) 0 0
\(147\) 23.5227 1.94012
\(148\) 0 0
\(149\) −2.85727 −0.234077 −0.117038 0.993127i \(-0.537340\pi\)
−0.117038 + 0.993127i \(0.537340\pi\)
\(150\) 0 0
\(151\) −0.731412 −0.0595215 −0.0297607 0.999557i \(-0.509475\pi\)
−0.0297607 + 0.999557i \(0.509475\pi\)
\(152\) 0 0
\(153\) −11.1398 −0.900597
\(154\) 0 0
\(155\) 9.35221 0.751187
\(156\) 0 0
\(157\) 5.29346 0.422464 0.211232 0.977436i \(-0.432252\pi\)
0.211232 + 0.977436i \(0.432252\pi\)
\(158\) 0 0
\(159\) 0.568504 0.0450853
\(160\) 0 0
\(161\) 16.3046 1.28498
\(162\) 0 0
\(163\) 2.13369 0.167123 0.0835617 0.996503i \(-0.473370\pi\)
0.0835617 + 0.996503i \(0.473370\pi\)
\(164\) 0 0
\(165\) −4.23731 −0.329874
\(166\) 0 0
\(167\) 17.1287 1.32546 0.662730 0.748859i \(-0.269398\pi\)
0.662730 + 0.748859i \(0.269398\pi\)
\(168\) 0 0
\(169\) 9.98972 0.768440
\(170\) 0 0
\(171\) −3.39116 −0.259329
\(172\) 0 0
\(173\) −23.1661 −1.76128 −0.880642 0.473783i \(-0.842888\pi\)
−0.880642 + 0.473783i \(0.842888\pi\)
\(174\) 0 0
\(175\) −4.03789 −0.305236
\(176\) 0 0
\(177\) 13.9607 1.04935
\(178\) 0 0
\(179\) −20.8437 −1.55793 −0.778966 0.627066i \(-0.784256\pi\)
−0.778966 + 0.627066i \(0.784256\pi\)
\(180\) 0 0
\(181\) −20.3209 −1.51044 −0.755222 0.655470i \(-0.772471\pi\)
−0.755222 + 0.655470i \(0.772471\pi\)
\(182\) 0 0
\(183\) −32.7880 −2.42376
\(184\) 0 0
\(185\) −4.43297 −0.325918
\(186\) 0 0
\(187\) −5.50590 −0.402631
\(188\) 0 0
\(189\) −3.99301 −0.290449
\(190\) 0 0
\(191\) 5.98782 0.433264 0.216632 0.976253i \(-0.430493\pi\)
0.216632 + 0.976253i \(0.430493\pi\)
\(192\) 0 0
\(193\) −0.958509 −0.0689950 −0.0344975 0.999405i \(-0.510983\pi\)
−0.0344975 + 0.999405i \(0.510983\pi\)
\(194\) 0 0
\(195\) −12.1215 −0.868039
\(196\) 0 0
\(197\) −16.0471 −1.14331 −0.571654 0.820494i \(-0.693698\pi\)
−0.571654 + 0.820494i \(0.693698\pi\)
\(198\) 0 0
\(199\) 5.34003 0.378545 0.189272 0.981925i \(-0.439387\pi\)
0.189272 + 0.981925i \(0.439387\pi\)
\(200\) 0 0
\(201\) −29.2133 −2.06055
\(202\) 0 0
\(203\) 4.61980 0.324247
\(204\) 0 0
\(205\) −3.21768 −0.224732
\(206\) 0 0
\(207\) −13.6931 −0.951739
\(208\) 0 0
\(209\) −1.67610 −0.115938
\(210\) 0 0
\(211\) −25.6346 −1.76476 −0.882378 0.470542i \(-0.844059\pi\)
−0.882378 + 0.470542i \(0.844059\pi\)
\(212\) 0 0
\(213\) −3.07838 −0.210927
\(214\) 0 0
\(215\) −4.89378 −0.333753
\(216\) 0 0
\(217\) 37.7632 2.56353
\(218\) 0 0
\(219\) −12.6123 −0.852258
\(220\) 0 0
\(221\) −15.7505 −1.05949
\(222\) 0 0
\(223\) 18.7076 1.25276 0.626378 0.779519i \(-0.284537\pi\)
0.626378 + 0.779519i \(0.284537\pi\)
\(224\) 0 0
\(225\) 3.39116 0.226077
\(226\) 0 0
\(227\) 1.31040 0.0869741 0.0434871 0.999054i \(-0.486153\pi\)
0.0434871 + 0.999054i \(0.486153\pi\)
\(228\) 0 0
\(229\) 17.1676 1.13447 0.567234 0.823557i \(-0.308014\pi\)
0.567234 + 0.823557i \(0.308014\pi\)
\(230\) 0 0
\(231\) −17.1098 −1.12574
\(232\) 0 0
\(233\) 29.4529 1.92952 0.964761 0.263129i \(-0.0847544\pi\)
0.964761 + 0.263129i \(0.0847544\pi\)
\(234\) 0 0
\(235\) 6.65647 0.434220
\(236\) 0 0
\(237\) −15.1883 −0.986583
\(238\) 0 0
\(239\) 3.67472 0.237698 0.118849 0.992912i \(-0.462080\pi\)
0.118849 + 0.992912i \(0.462080\pi\)
\(240\) 0 0
\(241\) 7.02747 0.452679 0.226340 0.974048i \(-0.427324\pi\)
0.226340 + 0.974048i \(0.427324\pi\)
\(242\) 0 0
\(243\) −22.3659 −1.43477
\(244\) 0 0
\(245\) −9.30458 −0.594448
