Properties

Label 6080.2.a.cf.1.3
Level $6080$
Weight $2$
Character 6080.1
Self dual yes
Analytic conductor $48.549$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6080,2,Mod(1,6080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6080, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6080.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6080 = 2^{6} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6080.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.5490444289\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.17428.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} + 4x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3040)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.52616\) of defining polynomial
Character \(\chi\) \(=\) 6080.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.52616 q^{3} -1.00000 q^{5} -0.329157 q^{7} -0.670843 q^{9} +O(q^{10})\) \(q+1.52616 q^{3} -1.00000 q^{5} -0.329157 q^{7} -0.670843 q^{9} -0.879127 q^{11} +1.35297 q^{13} -1.52616 q^{15} +5.60228 q^{17} +1.00000 q^{19} -0.502345 q^{21} -8.77078 q^{23} +1.00000 q^{25} -5.60228 q^{27} +2.54997 q^{29} +0.394001 q^{31} -1.34169 q^{33} +0.329157 q^{35} -9.34926 q^{37} +2.06484 q^{39} -3.05232 q^{41} +4.22081 q^{43} +0.670843 q^{45} -1.51487 q^{47} -6.89166 q^{49} +8.54997 q^{51} -0.669597 q^{53} +0.879127 q^{55} +1.52616 q^{57} +0.155969 q^{59} -9.95650 q^{61} +0.220813 q^{63} -1.35297 q^{65} +11.3095 q^{67} -13.3856 q^{69} -3.29406 q^{71} +0.445339 q^{73} +1.52616 q^{75} +0.289371 q^{77} -14.4416 q^{79} -6.53744 q^{81} -0.220813 q^{83} -5.60228 q^{85} +3.89166 q^{87} +4.04762 q^{89} -0.445339 q^{91} +0.601308 q^{93} -1.00000 q^{95} +5.19700 q^{97} +0.589756 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} - 4 q^{5} - 5 q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + q^{3} - 4 q^{5} - 5 q^{7} + q^{9} + 6 q^{11} + q^{13} - q^{15} - q^{17} + 4 q^{19} - 5 q^{21} - 5 q^{23} + 4 q^{25} + q^{27} - 3 q^{29} - 16 q^{31} + 2 q^{33} + 5 q^{35} + 8 q^{37} - 13 q^{39} - 2 q^{41} - q^{45} + 2 q^{47} - 7 q^{49} + 21 q^{51} - 13 q^{53} - 6 q^{55} + q^{57} + 5 q^{59} + 2 q^{61} - 16 q^{63} - q^{65} - q^{67} + 11 q^{69} - 22 q^{71} + 9 q^{73} + q^{75} + 4 q^{77} - 24 q^{79} - 24 q^{81} + 16 q^{83} + q^{85} - 5 q^{87} - 9 q^{91} + 14 q^{93} - 4 q^{95} + 12 q^{97} - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.52616 0.881128 0.440564 0.897721i \(-0.354779\pi\)
0.440564 + 0.897721i \(0.354779\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −0.329157 −0.124410 −0.0622048 0.998063i \(-0.519813\pi\)
−0.0622048 + 0.998063i \(0.519813\pi\)
\(8\) 0 0
\(9\) −0.670843 −0.223614
\(10\) 0 0
\(11\) −0.879127 −0.265067 −0.132533 0.991179i \(-0.542311\pi\)
−0.132533 + 0.991179i \(0.542311\pi\)
\(12\) 0 0
\(13\) 1.35297 0.375246 0.187623 0.982241i \(-0.439922\pi\)
0.187623 + 0.982241i \(0.439922\pi\)
\(14\) 0 0
\(15\) −1.52616 −0.394052
\(16\) 0 0
\(17\) 5.60228 1.35875 0.679377 0.733790i \(-0.262250\pi\)
0.679377 + 0.733790i \(0.262250\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) −0.502345 −0.109621
\(22\) 0 0
\(23\) −8.77078 −1.82883 −0.914417 0.404773i \(-0.867351\pi\)
−0.914417 + 0.404773i \(0.867351\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −5.60228 −1.07816
\(28\) 0 0
\(29\) 2.54997 0.473517 0.236759 0.971568i \(-0.423915\pi\)
0.236759 + 0.971568i \(0.423915\pi\)
\(30\) 0 0
\(31\) 0.394001 0.0707647 0.0353823 0.999374i \(-0.488735\pi\)
0.0353823 + 0.999374i \(0.488735\pi\)
\(32\) 0 0
\(33\) −1.34169 −0.233558
\(34\) 0 0
\(35\) 0.329157 0.0556377
\(36\) 0 0
\(37\) −9.34926 −1.53701 −0.768504 0.639845i \(-0.778999\pi\)
−0.768504 + 0.639845i \(0.778999\pi\)
\(38\) 0 0
\(39\) 2.06484 0.330640
\(40\) 0 0
\(41\) −3.05232 −0.476692 −0.238346 0.971180i \(-0.576605\pi\)
−0.238346 + 0.971180i \(0.576605\pi\)
\(42\) 0 0
\(43\) 4.22081 0.643668 0.321834 0.946796i \(-0.395701\pi\)
0.321834 + 0.946796i \(0.395701\pi\)
\(44\) 0 0
\(45\) 0.670843 0.100003
\(46\) 0 0
\(47\) −1.51487 −0.220967 −0.110484 0.993878i \(-0.535240\pi\)
−0.110484 + 0.993878i \(0.535240\pi\)
\(48\) 0 0
\(49\) −6.89166 −0.984522
\(50\) 0 0
\(51\) 8.54997 1.19724
\(52\) 0 0
\(53\) −0.669597 −0.0919763 −0.0459881 0.998942i \(-0.514644\pi\)
−0.0459881 + 0.998942i \(0.514644\pi\)
