Properties

Label 6080.2.a.bm.1.2
Level $6080$
Weight $2$
Character 6080.1
Self dual yes
Analytic conductor $48.549$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6080,2,Mod(1,6080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6080, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6080.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6080 = 2^{6} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6080.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.5490444289\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3040)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.311108\) of defining polynomial
Character \(\chi\) \(=\) 6080.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.31111 q^{3} -1.00000 q^{5} +1.52543 q^{7} -1.28100 q^{9} -1.09679 q^{11} -0.836535 q^{13} +1.31111 q^{15} +2.00000 q^{17} +1.00000 q^{19} -2.00000 q^{21} -1.52543 q^{23} +1.00000 q^{25} +5.61285 q^{27} -4.23506 q^{29} +5.18421 q^{31} +1.43801 q^{33} -1.52543 q^{35} -2.83654 q^{37} +1.09679 q^{39} +10.2351 q^{41} -11.4652 q^{43} +1.28100 q^{45} +1.52543 q^{47} -4.67307 q^{49} -2.62222 q^{51} +6.83654 q^{53} +1.09679 q^{55} -1.31111 q^{57} -7.80642 q^{59} +12.1891 q^{61} -1.95407 q^{63} +0.836535 q^{65} -6.92396 q^{67} +2.00000 q^{69} +5.18421 q^{71} +12.2351 q^{73} -1.31111 q^{75} -1.67307 q^{77} -8.66370 q^{79} -3.51606 q^{81} +7.19850 q^{83} -2.00000 q^{85} +5.55262 q^{87} -8.23506 q^{89} -1.27607 q^{91} -6.79706 q^{93} -1.00000 q^{95} -3.39853 q^{97} +1.40498 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 4 q^{3} - 3 q^{5} - 2 q^{7} + 3 q^{9} - 10 q^{11} + 4 q^{13} + 4 q^{15} + 6 q^{17} + 3 q^{19} - 6 q^{21} + 2 q^{23} + 3 q^{25} - 10 q^{27} + 14 q^{29} + 2 q^{31} + 18 q^{33} + 2 q^{35} - 2 q^{37}+ \cdots - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.31111 −0.756968 −0.378484 0.925608i \(-0.623555\pi\)
−0.378484 + 0.925608i \(0.623555\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 1.52543 0.576557 0.288279 0.957547i \(-0.406917\pi\)
0.288279 + 0.957547i \(0.406917\pi\)
\(8\) 0 0
\(9\) −1.28100 −0.426999
\(10\) 0 0
\(11\) −1.09679 −0.330694 −0.165347 0.986235i \(-0.552874\pi\)
−0.165347 + 0.986235i \(0.552874\pi\)
\(12\) 0 0
\(13\) −0.836535 −0.232013 −0.116007 0.993248i \(-0.537009\pi\)
−0.116007 + 0.993248i \(0.537009\pi\)
\(14\) 0 0
\(15\) 1.31111 0.338527
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) 0 0
\(23\) −1.52543 −0.318074 −0.159037 0.987273i \(-0.550839\pi\)
−0.159037 + 0.987273i \(0.550839\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 5.61285 1.08019
\(28\) 0 0
\(29\) −4.23506 −0.786432 −0.393216 0.919446i \(-0.628637\pi\)
−0.393216 + 0.919446i \(0.628637\pi\)
\(30\) 0 0
\(31\) 5.18421 0.931111 0.465556 0.885019i \(-0.345855\pi\)
0.465556 + 0.885019i \(0.345855\pi\)
\(32\) 0 0
\(33\) 1.43801 0.250325
\(34\) 0 0
\(35\) −1.52543 −0.257844
\(36\) 0 0
\(37\) −2.83654 −0.466324 −0.233162 0.972438i \(-0.574907\pi\)
−0.233162 + 0.972438i \(0.574907\pi\)
\(38\) 0 0
\(39\) 1.09679 0.175627
