Properties

Label 6080.2.a.bn
Level $6080$
Weight $2$
Character orbit 6080.a
Self dual yes
Analytic conductor $48.549$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6080 = 2^{6} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6080.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(48.5490444289\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3040)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 1) q^{3} + q^{5} + ( - \beta_{2} + \beta_1 + 1) q^{7} + (\beta_{2} + 3 \beta_1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_1 - 1) q^{3} + q^{5} + ( - \beta_{2} + \beta_1 + 1) q^{7} + (\beta_{2} + 3 \beta_1) q^{9} + (\beta_{2} - \beta_1 + 1) q^{11} + (3 \beta_{2} + 2 \beta_1) q^{13} + ( - \beta_1 - 1) q^{15} + ( - 2 \beta_{2} + 2 \beta_1) q^{17} - q^{19} + ( - 2 \beta_1 - 4) q^{21} + ( - \beta_{2} - 3 \beta_1 + 1) q^{23} + q^{25} + ( - 4 \beta_{2} - 4 \beta_1 - 2) q^{27} + ( - 2 \beta_1 - 4) q^{29} + (2 \beta_{2} + 2 \beta_1 - 4) q^{31} + 2 q^{33} + ( - \beta_{2} + \beta_1 + 1) q^{35} + ( - 3 \beta_{2} - 4 \beta_1 + 4) q^{37} + ( - 5 \beta_{2} - 7 \beta_1 - 1) q^{39} + ( - 3 \beta_{2} - 3 \beta_1 - 3) q^{43} + (\beta_{2} + 3 \beta_1) q^{45} + (3 \beta_{2} + \beta_1 + 1) q^{47} + ( - 2 \beta_{2} + 1) q^{49} + ( - 2 \beta_1 - 6) q^{51} + ( - 5 \beta_{2} - 4 \beta_1) q^{53} + (\beta_{2} - \beta_1 + 1) q^{55} + (\beta_1 + 1) q^{57} + (2 \beta_{2} + 4 \beta_1 - 10) q^{59} + (\beta_{2} - \beta_1 - 3) q^{61} + (5 \beta_{2} + 5 \beta_1 + 5) q^{63} + (3 \beta_{2} + 2 \beta_1) q^{65} + (3 \beta_1 - 7) q^{67} + (4 \beta_{2} + 6 \beta_1 + 4) q^{69} + ( - 2 \beta_{2} - 2 \beta_1 - 4) q^{71} + (4 \beta_{2} - 2 \beta_1) q^{73} + ( - \beta_1 - 1) q^{75} + (2 \beta_1 - 6) q^{77} + ( - 6 \beta_{2} - 4 \beta_1 - 2) q^{79} + (5 \beta_{2} + 5 \beta_1 + 6) q^{81} + (5 \beta_{2} + \beta_1 - 3) q^{83} + ( - 2 \beta_{2} + 2 \beta_1) q^{85} + (2 \beta_{2} + 8 \beta_1 + 8) q^{87} + (2 \beta_1 + 8) q^{89} + (8 \beta_{2} + 8 \beta_1 - 6) q^{91} + ( - 4 \beta_{2} - 2 \beta_1 + 2) q^{93} - q^{95} + ( - 5 \beta_{2} - 6 \beta_1 - 2) q^{97} + ( - 3 \beta_{2} + \beta_1 - 5) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 4 q^{3} + 3 q^{5} + 4 q^{7} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 4 q^{3} + 3 q^{5} + 4 q^{7} + 3 q^{9} + 2 q^{11} + 2 q^{13} - 4 q^{15} + 2 q^{17} - 3 q^{19} - 14 q^{21} + 3 q^{25} - 10 q^{27} - 14 q^{29} - 10 q^{31} + 6 q^{33} + 4 q^{35} + 8 q^{37} - 10 q^{39} - 12 q^{43} + 3 q^{45} + 4 q^{47} + 3 q^{49} - 20 q^{51} - 4 q^{53} + 2 q^{55} + 4 q^{57} - 26 q^{59} - 10 q^{61} + 20 q^{63} + 2 q^{65} - 18 q^{67} + 18 q^{69} - 14 q^{71} - 2 q^{73} - 4 q^{75} - 16 q^{77} - 10 q^{79} + 23 q^{81} - 8 q^{83} + 2 q^{85} + 32 q^{87} + 26 q^{89} - 10 q^{91} + 4 q^{93} - 3 q^{95} - 12 q^{97} - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.17009