\(54\) 0 0
\(55\) 0.879127 0.118541
\(56\) 0 0
\(57\) 1.52616 0.202145
\(58\) 0 0
\(59\) 0.155969 0.0203054 0.0101527 0.999948i \(-0.496768\pi\)
0.0101527 + 0.999948i \(0.496768\pi\)
\(60\) 0 0
\(61\) −9.95650 −1.27480 −0.637400 0.770533i \(-0.719990\pi\)
−0.637400 + 0.770533i \(0.719990\pi\)
\(62\) 0 0
\(63\) 0.220813 0.0278198
\(64\) 0 0
\(65\) −1.35297 −0.167815
\(66\) 0 0
\(67\) 11.3095 1.38167 0.690836 0.723012i \(-0.257243\pi\)
0.690836 + 0.723012i \(0.257243\pi\)
\(68\) 0 0
\(69\) −13.3856 −1.61144
\(70\) 0 0
\(71\) −3.29406 −0.390933 −0.195467 0.980710i \(-0.562622\pi\)
−0.195467 + 0.980710i \(0.562622\pi\)
\(72\) 0 0
\(73\) 0.445339 0.0521230 0.0260615 0.999660i \(-0.491703\pi\)
0.0260615 + 0.999660i \(0.491703\pi\)
\(74\) 0 0
\(75\) 1.52616 0.176226
\(76\) 0 0
\(77\) 0.289371 0.0329769
\(78\) 0 0
\(79\) −14.4416 −1.62481 −0.812405 0.583094i \(-0.801842\pi\)
−0.812405 + 0.583094i \(0.801842\pi\)
\(80\) 0 0
\(81\) −6.53744 −0.726382
\(82\) 0 0
\(83\) −0.220813 −0.0242373 −0.0121187 0.999927i \(-0.503858\pi\)
−0.0121187 + 0.999927i \(0.503858\pi\)
\(84\) 0 0
\(85\) −5.60228 −0.607653
\(86\) 0 0
\(87\) 3.89166 0.417229
\(88\) 0 0
\(89\) 4.04762 0.429047 0.214524 0.976719i \(-0.431180\pi\)
0.214524 + 0.976719i \(0.431180\pi\)
\(90\) 0 0
\(91\) −0.445339 −0.0466842
\(92\) 0 0
\(93\) 0.601308 0.0623527
\(94\) 0 0
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) 5.19700 0.527675 0.263838 0.964567i \(-0.415012\pi\)
0.263838 + 0.964567i \(0.415012\pi\)
\(98\) 0 0
\(99\) 0.589756 0.0592727
\(100\) 0 0
\(101\) 7.21612 0.718031 0.359015 0.933332i \(-0.383113\pi\)
0.359015 + 0.933332i \(0.383113\pi\)
\(102\) 0 0
\(103\) 0.0761273 0.00750105 0.00375052 0.999993i \(-0.498806\pi\)
0.00375052 + 0.999993i \(0.498806\pi\)
\(104\) 0 0
\(105\) 0.502345 0.0490239
\(106\) 0 0
\(107\) −8.62610 −0.833916 −0.416958 0.908926i \(-0.636904\pi\)
−0.416958 + 0.908926i \(0.636904\pi\)
\(108\) 0 0
\(109\) 10.3652 0.992809 0.496404 0.868091i \(-0.334653\pi\)
0.496404 + 0.868091i \(0.334653\pi\)
\(110\) 0 0
\(111\) −14.2684 −1.35430
\(112\) 0 0
\(113\) 8.60888 0.809855 0.404928 0.914349i \(-0.367297\pi\)
0.404928 + 0.914349i \(0.367297\pi\)
\(114\) 0 0
\(115\) 8.77078 0.817880
\(116\) 0 0
\(117\) −0.907630 −0.0839104
\(118\) 0 0
\(119\) −1.84403 −0.169042
\(120\) 0 0
\(121\) −10.2271 −0.929740
\(122\) 0 0
\(123\) −4.65831 −0.420026
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −8.47013 −0.751602 −0.375801 0.926700i \(-0.622632\pi\)
−0.375801 + 0.926700i \(0.622632\pi\)
\(128\) 0 0
\(129\) 6.44163 0.567153
\(130\) 0 0
\(131\) 12.7310 1.11231 0.556156 0.831078i \(-0.312276\pi\)
0.556156 + 0.831078i \(0.312276\pi\)
\(132\) 0 0
\(133\) −0.329157 −0.0285415
\(134\) 0 0
\(135\) 5.60228 0.482168
\(136\) 0 0
\(137\) −19.1438 −1.63557 −0.817785 0.575524i \(-0.804798\pi\)
−0.817785 + 0.575524i \(0.804798\pi\)
\(138\) 0 0
\(139\) −5.80425 −0.492310 −0.246155 0.969231i \(-0.579167\pi\)
−0.246155 + 0.969231i \(0.579167\pi\)
\(140\) 0 0
\(141\) −2.31194 −0.194700
\(142\) 0 0
\(143\) −1.18943 −0.0994652
\(144\) 0 0
\(145\) −2.54997 −0.211763
\(146\) 0 0
\(147\) −10.5178 −0.867490
\(148\) 0 0
\(149\) 17.8194 1.45982 0.729910 0.683543i \(-0.239562\pi\)
0.729910 + 0.683543i \(0.239562\pi\)
\(150\) 0 0
\(151\) −14.7059 −1.19675 −0.598376 0.801215i \(-0.704187\pi\)
−0.598376 + 0.801215i \(0.704187\pi\)
\(152\) 0 0
\(153\) −3.75825 −0.303837
\(154\) 0 0
\(155\) −0.394001 −0.0316469
\(156\) 0 0
\(157\) 10.4416 0.833332 0.416666 0.909060i \(-0.363198\pi\)
0.416666 + 0.909060i \(0.363198\pi\)
\(158\) 0 0
\(159\) −1.02191 −0.0810428
\(160\) 0 0
\(161\) 2.88696 0.227525
\(162\) 0 0
\(163\) −18.4207 −1.44282 −0.721410 0.692508i \(-0.756506\pi\)
−0.721410 + 0.692508i \(0.756506\pi\)
\(164\) 0 0
\(165\) 1.34169 0.104450
\(166\) 0 0
\(167\) −9.15101 −0.708126 −0.354063 0.935222i \(-0.615200\pi\)
−0.354063 + 0.935222i \(0.615200\pi\)
\(168\) 0 0
\(169\) −11.1695 −0.859190
\(170\) 0 0
\(171\) −0.670843 −0.0513006
\(172\) 0 0
\(173\) −12.8757 −0.978920 −0.489460 0.872026i \(-0.662806\pi\)
−0.489460 + 0.872026i \(0.662806\pi\)
\(174\) 0 0
\(175\) −0.329157 −0.0248819
\(176\) 0 0
\(177\) 0.238033 0.0178916
\(178\) 0 0
\(179\) −21.0675 −1.57466 −0.787328 0.616535i \(-0.788536\pi\)
−0.787328 + 0.616535i \(0.788536\pi\)