\(246\) 0 0
\(247\) −4.79476 −0.305083
\(248\) 0 0
\(249\) −27.0032 −1.71126
\(250\) 0 0
\(251\) −5.31293 −0.335349 −0.167675 0.985842i \(-0.553626\pi\)
−0.167675 + 0.985842i \(0.553626\pi\)
\(252\) 0 0
\(253\) −6.76793 −0.425496
\(254\) 0 0
\(255\) 8.30458 0.520053
\(256\) 0 0
\(257\) −13.5727 −0.846644 −0.423322 0.905979i \(-0.639136\pi\)
−0.423322 + 0.905979i \(0.639136\pi\)
\(258\) 0 0
\(259\) −17.8999 −1.11224
\(260\) 0 0
\(261\) −3.87987 −0.240158
\(262\) 0 0
\(263\) −20.9187 −1.28990 −0.644950 0.764225i \(-0.723122\pi\)
−0.644950 + 0.764225i \(0.723122\pi\)
\(264\) 0 0
\(265\) −0.224876 −0.0138140
\(266\) 0 0
\(267\) −11.0523 −0.676393
\(268\) 0 0
\(269\) 15.1542 0.923966 0.461983 0.886889i \(-0.347138\pi\)
0.461983 + 0.886889i \(0.347138\pi\)
\(270\) 0 0
\(271\) −20.7693 −1.26165 −0.630823 0.775927i \(-0.717282\pi\)
−0.630823 + 0.775927i \(0.717282\pi\)
\(272\) 0 0
\(273\) −48.9454 −2.96231
\(274\) 0 0
\(275\) 1.67610 0.101073
\(276\) 0 0
\(277\) 22.4005 1.34592 0.672958 0.739680i \(-0.265023\pi\)
0.672958 + 0.739680i \(0.265023\pi\)
\(278\) 0 0
\(279\) −31.7148 −1.89872
\(280\) 0 0
\(281\) −1.32998 −0.0793397 −0.0396699 0.999213i \(-0.512631\pi\)
−0.0396699 + 0.999213i \(0.512631\pi\)
\(282\) 0 0
\(283\) −33.0454 −1.96434 −0.982171 0.187989i \(-0.939803\pi\)
−0.982171 + 0.187989i \(0.939803\pi\)
\(284\) 0 0
\(285\) 2.52807 0.149750
\(286\) 0 0
\(287\) −12.9926 −0.766931
\(288\) 0 0
\(289\) −6.20916 −0.365244
\(290\) 0 0
\(291\) 4.90161 0.287338
\(292\) 0 0
\(293\) −14.4038 −0.841476 −0.420738 0.907182i \(-0.638229\pi\)
−0.420738 + 0.907182i \(0.638229\pi\)
\(294\) 0 0
\(295\) −5.52226 −0.321518
\(296\) 0 0
\(297\) 1.65747 0.0961763
\(298\) 0 0
\(299\) −19.3607 −1.11966
\(300\) 0 0
\(301\) −19.7606 −1.13898
\(302\) 0 0
\(303\) 32.8078 1.88476
\(304\) 0 0
\(305\) 12.9696 0.742635
\(306\) 0 0
\(307\) 14.1705 0.808751 0.404375 0.914593i \(-0.367489\pi\)
0.404375 + 0.914593i \(0.367489\pi\)
\(308\) 0 0
\(309\) 45.2242 2.57272
\(310\) 0 0
\(311\) −22.3339 −1.26644 −0.633221 0.773971i \(-0.718268\pi\)
−0.633221 + 0.773971i \(0.718268\pi\)
\(312\) 0 0
\(313\) 24.4756 1.38344 0.691722 0.722164i \(-0.256852\pi\)
0.691722 + 0.722164i \(0.256852\pi\)
\(314\) 0 0
\(315\) 13.6931 0.771521
\(316\) 0 0
\(317\) 31.9710 1.79567 0.897836 0.440329i \(-0.145138\pi\)
0.897836 + 0.440329i \(0.145138\pi\)
\(318\) 0 0
\(319\) −1.91765 −0.107368
\(320\) 0 0
\(321\) 21.5596 1.20334
\(322\) 0 0
\(323\) 3.28494 0.182779
\(324\) 0 0
\(325\) 4.79476 0.265965
\(326\) 0 0
\(327\) 4.33311 0.239622
\(328\) 0 0
\(329\) 26.8781 1.48184
\(330\) 0 0
\(331\) −2.85742 −0.157058 −0.0785290 0.996912i \(-0.525022\pi\)
−0.0785290 + 0.996912i \(0.525022\pi\)
\(332\) 0 0
\(333\) 15.0329 0.823799
\(334\) 0 0
\(335\) 11.5555 0.631347
\(336\) 0 0
\(337\) −27.1152 −1.47706 −0.738528 0.674223i \(-0.764479\pi\)
−0.738528 + 0.674223i \(0.764479\pi\)
\(338\) 0 0
\(339\) −35.5224 −1.92931
\(340\) 0 0
\(341\) −15.6753 −0.848863
\(342\) 0 0
\(343\) −9.30564 −0.502457
\(344\) 0 0
\(345\) 10.2081 0.549585
\(346\) 0 0
\(347\) 14.6735 0.787715 0.393858 0.919171i \(-0.371140\pi\)
0.393858 + 0.919171i \(0.371140\pi\)
\(348\) 0 0
\(349\) 32.5964 1.74485 0.872424 0.488750i \(-0.162547\pi\)
0.872424 + 0.488750i \(0.162547\pi\)
\(350\) 0 0
\(351\) 4.74147 0.253081
\(352\) 0 0