0.311108
−1.48119
0 −3.17009 0 1.00000 0 2.63090 0 7.04945 0
1.2 0 −1.31111 0 1.00000 0 3.52543 0 −1.28100 0
1.3 0 0.481194 0 1.00000 0 −2.15633 0 −2.76845 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(-1\)
\(19\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6080.2.a.bn 3
4.b odd 2 1 6080.2.a.cb 3
8.b even 2 1 3040.2.a.o yes 3
8.d odd 2 1 3040.2.a.i 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3040.2.a.i 3 8.d odd 2 1
3040.2.a.o yes 3 8.b even 2 1
6080.2.a.bn 3 1.a even 1 1 trivial
6080.2.a.cb 3 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6080))\):

\( T_{3}^{3} + 4T_{3}^{2} + 2T_{3} - 2 \) Copy content Toggle raw display
\( T_{7}^{3} - 4T_{7}^{2} - 4T_{7} + 20 \) Copy content Toggle raw display
\( T_{11}^{3} - 2T_{11}^{2} - 8T_{11} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 4 T^{2} + 2 T - 2 \) Copy content Toggle raw display
$5$ \( (T - 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 4 T^{2} - 4 T + 20 \) Copy content Toggle raw display
$11$ \( T^{3} - 2 T^{2} - 8 T - 4 \) Copy content Toggle raw display
$13$ \( T^{3} - 2 T^{2} - 36 T + 74 \) Copy content Toggle raw display
$17$ \( T^{3} - 2 T^{2} - 36 T + 104 \) Copy content Toggle raw display
$19$ \( (T + 1)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} - 28T + 52 \) Copy content Toggle raw display
$29$ \( T^{3} + 14 T^{2} + 52 T + 40 \) Copy content Toggle raw display
$31$ \( T^{3} + 10 T^{2} + 12 T - 40 \) Copy content Toggle raw display
$37$ \( T^{3} - 8 T^{2} - 44 T + 290 \) Copy content Toggle raw display
$41$ \( T^{3} \) Copy content Toggle raw display
$43$ \( T^{3} + 12T^{2} - 108 \) Copy content Toggle raw display
$47$ \( T^{3} - 4 T^{2} - 28 T + 116 \) Copy content Toggle raw display
$53$ \( T^{3} + 4 T^{2} - 108 T - 274 \) Copy content Toggle raw display
$59$ \( T^{3} + 26 T^{2} + 172 T + 40 \) Copy content Toggle raw display
$61$ \( T^{3} + 10 T^{2} + 24 T - 4 \) Copy content Toggle raw display
$67$ \( T^{3} + 18 T^{2} + 78 T + 34 \) Copy content Toggle raw display
$71$ \( T^{3} + 14 T^{2} + 44 T + 8 \) Copy content Toggle raw display
$73$ \( T^{3} + 2 T^{2} - 92 T - 200 \) Copy content Toggle raw display
$79$ \( T^{3} + 10 T^{2} - 116 T - 856 \) Copy content Toggle raw display
$83$ \( T^{3} + 8 T^{2} - 72 T + 100 \) Copy content Toggle raw display
$89$ \( T^{3} - 26 T^{2} + 212 T - 536 \) Copy content Toggle raw display
$97$ \( T^{3} + 12 T^{2} - 112 T - 190 \) Copy content Toggle raw display
show more
show less