\(180\) 0 0
\(181\) 2.78800 0.207231 0.103615 0.994617i \(-0.466959\pi\)
0.103615 + 0.994617i \(0.466959\pi\)
\(182\) 0 0
\(183\) −15.1952 −1.12326
\(184\) 0 0
\(185\) 9.34926 0.687371
\(186\) 0 0
\(187\) −4.92512 −0.360160
\(188\) 0 0
\(189\) 1.84403 0.134134
\(190\) 0 0
\(191\) 0.0439103 0.00317724 0.00158862 0.999999i \(-0.499494\pi\)
0.00158862 + 0.999999i \(0.499494\pi\)
\(192\) 0 0
\(193\) −16.4241 −1.18224 −0.591118 0.806585i \(-0.701313\pi\)
−0.591118 + 0.806585i \(0.701313\pi\)
\(194\) 0 0
\(195\) −2.06484 −0.147867
\(196\) 0 0
\(197\) −21.6236 −1.54062 −0.770310 0.637670i \(-0.779898\pi\)
−0.770310 + 0.637670i \(0.779898\pi\)
\(198\) 0 0
\(199\) −4.39772 −0.311746 −0.155873 0.987777i \(-0.549819\pi\)
−0.155873 + 0.987777i \(0.549819\pi\)
\(200\) 0 0
\(201\) 17.2600 1.21743
\(202\) 0 0
\(203\) −0.839340 −0.0589102
\(204\) 0 0
\(205\) 3.05232 0.213183
\(206\) 0 0
\(207\) 5.88382 0.408954
\(208\) 0 0
\(209\) −0.879127 −0.0608105
\(210\) 0 0
\(211\) 5.20828 0.358553 0.179277 0.983799i \(-0.442624\pi\)
0.179277 + 0.983799i \(0.442624\pi\)
\(212\) 0 0
\(213\) −5.02726 −0.344462
\(214\) 0 0
\(215\) −4.22081 −0.287857
\(216\) 0 0
\(217\) −0.129688 −0.00880381
\(218\) 0 0
\(219\) 0.679658 0.0459270
\(220\) 0 0
\(221\) 7.57972 0.509867
\(222\) 0 0
\(223\) −25.5475 −1.71079 −0.855394 0.517979i \(-0.826685\pi\)
−0.855394 + 0.517979i \(0.826685\pi\)
\(224\) 0 0
\(225\) −0.670843 −0.0447229
\(226\) 0 0
\(227\) 17.1247 1.13661 0.568304 0.822819i \(-0.307600\pi\)
0.568304 + 0.822819i \(0.307600\pi\)
\(228\) 0 0
\(229\) 7.98845 0.527892 0.263946 0.964538i \(-0.414976\pi\)
0.263946 + 0.964538i \(0.414976\pi\)
\(230\) 0 0
\(231\) 0.441625 0.0290568
\(232\) 0 0
\(233\) −25.5284 −1.67242 −0.836210 0.548410i \(-0.815234\pi\)
−0.836210 + 0.548410i \(0.815234\pi\)
\(234\) 0 0
\(235\) 1.51487 0.0988195
\(236\) 0 0
\(237\) −22.0402 −1.43166
\(238\) 0 0
\(239\) −15.6249 −1.01069 −0.505344 0.862918i \(-0.668634\pi\)
−0.505344 + 0.862918i \(0.668634\pi\)
\(240\) 0 0
\(241\) −2.18474 −0.140731 −0.0703657 0.997521i \(-0.522417\pi\)
−0.0703657 + 0.997521i \(0.522417\pi\)
\(242\) 0 0
\(243\) 6.82969 0.438125
\(244\) 0 0
\(245\) 6.89166 0.440292
\(246\) 0 0
\(247\) 1.35297 0.0860874
\(248\) 0 0
\(249\) −0.336995 −0.0213562
\(250\) 0 0
\(251\) 14.5463 0.918152 0.459076 0.888397i \(-0.348181\pi\)
0.459076 + 0.888397i \(0.348181\pi\)
\(252\) 0 0
\(253\) 7.71063 0.484763
\(254\) 0 0
\(255\) −8.54997 −0.535420
\(256\) 0 0
\(257\) 10.6659 0.665320 0.332660 0.943047i \(-0.392054\pi\)
0.332660 + 0.943047i \(0.392054\pi\)
\(258\) 0 0
\(259\) 3.07737 0.191219
\(260\) 0 0
\(261\) −1.71063 −0.105885
\(262\) 0 0
\(263\) −0.936133 −0.0577244 −0.0288622 0.999583i \(-0.509188\pi\)
−0.0288622 + 0.999583i \(0.509188\pi\)
\(264\) 0 0
\(265\) 0.669597 0.0411330
\(266\) 0 0
\(267\) 6.17731 0.378045
\(268\) 0 0
\(269\) 19.4138 1.18368 0.591841 0.806055i \(-0.298401\pi\)
0.591841 + 0.806055i \(0.298401\pi\)
\(270\) 0 0
\(271\) −12.3517 −0.750314 −0.375157 0.926961i \(-0.622411\pi\)
−0.375157 + 0.926961i \(0.622411\pi\)
\(272\) 0 0
\(273\) −0.679658 −0.0411348
\(274\) 0 0
\(275\) −0.879127 −0.0530133
\(276\) 0 0
\(277\) 11.5416 0.693465 0.346733 0.937964i \(-0.387291\pi\)
0.346733 + 0.937964i \(0.387291\pi\)
\(278\) 0 0
\(279\) −0.264313 −0.0158240
\(280\) 0 0
\(281\) −8.41906 −0.502239 −0.251119 0.967956i \(-0.580799\pi\)
−0.251119 + 0.967956i \(0.580799\pi\)
\(282\) 0 0
\(283\) −30.7671 −1.82891 −0.914456 0.404685i \(-0.867381\pi\)
−0.914456 + 0.404685i \(0.867381\pi\)
\(284\) 0 0
\(285\) −1.52616 −0.0904018
\(286\) 0 0
\(287\) 1.00469 0.0593050
\(288\) 0 0
\(289\) 14.3856 0.846212
\(290\) 0 0
\(291\) 7.93144 0.464949
\(292\) 0 0
\(293\) −2.69466 −0.157423 −0.0787117 0.996897i \(-0.525081\pi\)
−0.0787117 + 0.996897i \(0.525081\pi\)
\(294\) 0 0
\(295\) −0.155969 −0.00908084
\(296\) 0 0
\(297\) 4.92512 0.285784
\(298\) 0 0
\(299\) −11.8666 −0.686263
\(300\) 0 0
\(301\) −1.38931 −0.0800785
\(302\) 0 0
\(303\) 11.0129 0.632677
\(304\) 0 0
\(305\) 9.95650 0.570108
\(306\) 0 0
\(307\) −29.8044 −1.70103 −0.850513 0.525954i \(-0.823708\pi\)
−0.850513 + 0.525954i \(0.823708\pi\)
\(308\) 0 0
\(309\) 0.116182 0.00660938
\(310\) 0 0
\(311\) −24.5159 −1.39017 −0.695083 0.718929i \(-0.744632\pi\)
