Properties

Label 6080.2.a.bs
Level $6080$
Weight $2$
Character orbit 6080.a
Self dual yes
Analytic conductor $48.549$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6080,2,Mod(1,6080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6080, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6080.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6080 = 2^{6} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6080.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.5490444289\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.568.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 760)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + q^{5} + (\beta_{2} + 2) q^{7} + (\beta_{2} + 2 \beta_1 + 1) q^{9} + (2 \beta_1 - 2) q^{11} + ( - 2 \beta_{2} - \beta_1 - 2) q^{13} - \beta_1 q^{15} + ( - \beta_{2} - 4) q^{17} - q^{19}+ \cdots + (6 \beta_1 + 10) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{3} + 3 q^{5} + 5 q^{7} + 4 q^{9} - 4 q^{11} - 5 q^{13} - q^{15} - 11 q^{17} - 3 q^{19} + 3 q^{21} + 9 q^{23} + 3 q^{25} - 19 q^{27} - 3 q^{29} + 14 q^{31} - 24 q^{33} + 5 q^{35} - 14 q^{37} + 5 q^{39}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 6x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.12489
−0.363328
−1.76156
0 −3.12489 0 1.00000 0 1.51514 0 6.76491 0
1.2 0 0.363328 0 1.00000 0 −1.14134 0 −2.86799 0
1.3 0 1.76156 0 1.00000 0 4.62620 0 0.103084 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6080.2.a.bs 3
4.b odd 2 1 6080.2.a.bw 3
8.b even 2 1 1520.2.a.r 3
8.d odd 2 1 760.2.a.h 3
24.f even 2 1 6840.2.a.bj 3
40.e odd 2 1 3800.2.a.y 3
40.f even 2 1 7600.2.a.bo 3
40.k even 4 2 3800.2.d.k 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
760.2.a.h 3 8.d odd 2 1
1520.2.a.r 3 8.b even 2 1
3800.2.a.y 3 40.e odd 2 1
3800.2.d.k 6 40.k even 4 2
6080.2.a.bs 3 1.a even 1 1 trivial
6080.2.a.bw 3 4.b odd 2 1
6840.2.a.bj 3 24.f even 2 1
7600.2.a.bo 3 40.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6080))\):

\( T_{3}^{3} + T_{3}^{2} - 6T_{3} + 2 \) Copy content Toggle raw display
\( T_{7}^{3} - 5T_{7}^{2} + 8 \) Copy content Toggle raw display
\( T_{11}^{3} + 4T_{11}^{2} - 20T_{11} - 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + T^{2} - 6T + 2 \) Copy content Toggle raw display
$5$ \( (T - 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 5T^{2} + 8 \) Copy content Toggle raw display
$11$ \( T^{3} + 4 T^{2} + \cdots - 64 \) Copy content Toggle raw display
$13$ \( T^{3} + 5 T^{2} + \cdots - 106 \) Copy content Toggle raw display
$17$ \( T^{3} + 11 T^{2} + \cdots + 20 \) Copy content Toggle raw display
$19$ \( (T + 1)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} - 9 T^{2} + \cdots + 160 \) Copy content Toggle raw display
$29$ \( T^{3} + 3 T^{2} + \cdots - 108 \) Copy content Toggle raw display
$31$ \( T^{3} - 14 T^{2} + \cdots + 64 \) Copy content Toggle raw display
$37$ \( T^{3} + 14 T^{2} + \cdots - 20 \) Copy content Toggle raw display
$41$ \( T^{3} + 10 T^{2} + \cdots - 472 \) Copy content Toggle raw display
$43$ \( T^{3} + 10 T^{2} + \cdots - 848 \) Copy content Toggle raw display
$47$ \( T^{3} - 40T - 64 \) Copy content Toggle raw display
$53$ \( T^{3} - 7 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$59$ \( T^{3} + 7 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$61$ \( T^{3} + 20 T^{2} + \cdots - 640 \) Copy content Toggle raw display
$67$ \( T^{3} + T^{2} + \cdots + 530 \) Copy content Toggle raw display
$71$ \( T^{3} - 8 T^{2} + \cdots + 512 \) Copy content Toggle raw display
$73$ \( T^{3} + 13 T^{2} + \cdots - 500 \) Copy content Toggle raw display
$79$ \( T^{3} + 14 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$83$ \( T^{3} + 26 T^{2} + \cdots + 352 \) Copy content Toggle raw display
$89$ \( T^{3} - 18 T^{2} + \cdots - 40 \) Copy content Toggle raw display
$97$ \( T^{3} + 6 T^{2} + \cdots - 2308 \) Copy content Toggle raw display
show more
show less