\(353\) 0.580529 0.0308985 0.0154492 0.999881i \(-0.495082\pi\)
0.0154492 + 0.999881i \(0.495082\pi\)
\(354\) 0 0
\(355\) 1.21768 0.0646276
\(356\) 0 0
\(357\) 33.5330 1.77475
\(358\) 0 0
\(359\) −25.4372 −1.34252 −0.671262 0.741220i \(-0.734248\pi\)
−0.671262 + 0.741220i \(0.734248\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) −20.7066 −1.08682
\(364\) 0 0
\(365\) 4.98888 0.261130
\(366\) 0 0
\(367\) −28.6465 −1.49534 −0.747668 0.664073i \(-0.768826\pi\)
−0.747668 + 0.664073i \(0.768826\pi\)
\(368\) 0 0
\(369\) 10.9117 0.568039
\(370\) 0 0
\(371\) −0.908026 −0.0471424
\(372\) 0 0
\(373\) 30.0325 1.55503 0.777513 0.628867i \(-0.216481\pi\)
0.777513 + 0.628867i \(0.216481\pi\)
\(374\) 0 0
\(375\) −2.52807 −0.130549
\(376\) 0 0
\(377\) −5.48574 −0.282530
\(378\) 0 0
\(379\) −17.3607 −0.891761 −0.445880 0.895093i \(-0.647109\pi\)
−0.445880 + 0.895093i \(0.647109\pi\)
\(380\) 0 0
\(381\) −25.5367 −1.30828
\(382\) 0 0
\(383\) 28.0677 1.43419 0.717096 0.696975i \(-0.245471\pi\)
0.717096 + 0.696975i \(0.245471\pi\)
\(384\) 0 0
\(385\) 6.76793 0.344925
\(386\) 0 0
\(387\) 16.5956 0.843602
\(388\) 0 0
\(389\) 15.4396 0.782820 0.391410 0.920216i \(-0.371987\pi\)
0.391410 + 0.920216i \(0.371987\pi\)
\(390\) 0 0
\(391\) 13.2642 0.670802
\(392\) 0 0
\(393\) 3.67833 0.185547
\(394\) 0 0
\(395\) 6.00783 0.302287
\(396\) 0 0
\(397\) −13.8193 −0.693571 −0.346786 0.937944i \(-0.612727\pi\)
−0.346786 + 0.937944i \(0.612727\pi\)
\(398\) 0 0
\(399\) 10.2081 0.511044
\(400\) 0 0
\(401\) −3.39148 −0.169362 −0.0846812 0.996408i \(-0.526987\pi\)
−0.0846812 + 0.996408i \(0.526987\pi\)
\(402\) 0 0
\(403\) −44.8416 −2.23372
\(404\) 0 0
\(405\) 7.67351 0.381300
\(406\) 0 0
\(407\) 7.43012 0.368297
\(408\) 0 0
\(409\) 27.8534 1.37726 0.688631 0.725112i \(-0.258212\pi\)
0.688631 + 0.725112i \(0.258212\pi\)
\(410\) 0 0
\(411\) 0.170049 0.00838792
\(412\) 0 0
\(413\) −22.2983 −1.09723
\(414\) 0 0
\(415\) 10.6813 0.524326
\(416\) 0 0
\(417\) −46.0710 −2.25611
\(418\) 0 0
\(419\) 17.5338 0.856584 0.428292 0.903640i \(-0.359115\pi\)
0.428292 + 0.903640i \(0.359115\pi\)
\(420\) 0 0
\(421\) −28.3675 −1.38255 −0.691274 0.722593i \(-0.742950\pi\)
−0.691274 + 0.722593i \(0.742950\pi\)
\(422\) 0 0
\(423\) −22.5732 −1.09754
\(424\) 0 0
\(425\) −3.28494 −0.159343
\(426\) 0 0
\(427\) 52.3697 2.53435
\(428\) 0 0
\(429\) 20.3169 0.980909
\(430\) 0 0
\(431\) 15.5530 0.749162 0.374581 0.927194i \(-0.377787\pi\)
0.374581 + 0.927194i \(0.377787\pi\)
\(432\) 0 0
\(433\) −15.6284 −0.751054 −0.375527 0.926811i \(-0.622538\pi\)
−0.375527 + 0.926811i \(0.622538\pi\)
\(434\) 0 0
\(435\) 2.89240 0.138680
\(436\) 0 0
\(437\) 4.03789 0.193159
\(438\) 0 0
\(439\) −9.34437 −0.445983 −0.222991 0.974820i \(-0.571582\pi\)
−0.222991 + 0.974820i \(0.571582\pi\)
\(440\) 0 0
\(441\) 31.5533 1.50254
\(442\) 0 0
\(443\) 7.85330 0.373121 0.186561 0.982443i \(-0.440266\pi\)
0.186561 + 0.982443i \(0.440266\pi\)
\(444\) 0 0
\(445\) 4.37184 0.207245
\(446\) 0 0
\(447\) −7.22339 −0.341654
\(448\) 0 0
\(449\) 11.8750 0.560415 0.280208 0.959939i \(-0.409597\pi\)
0.280208 + 0.959939i \(0.409597\pi\)
\(450\) 0 0
\(451\) 5.39316 0.253954
\(452\) 0 0
\(453\) −1.84906 −0.0868766
\(454\) 0 0
\(455\) 19.3607 0.907645
\(456\) 0 0
\(457\) 16.7338 0.782773 0.391387 0.920226i \(-0.371996\pi\)
0.391387 + 0.920226i \(0.371996\pi\)
\(458\) 0 0