−0.695083 + 0.718929i \(0.744632\pi\)
\(312\) 0 0
\(313\) −23.0712 −1.30406 −0.652030 0.758193i \(-0.726082\pi\)
−0.652030 + 0.758193i \(0.726082\pi\)
\(314\) 0 0
\(315\) −0.220813 −0.0124414
\(316\) 0 0
\(317\) 2.01128 0.112965 0.0564825 0.998404i \(-0.482012\pi\)
0.0564825 + 0.998404i \(0.482012\pi\)
\(318\) 0 0
\(319\) −2.24175 −0.125514
\(320\) 0 0
\(321\) −13.1648 −0.734787
\(322\) 0 0
\(323\) 5.60228 0.311719
\(324\) 0 0
\(325\) 1.35297 0.0750492
\(326\) 0 0
\(327\) 15.8190 0.874791
\(328\) 0 0
\(329\) 0.498632 0.0274904
\(330\) 0 0
\(331\) −12.4924 −0.686646 −0.343323 0.939217i \(-0.611553\pi\)
−0.343323 + 0.939217i \(0.611553\pi\)
\(332\) 0 0
\(333\) 6.27188 0.343697
\(334\) 0 0
\(335\) −11.3095 −0.617902
\(336\) 0 0
\(337\) 28.3691 1.54536 0.772681 0.634794i \(-0.218915\pi\)
0.772681 + 0.634794i \(0.218915\pi\)
\(338\) 0 0
\(339\) 13.1385 0.713586
\(340\) 0 0
\(341\) −0.346377 −0.0187574
\(342\) 0 0
\(343\) 4.57254 0.246894
\(344\) 0 0
\(345\) 13.3856 0.720656
\(346\) 0 0
\(347\) 14.4777 0.777204 0.388602 0.921406i \(-0.372958\pi\)
0.388602 + 0.921406i \(0.372958\pi\)
\(348\) 0 0
\(349\) 28.1198 1.50522 0.752608 0.658468i \(-0.228795\pi\)
0.752608 + 0.658468i \(0.228795\pi\)
\(350\) 0 0
\(351\) −7.57972 −0.404575
\(352\) 0 0
\(353\) 3.18572 0.169559 0.0847793 0.996400i \(-0.472981\pi\)
0.0847793 + 0.996400i \(0.472981\pi\)
\(354\) 0 0
\(355\) 3.29406 0.174831
\(356\) 0 0
\(357\) −2.81428 −0.148948
\(358\) 0 0
\(359\) 3.77298 0.199130 0.0995652 0.995031i \(-0.468255\pi\)
0.0995652 + 0.995031i \(0.468255\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) −15.6082 −0.819219
\(364\) 0 0
\(365\) −0.445339 −0.0233101
\(366\) 0 0
\(367\) 34.3180 1.79139 0.895693 0.444673i \(-0.146680\pi\)
0.895693 + 0.444673i \(0.146680\pi\)
\(368\) 0 0
\(369\) 2.04762 0.106595
\(370\) 0 0
\(371\) 0.220403 0.0114427
\(372\) 0 0
\(373\) 1.30534 0.0675882 0.0337941 0.999429i \(-0.489241\pi\)
0.0337941 + 0.999429i \(0.489241\pi\)
\(374\) 0 0
\(375\) −1.52616 −0.0788104
\(376\) 0 0
\(377\) 3.45003 0.177686
\(378\) 0 0
\(379\) −19.0811 −0.980130 −0.490065 0.871686i \(-0.663027\pi\)
−0.490065 + 0.871686i \(0.663027\pi\)
\(380\) 0 0
\(381\) −12.9268 −0.662258
\(382\) 0 0
\(383\) 10.3330 0.527992 0.263996 0.964524i \(-0.414959\pi\)
0.263996 + 0.964524i \(0.414959\pi\)
\(384\) 0 0
\(385\) −0.289371 −0.0147477
\(386\) 0 0
\(387\) −2.83150 −0.143933
\(388\) 0 0
\(389\) 23.1151 1.17198 0.585990 0.810318i \(-0.300706\pi\)
0.585990 + 0.810318i \(0.300706\pi\)
\(390\) 0 0
\(391\) −49.1364 −2.48494
\(392\) 0 0
\(393\) 19.4295 0.980089
\(394\) 0 0
\(395\) 14.4416 0.726637
\(396\) 0 0
\(397\) 8.70594 0.436939 0.218469 0.975844i \(-0.429894\pi\)
0.218469 + 0.975844i \(0.429894\pi\)
\(398\) 0 0
\(399\) −0.502345 −0.0251487
\(400\) 0 0
\(401\) 9.07488 0.453178 0.226589 0.973990i \(-0.427243\pi\)
0.226589 + 0.973990i \(0.427243\pi\)
\(402\) 0 0
\(403\) 0.533071 0.0265542
\(404\) 0 0
\(405\) 6.53744 0.324848
\(406\) 0 0
\(407\) 8.21918 0.407410
\(408\) 0 0
\(409\) 23.2046 1.14739 0.573696 0.819068i \(-0.305509\pi\)
0.573696 + 0.819068i \(0.305509\pi\)
\(410\) 0 0
\(411\) −29.2165 −1.44115
\(412\) 0 0
\(413\) −0.0513381 −0.00252619
\(414\) 0 0
\(415\) 0.220813 0.0108393
\(416\) 0 0
\(417\) −8.85819 −0.433788
\(418\) 0 0
\(419\) −18.0821 −0.883367 −0.441683 0.897171i \(-0.645619\pi\)
−0.441683 + 0.897171i \(0.645619\pi\)
\(420\) 0 0
\(421\) −17.2009 −0.838318 −0.419159 0.907913i \(-0.637675\pi\)
−0.419159 + 0.907913i \(0.637675\pi\)
\(422\) 0 0
\(423\) 1.01624 0.0494114
\(424\) 0 0
\(425\) 5.60228 0.271751
\(426\) 0 0
\(427\) 3.27725 0.158597
\(428\) 0 0
\(429\) −1.81526 −0.0876416
\(430\) 0 0
\(431\) −3.26900 −0.157462 −0.0787312 0.996896i \(-0.525087\pi\)
−0.0787312 + 0.996896i \(0.525087\pi\)
\(432\) 0 0
\(433\) −8.41475 −0.404387 −0.202194 0.979346i \(-0.564807\pi\)
−0.202194 + 0.979346i \(0.564807\pi\)
\(434\) 0 0
\(435\) −3.89166 −0.186591
\(436\) 0 0
\(437\) −8.77078 −0.419563
\(438\) 0 0
\(439\) 29.1971 1.39350 0.696752 0.717312i \(-0.254628\pi\)
0.696752 + 0.717312i \(0.254628\pi\)
\(440\) 0 0
\(441\) 4.62322 0.220153
\(442\) 0 0
\(443\) 30.3061 1.43989 0.719944 0.694032i \(-0.244167\pi\)
0.719944 + 0.694032i \(0.244167\pi\)
\(444\) 0 0
\(445\) −4.04762 −0.191876
\(446\) 0 0
\(447\) 27.1952 1.28629
\(448\) 0 0
\(449\) 1.83456 0.0865783 0.0432891 0.999063i \(-0.486216\pi\)
0.0432891 + 0.999063i \(0.486216\pi\)
\(450\) 0 0
\(451\) 2.68337 0.126355
\(452\) 0 0
\(453\) −22.4436 −1.05449
\(454\) 0 0
\(455\) 0.445339 0.0208778
\(456\) 0 0
\(457\) 24.9021 1.16487 0.582436 0.812877i \(-0.302100\pi\)
0.582436 + 0.812877i \(0.302100\pi\)
\(458\) 0 0
\(459\) −31.3856 −1.46495
\(460\) 0 0
\(461\) 8.63326 0.402091 0.201045 0.979582i \(-0.435566\pi\)
0.201045 + 0.979582i \(0.435566\pi\)
\(462\) 0 0
\(463\) −22.2109 −1.03223 −0.516114 0.856520i \(-0.672622\pi\)
−0.516114 + 0.856520i \(0.672622\pi\)
\(464\) 0 0
\(465\) −0.601308 −0.0278850
\(466\) 0 0
\(467\) 12.5898 0.582584 0.291292 0.956634i \(-0.405915\pi\)
0.291292 + 0.956634i \(0.405915\pi\)
\(468\) 0 0
\(469\) −3.72259 −0.171893
\(470\) 0 0
\(471\) 15.9356 0.734272
\(472\) 0 0
\(473\) −3.71063 −0.170615
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) 0 0
\(477\) 0.449195 0.0205672
\(478\) 0 0
\(479\) −20.4909 −0.936252 −0.468126 0.883662i \(-0.655071\pi\)
−0.468126 + 0.883662i \(0.655071\pi\)
\(480\) 0 0
\(481\) −12.6493 −0.576756
\(482\) 0 0
\(483\) 4.40596 0.200478
\(484\) 0 0
\(485\) −5.19700 −0.235984
\(486\) 0 0
\(487\) 40.2509 1.82394 0.911972 0.410252i \(-0.134559\pi\)
0.911972 + 0.410252i \(0.134559\pi\)
\(488\) 0 0
\(489\) −28.1129 −1.27131
\(490\) 0 0
\(491\) 8.17482 0.368925 0.184462 0.982840i \(-0.440946\pi\)
0.184462 + 0.982840i \(0.440946\pi\)
\(492\) 0 0
\(493\) 14.2857 0.643394
\(494\) 0 0
\(495\) −0.589756 −0.0265076
\(496\) 0 0
\(497\) 1.08426 0.0486359
\(498\) 0 0
\(499\) −16.6624 −0.745913 −0.372957 0.927849i \(-0.621656\pi\)
−0.372957 + 0.927849i \(0.621656\pi\)
\(500\) 0 0
\(501\) −13.9659 −0.623950
\(502\) 0 0
\(503\) 16.3217 0.727750 0.363875 0.931448i \(-0.381454\pi\)
0.363875 + 0.931448i \(0.381454\pi\)
\(504\) 0 0
\(505\) −7.21612 −0.321113
\(506\) 0 0
\(507\) −17.0464 −0.757056
\(508\) 0 0
\(509\) −8.53438 −0.378280 −0.189140 0.981950i \(-0.560570\pi\)
−0.189140 + 0.981950i \(0.560570\pi\)
\(510\) 0 0
\(511\) −0.146587 −0.00648461
\(512\) 0 0
\(513\) −5.60228 −0.247347
\(514\) 0 0
\(515\) −0.0761273 −0.00335457
\(516\) 0 0
\(517\) 1.33177 0.0585710
\(518\) 0 0
\(519\) −19.6503 −0.862553
\(520\) 0 0
\(521\) 2.03444 0.0891304 0.0445652 0.999006i \(-0.485810\pi\)
0.0445652 + 0.999006i \(0.485810\pi\)
\(522\) 0 0
\(523\) −39.9353 −1.74625 −0.873124 0.487498i \(-0.837910\pi\)
−0.873124 + 0.487498i \(0.837910\pi\)
\(524\) 0 0
\(525\) −0.502345 −0.0219242
\(526\) 0 0
\(527\) 2.20731 0.0961518
\(528\) 0 0
\(529\) 53.9266 2.34464
\(530\) 0 0
\(531\) −0.104630 −0.00454057
\(532\) 0 0
\(533\) −4.12969 −0.178877
\(534\) 0 0
\(535\) 8.62610 0.372939
\(536\) 0 0
\(537\) −32.1523 −1.38747
\(538\) 0 0
\(539\) 6.05864 0.260964
\(540\) 0 0
\(541\) 7.51737 0.323197 0.161598 0.986857i \(-0.448335\pi\)
0.161598 + 0.986857i \(0.448335\pi\)
\(542\) 0 0
\(543\) 4.25493 0.182597
\(544\) 0 0
\(545\) −10.3652 −0.443998
\(546\) 0 0
\(547\) −10.2289 −0.437357 −0.218679 0.975797i \(-0.570175\pi\)
−0.218679 + 0.975797i \(0.570175\pi\)
\(548\) 0 0
\(549\) 6.67925 0.285063
\(550\) 0 0
\(551\) 2.54997 0.108632
\(552\) 0 0
\(553\) 4.75356 0.202142
\(554\) 0 0
\(555\) 14.2684 0.605661
\(556\) 0 0
\(557\) 16.7178 0.708356 0.354178 0.935178i \(-0.384761\pi\)
0.354178 + 0.935178i \(0.384761\pi\)
\(558\) 0 0
\(559\) 5.71063 0.241534
\(560\) 0 0
\(561\) −7.51651 −0.317347
\(562\) 0 0
\(563\) 30.6926 1.29354 0.646769 0.762686i \(-0.276120\pi\)
0.646769 + 0.762686i \(0.276120\pi\)
\(564\) 0 0
\(565\) −8.60888 −0.362178
\(566\) 0 0
\(567\) 2.15184 0.0903690
\(568\) 0 0
\(569\) −4.30451 −0.180454 −0.0902272 0.995921i \(-0.528759\pi\)
−0.0902272 + 0.995921i \(0.528759\pi\)
\(570\) 0 0
\(571\) −32.2930 −1.35142 −0.675709 0.737168i \(-0.736162\pi\)
−0.675709 + 0.737168i \(0.736162\pi\)
\(572\) 0 0
\(573\) 0.0670140 0.00279955
\(574\) 0 0
\(575\) −8.77078 −0.365767
\(576\) 0 0
\(577\) 9.70442 0.404000 0.202000 0.979385i \(-0.435256\pi\)
0.202000 + 0.979385i \(0.435256\pi\)
\(578\) 0 0
\(579\) −25.0658 −1.04170
\(580\) 0 0
\(581\) 0.0726820 0.00301536
\(582\) 0 0
\(583\) 0.588661 0.0243798
\(584\) 0 0
\(585\) 0.907630 0.0375259
\(586\) 0 0
\(587\) −21.6096 −0.891923 −0.445962 0.895052i \(-0.647138\pi\)
−0.445962 + 0.895052i \(0.647138\pi\)