\(459\) −3.24843 −0.151624
\(460\) 0 0
\(461\) −35.0253 −1.63129 −0.815646 0.578551i \(-0.803619\pi\)
−0.815646 + 0.578551i \(0.803619\pi\)
\(462\) 0 0
\(463\) 30.6349 1.42372 0.711862 0.702320i \(-0.247852\pi\)
0.711862 + 0.702320i \(0.247852\pi\)
\(464\) 0 0
\(465\) 23.6431 1.09642
\(466\) 0 0
\(467\) −16.0479 −0.742610 −0.371305 0.928511i \(-0.621090\pi\)
−0.371305 + 0.928511i \(0.621090\pi\)
\(468\) 0 0
\(469\) 46.6600 2.15456
\(470\) 0 0
\(471\) 13.3823 0.616622
\(472\) 0 0
\(473\) 8.20248 0.377151
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) 0 0
\(477\) 0.762592 0.0349167
\(478\) 0 0
\(479\) −41.1385 −1.87967 −0.939833 0.341635i \(-0.889019\pi\)
−0.939833 + 0.341635i \(0.889019\pi\)
\(480\) 0 0
\(481\) 21.2550 0.969146
\(482\) 0 0
\(483\) 41.2192 1.87554
\(484\) 0 0
\(485\) −1.93887 −0.0880397
\(486\) 0 0
\(487\) 8.84049 0.400601 0.200300 0.979735i \(-0.435808\pi\)
0.200300 + 0.979735i \(0.435808\pi\)
\(488\) 0 0
\(489\) 5.39412 0.243931
\(490\) 0 0
\(491\) 30.4985 1.37638 0.688190 0.725531i \(-0.258406\pi\)
0.688190 + 0.725531i \(0.258406\pi\)
\(492\) 0 0
\(493\) 3.75834 0.169267
\(494\) 0 0
\(495\) −5.68394 −0.255474
\(496\) 0 0
\(497\) 4.91685 0.220551
\(498\) 0 0
\(499\) −25.1628 −1.12644 −0.563222 0.826306i \(-0.690438\pi\)
−0.563222 + 0.826306i \(0.690438\pi\)
\(500\) 0 0
\(501\) 43.3027 1.93462
\(502\) 0 0
\(503\) −13.9256 −0.620912 −0.310456 0.950588i \(-0.600482\pi\)
−0.310456 + 0.950588i \(0.600482\pi\)
\(504\) 0 0
\(505\) −12.9774 −0.577487
\(506\) 0 0
\(507\) 25.2548 1.12160
\(508\) 0 0
\(509\) 25.6403 1.13649 0.568244 0.822860i \(-0.307623\pi\)
0.568244 + 0.822860i \(0.307623\pi\)
\(510\) 0 0
\(511\) 20.1446 0.891144
\(512\) 0 0
\(513\) −0.988885 −0.0436603
\(514\) 0 0
\(515\) −17.8888 −0.788275
\(516\) 0 0
\(517\) −11.1569 −0.490681
\(518\) 0 0
\(519\) −58.5655 −2.57074
\(520\) 0 0
\(521\) 25.5598 1.11979 0.559897 0.828562i \(-0.310841\pi\)
0.559897 + 0.828562i \(0.310841\pi\)
\(522\) 0 0
\(523\) 27.7515 1.21349 0.606743 0.794898i \(-0.292476\pi\)
0.606743 + 0.794898i \(0.292476\pi\)
\(524\) 0 0
\(525\) −10.2081 −0.445518
\(526\) 0 0
\(527\) 30.7215 1.33825
\(528\) 0 0
\(529\) −6.69542 −0.291105
\(530\) 0 0
\(531\) 18.7269 0.812677
\(532\) 0 0
\(533\) 15.4280 0.668261
\(534\) 0 0
\(535\) −8.52807 −0.368701
\(536\) 0 0
\(537\) −52.6945 −2.27393
\(538\) 0 0
\(539\) 15.5954 0.671743
\(540\) 0 0
\(541\) 32.8042 1.41036 0.705182 0.709026i \(-0.250865\pi\)
0.705182 + 0.709026i \(0.250865\pi\)
\(542\) 0 0
\(543\) −51.3728 −2.20462
\(544\) 0 0
\(545\) −1.71400 −0.0734195
\(546\) 0 0
\(547\) 14.6517 0.626459 0.313230 0.949677i \(-0.398589\pi\)
0.313230 + 0.949677i \(0.398589\pi\)
\(548\) 0 0
\(549\) −43.9819 −1.87710
\(550\) 0 0
\(551\) 1.14411 0.0487408
\(552\) 0 0
\(553\) 24.2590 1.03160
\(554\) 0 0
\(555\) −11.2069 −0.475706
\(556\) 0 0
\(557\) 28.8515 1.22248 0.611240 0.791446i \(-0.290671\pi\)
0.611240 + 0.791446i \(0.290671\pi\)
\(558\) 0 0
\(559\) 23.4645 0.992443
\(560\) 0 0
\(561\) −13.9193 −0.587675
\(562\) 0 0
\(563\) −25.2045 −1.06224 −0.531121 0.847296i \(-0.678229\pi\)
−0.531121 + 0.847296i \(0.678229\pi\)
\(564\) 0 0
\(565\) 14.0512 0.591137
\(566\) 0 0
\(567\) 30.9848 1.30124
\(568\) 0 0
\(569\) −6.04404 −0.253379 −0.126690 0.991942i \(-0.540435\pi\)
−0.126690 + 0.991942i \(0.540435\pi\)
\(570\) 0 0