\(588\) 0 0
\(589\) 0.394001 0.0162345
\(590\) 0 0
\(591\) −33.0011 −1.35748
\(592\) 0 0
\(593\) 29.1971 1.19898 0.599491 0.800381i \(-0.295370\pi\)
0.599491 + 0.800381i \(0.295370\pi\)
\(594\) 0 0
\(595\) 1.84403 0.0755979
\(596\) 0 0
\(597\) −6.71161 −0.274688
\(598\) 0 0
\(599\) −11.0925 −0.453228 −0.226614 0.973985i \(-0.572766\pi\)
−0.226614 + 0.973985i \(0.572766\pi\)
\(600\) 0 0
\(601\) 28.2819 1.15364 0.576822 0.816870i \(-0.304293\pi\)
0.576822 + 0.816870i \(0.304293\pi\)
\(602\) 0 0
\(603\) −7.58688 −0.308962
\(604\) 0 0
\(605\) 10.2271 0.415792
\(606\) 0 0
\(607\) 2.76693 0.112306 0.0561531 0.998422i \(-0.482117\pi\)
0.0561531 + 0.998422i \(0.482117\pi\)
\(608\) 0 0
\(609\) −1.28097 −0.0519074
\(610\) 0 0
\(611\) −2.04958 −0.0829171
\(612\) 0 0
\(613\) −27.6520 −1.11685 −0.558426 0.829554i \(-0.688594\pi\)
−0.558426 + 0.829554i \(0.688594\pi\)
\(614\) 0 0
\(615\) 4.65831 0.187841
\(616\) 0 0
\(617\) 4.35213 0.175210 0.0876051 0.996155i \(-0.472079\pi\)
0.0876051 + 0.996155i \(0.472079\pi\)
\(618\) 0 0
\(619\) 21.4881 0.863681 0.431841 0.901950i \(-0.357864\pi\)
0.431841 + 0.901950i \(0.357864\pi\)
\(620\) 0 0
\(621\) 49.1364 1.97178
\(622\) 0 0
\(623\) −1.33230 −0.0533776
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −1.34169 −0.0535818
\(628\) 0 0
\(629\) −52.3772 −2.08842
\(630\) 0 0
\(631\) 34.6908 1.38102 0.690509 0.723324i \(-0.257387\pi\)
0.690509 + 0.723324i \(0.257387\pi\)
\(632\) 0 0
\(633\) 7.94866 0.315931
\(634\) 0 0
\(635\) 8.47013 0.336127
\(636\) 0 0
\(637\) −9.32420 −0.369438
\(638\) 0 0
\(639\) 2.20980 0.0874183
\(640\) 0 0
\(641\) −18.0058 −0.711185 −0.355592 0.934641i \(-0.615721\pi\)
−0.355592 + 0.934641i \(0.615721\pi\)
\(642\) 0 0
\(643\) −24.7425 −0.975751 −0.487875 0.872913i \(-0.662228\pi\)
−0.487875 + 0.872913i \(0.662228\pi\)
\(644\) 0 0
\(645\) −6.44163 −0.253639
\(646\) 0 0
\(647\) 38.7157 1.52207 0.761036 0.648709i \(-0.224691\pi\)
0.761036 + 0.648709i \(0.224691\pi\)
\(648\) 0 0
\(649\) −0.137116 −0.00538228
\(650\) 0 0
\(651\) −0.197925 −0.00775728
\(652\) 0 0
\(653\) −16.6641 −0.652115 −0.326058 0.945350i \(-0.605720\pi\)
−0.326058 + 0.945350i \(0.605720\pi\)
\(654\) 0 0
\(655\) −12.7310 −0.497441
\(656\) 0 0
\(657\) −0.298753 −0.0116555
\(658\) 0 0
\(659\) −21.9676 −0.855736 −0.427868 0.903841i \(-0.640735\pi\)
−0.427868 + 0.903841i \(0.640735\pi\)
\(660\) 0 0
\(661\) −27.3630 −1.06430 −0.532149 0.846651i \(-0.678615\pi\)
−0.532149 + 0.846651i \(0.678615\pi\)
\(662\) 0 0
\(663\) 11.5678 0.449258
\(664\) 0 0
\(665\) 0.329157 0.0127642
\(666\) 0 0
\(667\) −22.3652 −0.865985
\(668\) 0 0
\(669\) −38.9895 −1.50742
\(670\) 0 0
\(671\) 8.75303 0.337907
\(672\) 0 0
\(673\) 14.5613 0.561295 0.280648 0.959811i \(-0.409451\pi\)
0.280648 + 0.959811i \(0.409451\pi\)
\(674\) 0 0
\(675\) −5.60228 −0.215632
\(676\) 0 0
\(677\) 38.7024 1.48745 0.743726 0.668484i \(-0.233057\pi\)
0.743726 + 0.668484i \(0.233057\pi\)
\(678\) 0 0
\(679\) −1.71063 −0.0656479
\(680\) 0 0
\(681\) 26.1350 1.00150
\(682\) 0 0
\(683\) −13.2688 −0.507717 −0.253859 0.967241i \(-0.581700\pi\)
−0.253859 + 0.967241i \(0.581700\pi\)
\(684\) 0 0
\(685\) 19.1438 0.731449
\(686\) 0 0
\(687\) 12.1916 0.465140
\(688\) 0 0
\(689\) −0.905944 −0.0345137
\(690\) 0 0
\(691\) 33.3585 1.26902 0.634508 0.772916i \(-0.281203\pi\)
0.634508 + 0.772916i \(0.281203\pi\)
\(692\) 0 0
\(693\) −0.194122 −0.00737410
\(694\) 0 0
\(695\) 5.80425 0.220168
\(696\) 0 0
\(697\) −17.0999 −0.647706
\(698\) 0 0
\(699\) −38.9603 −1.47362
\(700\) 0 0
\(701\) −7.13601 −0.269523 −0.134762 0.990878i \(-0.543027\pi\)
−0.134762 + 0.990878i \(0.543027\pi\)
\(702\) 0 0
\(703\) −9.34926 −0.352614
\(704\) 0 0
\(705\) 2.31194 0.0870726
\(706\) 0 0
\(707\) −2.37524 −0.0893300
\(708\) 0 0
\(709\) 38.4986 1.44585 0.722923 0.690928i \(-0.242798\pi\)
0.722923 + 0.690928i \(0.242798\pi\)
\(710\) 0 0
\(711\) 9.68806 0.363331
\(712\) 0 0
\(713\) −3.45570 −0.129417
\(714\) 0 0
\(715\) 1.18943 0.0444822
\(716\) 0 0
\(717\) −23.8460 −0.890545
\(718\) 0 0
\(719\) 33.8784 1.26345 0.631726 0.775192i \(-0.282347\pi\)
0.631726 + 0.775192i \(0.282347\pi\)
\(720\) 0 0
\(721\) −0.0250578 −0.000933203 0
\(722\) 0 0
\(723\) −3.33426 −0.124002
\(724\) 0 0
\(725\) 2.54997 0.0947035
\(726\) 0 0
\(727\) 35.1805 1.30477 0.652386 0.757887i \(-0.273768\pi\)
0.652386 + 0.757887i \(0.273768\pi\)
\(728\) 0 0
\(729\) 30.0355 1.11243
\(730\) 0 0
\(731\) 23.6462 0.874586
\(732\) 0 0
\(733\) 4.33646 0.160171 0.0800854 0.996788i \(-0.474481\pi\)
0.0800854 + 0.996788i \(0.474481\pi\)
\(734\) 0 0
\(735\) 10.5178 0.387953
\(736\) 0 0
\(737\) −9.94246 −0.366235
\(738\) 0 0
\(739\) −6.80481 −0.250319 −0.125160 0.992137i \(-0.539944\pi\)
−0.125160 + 0.992137i \(0.539944\pi\)
\(740\) 0 0
\(741\) 2.06484 0.0758539
\(742\) 0 0
\(743\) 49.0409 1.79914 0.899568 0.436780i \(-0.143881\pi\)
0.899568 + 0.436780i \(0.143881\pi\)
\(744\) 0 0
\(745\) −17.8194 −0.652852
\(746\) 0 0
\(747\) 0.148131 0.00541982
\(748\) 0 0
\(749\) 2.83934 0.103747
\(750\) 0 0
\(751\) −49.7208 −1.81434 −0.907169 0.420765i \(-0.861762\pi\)
−0.907169 + 0.420765i \(0.861762\pi\)
\(752\) 0 0
\(753\) 22.1999 0.809009
\(754\) 0 0
\(755\) 14.7059 0.535204
\(756\) 0 0
\(757\) 29.0950 1.05748 0.528738 0.848785i \(-0.322665\pi\)
0.528738 + 0.848785i \(0.322665\pi\)
\(758\) 0 0
\(759\) 11.7676 0.427138
\(760\) 0 0
\(761\) −11.2444 −0.407608 −0.203804 0.979012i \(-0.565330\pi\)
−0.203804 + 0.979012i \(0.565330\pi\)
\(762\) 0 0
\(763\) −3.41179 −0.123515
\(764\) 0 0
\(765\) 3.75825 0.135880
\(766\) 0 0
\(767\) 0.211021 0.00761951
\(768\) 0 0
\(769\) −15.2518 −0.549993 −0.274997 0.961445i \(-0.588677\pi\)
−0.274997 + 0.961445i \(0.588677\pi\)
\(770\) 0 0
\(771\) 16.2778 0.586231
\(772\) 0 0
\(773\) 53.9777 1.94144 0.970721 0.240211i \(-0.0772165\pi\)
0.970721 + 0.240211i \(0.0772165\pi\)
\(774\) 0 0
\(775\) 0.394001 0.0141529
\(776\) 0 0
\(777\) 4.69656 0.168488
\(778\) 0 0
\(779\) −3.05232 −0.109361
\(780\) 0 0
\(781\) 2.89590 0.103623
\(782\) 0 0
\(783\) −14.2857 −0.510528
\(784\) 0 0
\(785\) −10.4416 −0.372678
\(786\) 0 0
\(787\) −6.10436 −0.217597 −0.108798 0.994064i \(-0.534700\pi\)
−0.108798 + 0.994064i \(0.534700\pi\)
\(788\) 0 0
\(789\) −1.42869 −0.0508626
\(790\) 0 0
\(791\) −2.83367 −0.100754
\(792\) 0 0
\(793\) −13.4708 −0.478363
\(794\) 0 0
\(795\) 1.02191 0.0362434
\(796\) 0 0
\(797\) 28.4179 1.00661 0.503307 0.864107i \(-0.332116\pi\)
0.503307 + 0.864107i \(0.332116\pi\)
\(798\) 0 0
\(799\) −8.48676 −0.300240
\(800\) 0 0
\(801\) −2.71532 −0.0959411
\(802\) 0 0
\(803\) −0.391510 −0.0138161
\(804\) 0 0
\(805\) −2.88696 −0.101752
\(806\) 0 0
\(807\) 29.6286 1.04297
\(808\) 0 0
\(809\) −6.94148 −0.244049 −0.122025 0.992527i \(-0.538939\pi\)
−0.122025 + 0.992527i \(0.538939\pi\)
\(810\) 0 0
\(811\) 38.0172 1.33496 0.667482 0.744626i \(-0.267372\pi\)
0.667482 + 0.744626i \(0.267372\pi\)
\(812\) 0 0
\(813\) −18.8507 −0.661122
\(814\) 0 0
\(815\) 18.4207 0.645249
\(816\) 0 0
\(817\) 4.22081 0.147668
\(818\) 0 0
\(819\) 0.298753 0.0104393
\(820\) 0 0
\(821\) −5.92732 −0.206865 −0.103432 0.994636i \(-0.532983\pi\)
−0.103432 + 0.994636i \(0.532983\pi\)
\(822\) 0 0
\(823\) 7.85255 0.273723 0.136861 0.990590i \(-0.456298\pi\)
0.136861 + 0.990590i \(0.456298\pi\)
\(824\) 0 0
\(825\) −1.34169 −0.0467115
\(826\) 0 0
\(827\) −14.6762 −0.510342 −0.255171 0.966896i \(-0.582132\pi\)
−0.255171 + 0.966896i \(0.582132\pi\)
\(828\) 0 0
\(829\) −20.2031 −0.701681 −0.350841 0.936435i \(-0.614104\pi\)
−0.350841 + 0.936435i \(0.614104\pi\)
\(830\) 0 0
\(831\) 17.6142 0.611031
\(832\) 0 0
\(833\) −38.6090 −1.33772
\(834\) 0 0
\(835\) 9.15101 0.316684
\(836\) 0 0
\(837\) −2.20731 −0.0762957
\(838\) 0 0
\(839\) 8.95018 0.308994 0.154497 0.987993i \(-0.450624\pi\)
0.154497 + 0.987993i \(0.450624\pi\)
\(840\) 0 0
\(841\) −22.4977 −0.775781
\(842\) 0 0
\(843\) −12.8488 −0.442537
\(844\) 0 0
\(845\) 11.1695 0.384242
\(846\) 0 0
\(847\) 3.36633 0.115669
\(848\) 0 0
\(849\) −46.9554 −1.61150
\(850\) 0 0
\(851\) 82.0003 2.81093
\(852\) 0 0
\(853\) 34.7010 1.18814 0.594070 0.804413i \(-0.297520\pi\)
0.594070 + 0.804413i \(0.297520\pi\)
\(854\) 0 0
\(855\) 0.670843 0.0229423
\(856\) 0 0
\(857\) −2.59320 −0.0885821 −0.0442910 0.999019i \(-0.514103\pi\)
−0.0442910 + 0.999019i \(0.514103\pi\)
\(858\) 0 0
\(859\) −5.44685 −0.185844 −0.0929221 0.995673i \(-0.529621\pi\)
−0.0929221 + 0.995673i \(0.529621\pi\)
\(860\) 0 0
\(861\) 1.53332 0.0522553
\(862\) 0 0
\(863\) −21.7523 −0.740457 −0.370229 0.928941i \(-0.620721\pi\)
−0.370229 + 0.928941i \(0.620721\pi\)
\(864\) 0 0