\(571\) 35.6125 1.49034 0.745168 0.666877i \(-0.232369\pi\)
0.745168 + 0.666877i \(0.232369\pi\)
\(572\) 0 0
\(573\) 15.1377 0.632385
\(574\) 0 0
\(575\) −4.03789 −0.168392
\(576\) 0 0
\(577\) −21.1791 −0.881697 −0.440849 0.897581i \(-0.645322\pi\)
−0.440849 + 0.897581i \(0.645322\pi\)
\(578\) 0 0
\(579\) −2.42318 −0.100704
\(580\) 0 0
\(581\) 43.1301 1.78934
\(582\) 0 0
\(583\) 0.376916 0.0156103
\(584\) 0 0
\(585\) −16.2598 −0.672260
\(586\) 0 0
\(587\) 7.81276 0.322467 0.161233 0.986916i \(-0.448453\pi\)
0.161233 + 0.986916i \(0.448453\pi\)
\(588\) 0 0
\(589\) 9.35221 0.385351
\(590\) 0 0
\(591\) −40.5683 −1.66876
\(592\) 0 0
\(593\) −3.78924 −0.155606 −0.0778028 0.996969i \(-0.524790\pi\)
−0.0778028 + 0.996969i \(0.524790\pi\)
\(594\) 0 0
\(595\) −13.2642 −0.543781
\(596\) 0 0
\(597\) 13.5000 0.552518
\(598\) 0 0
\(599\) 47.1260 1.92552 0.962758 0.270364i \(-0.0871440\pi\)
0.962758 + 0.270364i \(0.0871440\pi\)
\(600\) 0 0
\(601\) 18.3380 0.748022 0.374011 0.927424i \(-0.377982\pi\)
0.374011 + 0.927424i \(0.377982\pi\)
\(602\) 0 0
\(603\) −39.1867 −1.59581
\(604\) 0 0
\(605\) 8.19068 0.332998
\(606\) 0 0
\(607\) −22.7934 −0.925155 −0.462577 0.886579i \(-0.653075\pi\)
−0.462577 + 0.886579i \(0.653075\pi\)
\(608\) 0 0
\(609\) 11.6792 0.473265
\(610\) 0 0
\(611\) −31.9162 −1.29119
\(612\) 0 0
\(613\) 29.3771 1.18653 0.593265 0.805008i \(-0.297839\pi\)
0.593265 + 0.805008i \(0.297839\pi\)
\(614\) 0 0
\(615\) −8.13453 −0.328016
\(616\) 0 0
\(617\) 10.5986 0.426682 0.213341 0.976978i \(-0.431565\pi\)
0.213341 + 0.976978i \(0.431565\pi\)
\(618\) 0 0
\(619\) −35.2936 −1.41857 −0.709284 0.704923i \(-0.750982\pi\)
−0.709284 + 0.704923i \(0.750982\pi\)
\(620\) 0 0
\(621\) −3.99301 −0.160234
\(622\) 0 0
\(623\) 17.6530 0.707254
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −4.23731 −0.169222
\(628\) 0 0
\(629\) −14.5621 −0.580627
\(630\) 0 0
\(631\) −38.2609 −1.52314 −0.761571 0.648081i \(-0.775572\pi\)
−0.761571 + 0.648081i \(0.775572\pi\)
\(632\) 0 0
\(633\) −64.8061 −2.57581
\(634\) 0 0
\(635\) 10.1012 0.400856
\(636\) 0 0
\(637\) 44.6132 1.76764
\(638\) 0 0
\(639\) −4.12934 −0.163354
\(640\) 0 0
\(641\) 33.5730 1.32605 0.663027 0.748596i \(-0.269272\pi\)
0.663027 + 0.748596i \(0.269272\pi\)
\(642\) 0 0
\(643\) −4.61857 −0.182139 −0.0910693 0.995845i \(-0.529028\pi\)
−0.0910693 + 0.995845i \(0.529028\pi\)
\(644\) 0 0
\(645\) −12.3718 −0.487141
\(646\) 0 0
\(647\) −27.8312 −1.09416 −0.547078 0.837082i \(-0.684260\pi\)
−0.547078 + 0.837082i \(0.684260\pi\)
\(648\) 0 0
\(649\) 9.25587 0.363325
\(650\) 0 0
\(651\) 95.4682 3.74169
\(652\) 0 0
\(653\) −29.3927 −1.15023 −0.575114 0.818074i \(-0.695042\pi\)
−0.575114 + 0.818074i \(0.695042\pi\)
\(654\) 0 0
\(655\) −1.45499 −0.0568512
\(656\) 0 0
\(657\) −16.9181 −0.660038
\(658\) 0 0
\(659\) 39.9207 1.55509 0.777544 0.628829i \(-0.216465\pi\)
0.777544 + 0.628829i \(0.216465\pi\)
\(660\) 0 0
\(661\) 34.9777 1.36047 0.680237 0.732992i \(-0.261877\pi\)
0.680237 + 0.732992i \(0.261877\pi\)
\(662\) 0 0
\(663\) −39.8185 −1.54642
\(664\) 0 0
\(665\) −4.03789 −0.156583
\(666\) 0 0
\(667\) 4.61980 0.178879
\(668\) 0 0
\(669\) 47.2943 1.82850
\(670\) 0 0
\(671\) −21.7383 −0.839199
\(672\) 0 0
\(673\) −24.4015 −0.940610 −0.470305 0.882504i \(-0.655856\pi\)
−0.470305 + 0.882504i \(0.655856\pi\)
\(674\) 0 0