\(865\) 12.8757 0.437786
\(866\) 0 0
\(867\) 21.9547 0.745620
\(868\) 0 0
\(869\) 12.6960 0.430683
\(870\) 0 0
\(871\) 15.3014 0.518467
\(872\) 0 0
\(873\) −3.48637 −0.117996
\(874\) 0 0
\(875\) 0.329157 0.0111275
\(876\) 0 0
\(877\) −33.2943 −1.12427 −0.562134 0.827046i \(-0.690020\pi\)
−0.562134 + 0.827046i \(0.690020\pi\)
\(878\) 0 0
\(879\) −4.11247 −0.138710
\(880\) 0 0
\(881\) 42.2767 1.42434 0.712169 0.702008i \(-0.247713\pi\)
0.712169 + 0.702008i \(0.247713\pi\)
\(882\) 0 0
\(883\) −19.8362 −0.667541 −0.333771 0.942654i \(-0.608321\pi\)
−0.333771 + 0.942654i \(0.608321\pi\)
\(884\) 0 0
\(885\) −0.238033 −0.00800138
\(886\) 0 0
\(887\) −35.2314 −1.18295 −0.591477 0.806322i \(-0.701455\pi\)
−0.591477 + 0.806322i \(0.701455\pi\)
\(888\) 0 0
\(889\) 2.78800 0.0935066
\(890\) 0 0
\(891\) 5.74724 0.192540
\(892\) 0 0
\(893\) −1.51487 −0.0506933
\(894\) 0 0
\(895\) 21.0675 0.704207
\(896\) 0 0
\(897\) −18.1103 −0.604685
\(898\) 0 0
\(899\) 1.00469 0.0335083
\(900\) 0 0
\(901\) −3.75127 −0.124973
\(902\) 0 0
\(903\) −2.12031 −0.0705594
\(904\) 0 0
\(905\) −2.78800 −0.0926763
\(906\) 0 0
\(907\) 9.71416 0.322553 0.161277 0.986909i \(-0.448439\pi\)
0.161277 + 0.986909i \(0.448439\pi\)
\(908\) 0 0
\(909\) −4.84088 −0.160562
\(910\) 0 0
\(911\) −22.1616 −0.734248 −0.367124 0.930172i \(-0.619657\pi\)
−0.367124 + 0.930172i \(0.619657\pi\)
\(912\) 0 0
\(913\) 0.194122 0.00642451
\(914\) 0 0
\(915\) 15.1952 0.502337
\(916\) 0 0
\(917\) −4.19050 −0.138382
\(918\) 0 0
\(919\) −43.0888 −1.42137 −0.710684 0.703511i \(-0.751614\pi\)
−0.710684 + 0.703511i \(0.751614\pi\)
\(920\) 0 0
\(921\) −45.4862 −1.49882
\(922\) 0 0
\(923\) −4.45676 −0.146696
\(924\) 0 0
\(925\) −9.34926 −0.307402
\(926\) 0 0
\(927\) −0.0510695 −0.00167734
\(928\) 0 0
\(929\) 4.86440 0.159596 0.0797979 0.996811i \(-0.474573\pi\)
0.0797979 + 0.996811i \(0.474573\pi\)
\(930\) 0 0
\(931\) −6.89166 −0.225865
\(932\) 0 0
\(933\) −37.4151 −1.22491
\(934\) 0 0
\(935\) 4.92512 0.161069
\(936\) 0 0
\(937\) −51.0062 −1.66630 −0.833150 0.553047i \(-0.813465\pi\)
−0.833150 + 0.553047i \(0.813465\pi\)
\(938\) 0 0
\(939\) −35.2102 −1.14904
\(940\) 0 0
\(941\) −20.3390 −0.663034 −0.331517 0.943449i \(-0.607560\pi\)
−0.331517 + 0.943449i \(0.607560\pi\)
\(942\) 0 0
\(943\) 26.7712 0.871790
\(944\) 0 0
\(945\) −1.84403 −0.0599863
\(946\) 0 0
\(947\) 59.0721 1.91959 0.959793 0.280709i \(-0.0905696\pi\)
0.959793 + 0.280709i \(0.0905696\pi\)
\(948\) 0 0
\(949\) 0.602530 0.0195590
\(950\) 0 0
\(951\) 3.06954 0.0995365
\(952\) 0 0
\(953\) −19.3592 −0.627105 −0.313553 0.949571i \(-0.601519\pi\)
−0.313553 + 0.949571i \(0.601519\pi\)
\(954\) 0 0
\(955\) −0.0439103 −0.00142090
\(956\) 0 0
\(957\) −3.42126 −0.110594
\(958\) 0 0
\(959\) 6.30133 0.203481
\(960\) 0 0
\(961\) −30.8448 −0.994992
\(962\) 0 0
\(963\) 5.78676 0.186476
\(964\) 0 0
\(965\) 16.4241 0.528712
\(966\) 0 0
\(967\) 8.73875 0.281019 0.140510 0.990079i \(-0.455126\pi\)
0.140510 + 0.990079i \(0.455126\pi\)
\(968\) 0 0
\(969\) 8.54997 0.274665
\(970\) 0 0
\(971\) 14.3238 0.459673 0.229836 0.973229i \(-0.426181\pi\)
0.229836 + 0.973229i \(0.426181\pi\)
\(972\) 0 0
\(973\) 1.91051 0.0612481
\(974\) 0 0
\(975\) 2.06484 0.0661279
\(976\) 0 0
\(977\) 22.0252 0.704649 0.352324 0.935878i \(-0.385391\pi\)
0.352324 + 0.935878i \(0.385391\pi\)
\(978\) 0 0
\(979\) −3.55837 −0.113726
\(980\) 0 0
\(981\) −6.95344 −0.222006
\(982\) 0 0
\(983\) 6.31841 0.201526 0.100763 0.994910i \(-0.467872\pi\)
0.100763 + 0.994910i \(0.467872\pi\)
\(984\) 0 0
\(985\) 21.6236 0.688986
\(986\) 0 0
\(987\) 0.760990 0.0242226
\(988\) 0 0
\(989\) −37.0198 −1.17716
\(990\) 0 0
\(991\) 17.3893 0.552390 0.276195 0.961102i \(-0.410926\pi\)
0.276195 + 0.961102i \(0.410926\pi\)
\(992\) 0 0
\(993\) −19.0654 −0.605023
\(994\) 0 0
\(995\) 4.39772 0.139417
\(996\) 0 0
\(997\) 35.1376 1.11282 0.556410 0.830908i \(-0.312178\pi\)
0.556410 + 0.830908i \(0.312178\pi\)
\(998\) 0 0
\(999\) 52.3772 1.65714
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6080.2.a.cf.1.3 4
4.3 odd 2 6080.2.a.cd.1.2 4
8.3 odd 2 3040.2.a.t.1.3 yes 4
8.5 even 2 3040.2.a.r.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3040.2.a.r.1.2 4 8.5 even 2
3040.2.a.t.1.3 yes 4 8.3 odd 2
6080.2.a.cd.1.2 4 4.3 odd 2
6080.2.a.cf.1.3 4 1.1 even 1 trivial