\(675\) 0.988885 0.0380622
\(676\) 0 0
\(677\) −28.0025 −1.07622 −0.538111 0.842874i \(-0.680862\pi\)
−0.538111 + 0.842874i \(0.680862\pi\)
\(678\) 0 0
\(679\) −7.82896 −0.300448
\(680\) 0 0
\(681\) 3.31278 0.126946
\(682\) 0 0
\(683\) 7.14311 0.273323 0.136662 0.990618i \(-0.456363\pi\)
0.136662 + 0.990618i \(0.456363\pi\)
\(684\) 0 0
\(685\) −0.0672644 −0.00257004
\(686\) 0 0
\(687\) 43.4010 1.65585
\(688\) 0 0
\(689\) 1.07823 0.0410772
\(690\) 0 0
\(691\) 21.6962 0.825363 0.412681 0.910875i \(-0.364592\pi\)
0.412681 + 0.910875i \(0.364592\pi\)
\(692\) 0 0
\(693\) −22.9511 −0.871841
\(694\) 0 0
\(695\) 18.2238 0.691266
\(696\) 0 0
\(697\) −10.5699 −0.400363
\(698\) 0 0
\(699\) 74.4590 2.81630
\(700\) 0 0
\(701\) −43.9543 −1.66013 −0.830065 0.557667i \(-0.811697\pi\)
−0.830065 + 0.557667i \(0.811697\pi\)
\(702\) 0 0
\(703\) −4.43297 −0.167193
\(704\) 0 0
\(705\) 16.8280 0.633781
\(706\) 0 0
\(707\) −52.4013 −1.97076
\(708\) 0 0
\(709\) −11.3051 −0.424572 −0.212286 0.977208i \(-0.568091\pi\)
−0.212286 + 0.977208i \(0.568091\pi\)
\(710\) 0 0
\(711\) −20.3735 −0.764067
\(712\) 0 0
\(713\) 37.7632 1.41424
\(714\) 0 0
\(715\) −8.03651 −0.300549
\(716\) 0 0
\(717\) 9.28997 0.346940
\(718\) 0 0
\(719\) 7.23069 0.269659 0.134830 0.990869i \(-0.456951\pi\)
0.134830 + 0.990869i \(0.456951\pi\)
\(720\) 0 0
\(721\) −72.2331 −2.69010
\(722\) 0 0
\(723\) 17.7660 0.660723
\(724\) 0 0
\(725\) −1.14411 −0.0424913
\(726\) 0 0
\(727\) −11.8138 −0.438150 −0.219075 0.975708i \(-0.570304\pi\)
−0.219075 + 0.975708i \(0.570304\pi\)
\(728\) 0 0
\(729\) −33.5220 −1.24156
\(730\) 0 0
\(731\) −16.0758 −0.594584
\(732\) 0 0
\(733\) 13.2098 0.487917 0.243958 0.969786i \(-0.421554\pi\)
0.243958 + 0.969786i \(0.421554\pi\)
\(734\) 0 0
\(735\) −23.5227 −0.867647
\(736\) 0 0
\(737\) −19.3683 −0.713440
\(738\) 0 0
\(739\) 39.7827 1.46343 0.731715 0.681611i \(-0.238720\pi\)
0.731715 + 0.681611i \(0.238720\pi\)
\(740\) 0 0
\(741\) −12.1215 −0.445295
\(742\) 0 0
\(743\) 40.2442 1.47642 0.738209 0.674572i \(-0.235672\pi\)
0.738209 + 0.674572i \(0.235672\pi\)
\(744\) 0 0
\(745\) 2.85727 0.104682
\(746\) 0 0
\(747\) −36.2222 −1.32530
\(748\) 0 0
\(749\) −34.4355 −1.25824
\(750\) 0 0
\(751\) 14.7850 0.539511 0.269756 0.962929i \(-0.413057\pi\)
0.269756 + 0.962929i \(0.413057\pi\)
\(752\) 0 0
\(753\) −13.4315 −0.489471
\(754\) 0 0
\(755\) 0.731412 0.0266188
\(756\) 0 0
\(757\) −10.7071 −0.389155 −0.194577 0.980887i \(-0.562334\pi\)
−0.194577 + 0.980887i \(0.562334\pi\)
\(758\) 0 0
\(759\) −17.1098 −0.621047
\(760\) 0 0
\(761\) 23.6768 0.858283 0.429142 0.903237i \(-0.358816\pi\)
0.429142 + 0.903237i \(0.358816\pi\)
\(762\) 0 0
\(763\) −6.92093 −0.250555
\(764\) 0 0
\(765\) 11.1398 0.402759
\(766\) 0 0
\(767\) 26.4779 0.956061
\(768\) 0 0
\(769\) −15.5193 −0.559640 −0.279820 0.960052i \(-0.590275\pi\)
−0.279820 + 0.960052i \(0.590275\pi\)
\(770\) 0 0
\(771\) −34.3129 −1.23575
\(772\) 0 0
\(773\) 16.4689 0.592347 0.296173 0.955134i \(-0.404289\pi\)
0.296173 + 0.955134i \(0.404289\pi\)
\(774\) 0 0
\(775\) −9.35221 −0.335941
\(776\) 0 0
\(777\) −45.2522 −1.62341
\(778\) 0 0
\(779\) −3.21768 −0.115285
\(780\) 0 0
\(781\) −2.04095 −0.0730310
\(782\) 0 0
\(783\) −1.13140 −0.0404328
\(784\) 0 0
\(785\) −5.29346 −0.188932
\(786\) 0 0
\(787\) 2.41059 0.0859282 0.0429641 0.999077i \(-0.486320\pi\)
0.0429641 + 0.999077i \(0.486320\pi\)
\(788\) 0 0
\(789\) −52.8839 −1.88272
\(790\) 0 0
\(791\) 56.7371 2.01734
\(792\) 0 0
\(793\) −62.1860 −2.20829
\(794\) 0 0
\(795\) −0.568504 −0.0201628
\(796\) 0 0
\(797\) 7.95157 0.281659 0.140830 0.990034i \(-0.455023\pi\)
0.140830 + 0.990034i \(0.455023\pi\)
\(798\) 0 0
\(799\) 21.8661 0.773567
\(800\) 0 0
\(801\) −14.8256 −0.523838
\(802\) 0 0
\(803\) −8.36189 −0.295085
\(804\) 0 0
\(805\) −16.3046 −0.574661
\(806\) 0 0
\(807\) 38.3109 1.34861
\(808\) 0 0
\(809\) −31.3269 −1.10139 −0.550697 0.834705i \(-0.685638\pi\)
−0.550697 + 0.834705i \(0.685638\pi\)
\(810\) 0 0
\(811\) −21.7978 −0.765423 −0.382711 0.923868i \(-0.625010\pi\)
−0.382711 + 0.923868i \(0.625010\pi\)
\(812\) 0 0
\(813\) −52.5064 −1.84148
\(814\) 0 0
\(815\) −2.13369 −0.0747399
\(816\) 0 0
\(817\) −4.89378 −0.171212
\(818\) 0 0
\(819\) −65.6553 −2.29418
\(820\) 0 0
\(821\) 39.7195 1.38622 0.693110 0.720832i \(-0.256240\pi\)
0.693110 + 0.720832i \(0.256240\pi\)
\(822\) 0 0
\(823\) 9.92612 0.346003 0.173001 0.984922i \(-0.444654\pi\)
0.173001 + 0.984922i \(0.444654\pi\)
\(824\) 0 0
\(825\) 4.23731 0.147524
\(826\) 0 0
\(827\) −3.13723 −0.109092 −0.0545461 0.998511i \(-0.517371\pi\)
−0.0545461 + 0.998511i \(0.517371\pi\)
\(828\) 0 0
\(829\) 16.4184 0.570235 0.285117 0.958493i \(-0.407967\pi\)
0.285117 + 0.958493i \(0.407967\pi\)
\(830\) 0 0
\(831\) 56.6302 1.96448
\(832\) 0 0
\(833\) −30.5650 −1.05901
\(834\) 0 0
\(835\) −17.1287 −0.592763
\(836\) 0 0
\(837\) −9.24825 −0.319666
\(838\) 0 0
\(839\) −34.5168 −1.19165 −0.595827 0.803113i \(-0.703176\pi\)
−0.595827 + 0.803113i \(0.703176\pi\)
\(840\) 0 0
\(841\) −27.6910 −0.954862
\(842\) 0 0
\(843\) −3.36228 −0.115803
\(844\) 0 0
\(845\) −9.98972 −0.343657
\(846\) 0 0
\(847\) 33.0731 1.13640
\(848\) 0 0
\(849\) −83.5411 −2.86712
\(850\) 0 0
\(851\) −17.8999 −0.613599
\(852\) 0 0
\(853\) 13.0831 0.447958 0.223979 0.974594i \(-0.428095\pi\)
0.223979 + 0.974594i \(0.428095\pi\)
\(854\) 0 0
\(855\) 3.39116 0.115975
\(856\) 0 0
\(857\) 44.7999 1.53034 0.765168 0.643830i \(-0.222656\pi\)
0.765168 + 0.643830i \(0.222656\pi\)
\(858\) 0 0
\(859\) −33.0161 −1.12650 −0.563248 0.826288i \(-0.690448\pi\)
−0.563248 + 0.826288i \(0.690448\pi\)
\(860\) 0 0
\(861\) −32.8464 −1.11940
\(862\) 0 0
\(863\) 27.4407 0.934093 0.467047 0.884233i \(-0.345318\pi\)
0.467047 + 0.884233i \(0.345318\pi\)
\(864\) 0 0
\(865\) 23.1661 0.787670
\(866\) 0 0
\(867\) −15.6972 −0.533105
\(868\) 0 0
\(869\) −10.0697 −0.341593
\(870\) 0 0
\(871\) −55.4061 −1.87736
\(872\) 0 0
\(873\) 6.57503 0.222531
\(874\) 0 0
\(875\) 4.03789 0.136506
\(876\) 0 0
\(877\) −12.9907 −0.438664 −0.219332 0.975650i \(-0.570388\pi\)
−0.219332 + 0.975650i \(0.570388\pi\)
\(878\) 0 0
\(879\) −36.4138 −1.22821
\(880\) 0 0
\(881\) 0.554761 0.0186904 0.00934519 0.999956i \(-0.497025\pi\)
0.00934519 + 0.999956i \(0.497025\pi\)
\(882\) 0 0
\(883\) 36.1537 1.21667 0.608334 0.793681i \(-0.291838\pi\)
0.608334 + 0.793681i \(0.291838\pi\)
\(884\) 0 0
\(885\) −13.9607 −0.469283
\(886\) 0 0
\(887\) 40.8100 1.37026 0.685132 0.728418i \(-0.259744\pi\)
0.685132 + 0.728418i \(0.259744\pi\)
\(888\) 0 0
\(889\) 40.7877 1.36798
\(890\) 0 0
\(891\) −12.8616 −0.430880
\(892\) 0 0
\(893\) 6.65647 0.222750
\(894\) 0 0
\(895\) 20.8437 0.696728
\(896\) 0 0
\(897\) −48.9454 −1.63424
\(898\) 0 0
\(899\) 10.7000 0.356864
\(900\) 0 0
\(901\) −0.738705 −0.0246098
\(902\) 0 0
\(903\) −49.9562 −1.66244
\(904\) 0 0
\(905\) 20.3209 0.675491
\(906\) 0 0
\(907\) 46.4115 1.54107 0.770535 0.637398i \(-0.219989\pi\)
0.770535 + 0.637398i \(0.219989\pi\)
\(908\) 0 0
\(909\) 44.0085 1.45967
\(910\) 0 0
\(911\) 18.8697 0.625183 0.312591 0.949888i \(-0.398803\pi\)
0.312591 + 0.949888i \(0.398803\pi\)
\(912\) 0 0
\(913\) −17.9030 −0.592504
\(914\) 0 0
\(915\) 32.7880 1.08394
\(916\) 0 0
\(917\) −5.87510 −0.194013
\(918\) 0 0
\(919\) 5.96295 0.196699 0.0983497 0.995152i \(-0.468644\pi\)
0.0983497 + 0.995152i \(0.468644\pi\)
\(920\) 0 0
\(921\) 35.8240 1.18044
\(922\) 0 0
\(923\) −5.83847 −0.192176
\(924\) 0 0
\(925\) 4.43297 0.145755
\(926\) 0 0
\(927\) 60.6638 1.99246
\(928\) 0 0
\(929\) 49.0325 1.60870 0.804352 0.594153i \(-0.202513\pi\)
0.804352 + 0.594153i \(0.202513\pi\)
\(930\) 0 0
\(931\) −9.30458 −0.304945
\(932\) 0 0
\(933\) −56.4619 −1.84848
\(934\) 0 0
\(935\) 5.50590 0.180062
\(936\) 0 0
\(937\) −22.6477 −0.739869 −0.369935 0.929058i \(-0.620620\pi\)
−0.369935 + 0.929058i \(0.620620\pi\)
\(938\) 0 0
\(939\) 61.8762 2.01925
\(940\) 0 0
\(941\) 20.9975 0.684499 0.342250 0.939609i \(-0.388811\pi\)
0.342250 + 0.939609i \(0.388811\pi\)
\(942\) 0 0
\(943\) −12.9926 −0.423098
\(944\) 0 0
\(945\) 3.99301 0.129893
\(946\) 0 0
\(947\) −36.0466 −1.17136 −0.585678 0.810544i \(-0.699172\pi\)
−0.585678 + 0.810544i \(0.699172\pi\)
\(948\) 0 0
\(949\) −23.9205 −0.776492
\(950\) 0 0
\(951\) 80.8252 2.62094
\(952\) 0 0
\(953\) 37.7137 1.22167 0.610834 0.791759i \(-0.290834\pi\)
0.610834 + 0.791759i \(0.290834\pi\)
\(954\) 0 0
\(955\) −5.98782 −0.193761
\(956\) 0 0
\(957\) −4.84796 −0.156712
\(958\) 0 0
\(959\) −0.271607 −0.00877063
\(960\) 0 0
\(961\) 56.4638 1.82141
\(962\) 0 0
\(963\) 28.9201 0.931936
\(964\) 0 0
\(965\) 0.958509 0.0308555
\(966\) 0 0
\(967\) 21.1768 0.681001 0.340500 0.940244i \(-0.389404\pi\)
0.340500 + 0.940244i \(0.389404\pi\)
\(968\) 0 0
\(969\) 8.30458 0.266781
\(970\) 0 0
\(971\) −14.6324 −0.469577 −0.234789 0.972046i \(-0.575440\pi\)
−0.234789 + 0.972046i \(0.575440\pi\)
\(972\) 0 0
\(973\) 73.5856 2.35905
\(974\) 0 0
\(975\) 12.1215 0.388199
\(976\) 0 0
\(977\) −43.3160 −1.38580 −0.692900 0.721034i \(-0.743667\pi\)
−0.692900 + 0.721034i \(0.743667\pi\)
\(978\) 0 0
\(979\) −7.32766 −0.234193
\(980\) 0 0
\(981\) 5.81244 0.185577
\(982\) 0 0
\(983\) 23.1679 0.738940 0.369470 0.929243i \(-0.379539\pi\)
0.369470 + 0.929243i \(0.379539\pi\)
\(984\) 0 0
\(985\) 16.0471 0.511303
\(986\) 0 0
\(987\) 67.9498 2.16287
\(988\) 0 0
\(989\) −19.7606 −0.628349
\(990\) 0 0
\(991\) −23.8607 −0.757960 −0.378980 0.925405i \(-0.623725\pi\)
−0.378980 + 0.925405i \(0.623725\pi\)
\(992\) 0 0
\(993\) −7.22377 −0.229239
\(994\) 0 0
\(995\) −5.34003 −0.169290
\(996\) 0 0
\(997\) −35.2357 −1.11592 −0.557962 0.829866i \(-0.688417\pi\)
−0.557962 + 0.829866i \(0.688417\pi\)
\(998\) 0 0
\(999\) 4.38370 0.138694
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6080.2.a.cj.1.4 5
4.3 odd 2 6080.2.a.ck.1.2 5
8.3 odd 2 3040.2.a.v.1.4 5
8.5 even 2 3040.2.a.w.1.2 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3040.2.a.v.1.4 5 8.3 odd 2
3040.2.a.w.1.2 yes 5 8.5 even 2
6080.2.a.cj.1.4 5 1.1 even 1 trivial
6080.2.a.ck.1.2 5 4.3 odd 2