\(40\) 0 0
\(41\) 10.2351 1.59845 0.799224 0.601033i \(-0.205244\pi\)
0.799224 + 0.601033i \(0.205244\pi\)
\(42\) 0 0
\(43\) −11.4652 −1.74843 −0.874214 0.485541i \(-0.838622\pi\)
−0.874214 + 0.485541i \(0.838622\pi\)
\(44\) 0 0
\(45\) 1.28100 0.190960
\(46\) 0 0
\(47\) 1.52543 0.222506 0.111253 0.993792i \(-0.464514\pi\)
0.111253 + 0.993792i \(0.464514\pi\)
\(48\) 0 0
\(49\) −4.67307 −0.667582
\(50\) 0 0
\(51\) −2.62222 −0.367184
\(52\) 0 0
\(53\) 6.83654 0.939070 0.469535 0.882914i \(-0.344422\pi\)
0.469535 + 0.882914i \(0.344422\pi\)
\(54\) 0 0
\(55\) 1.09679 0.147891
\(56\) 0 0
\(57\) −1.31111 −0.173660
\(58\) 0 0
\(59\) −7.80642 −1.01631 −0.508155 0.861266i \(-0.669672\pi\)
−0.508155 + 0.861266i \(0.669672\pi\)
\(60\) 0 0
\(61\) 12.1891 1.56066 0.780329 0.625369i \(-0.215052\pi\)
0.780329 + 0.625369i \(0.215052\pi\)
\(62\) 0 0
\(63\) −1.95407 −0.246189
\(64\) 0 0
\(65\) 0.836535 0.103759
\(66\) 0 0
\(67\) −6.92396 −0.845896 −0.422948 0.906154i \(-0.639005\pi\)
−0.422948 + 0.906154i \(0.639005\pi\)
\(68\) 0 0
\(69\) 2.00000 0.240772
\(70\) 0 0
\(71\) 5.18421 0.615252 0.307626 0.951507i \(-0.400465\pi\)
0.307626 + 0.951507i \(0.400465\pi\)
\(72\) 0 0
\(73\) 12.2351 1.43201 0.716003 0.698097i \(-0.245970\pi\)
0.716003 + 0.698097i \(0.245970\pi\)
\(74\) 0 0
\(75\) −1.31111 −0.151394
\(76\) 0 0
\(77\) −1.67307 −0.190664
\(78\) 0 0
\(79\) −8.66370 −0.974743 −0.487371 0.873195i \(-0.662044\pi\)
−0.487371 + 0.873195i \(0.662044\pi\)
\(80\) 0 0
\(81\) −3.51606 −0.390673
\(82\) 0 0
\(83\) 7.19850 0.790138 0.395069 0.918651i \(-0.370721\pi\)
0.395069 + 0.918651i \(0.370721\pi\)
\(84\) 0 0
\(85\) −2.00000 −0.216930
\(86\) 0 0
\(87\) 5.55262 0.595304
\(88\) 0 0
\(89\) −8.23506 −0.872915 −0.436457 0.899725i \(-0.643767\pi\)
−0.436457 + 0.899725i \(0.643767\pi\)
\(90\) 0 0
\(91\) −1.27607 −0.133769
\(92\) 0 0
\(93\) −6.79706 −0.704822
\(94\) 0 0
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) −3.39853 −0.345068 −0.172534 0.985004i \(-0.555196\pi\)
−0.172534 + 0.985004i \(0.555196\pi\)
\(98\) 0 0
\(99\) 1.40498 0.141206
\(100\) 0 0
\(101\) 1.39207 0.138517 0.0692583 0.997599i \(-0.477937\pi\)
0.0692583 + 0.997599i \(0.477937\pi\)
\(102\) 0 0
\(103\) 13.0257 1.28346 0.641728 0.766932i \(-0.278218\pi\)
0.641728 + 0.766932i \(0.278218\pi\)
\(104\) 0 0
\(105\) 2.00000 0.195180
\(106\) 0 0
\(107\) −14.7906 −1.42986 −0.714931 0.699195i \(-0.753542\pi\)
−0.714931 + 0.699195i \(0.753542\pi\)
\(108\) 0 0
\(109\) −4.56199 −0.436960 −0.218480 0.975841i \(-0.570110\pi\)
−0.218480 + 0.975841i \(0.570110\pi\)
\(110\) 0 0
\(111\) 3.71900 0.352992
\(112\) 0 0
\(113\) 3.07160 0.288952 0.144476 0.989508i \(-0.453850\pi\)
0.144476 + 0.989508i \(0.453850\pi\)
\(114\) 0 0
\(115\) 1.52543 0.142247
\(116\) 0 0
\(117\) 1.07160 0.0990693
\(118\) 0 0
\(119\) 3.05086 0.279671
\(120\) 0 0
\(121\) −9.79706 −0.890641
\(122\) 0 0
\(123\) −13.4193 −1.20997
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −12.1082 −1.07443 −0.537213 0.843447i \(-0.680523\pi\)
−0.537213 + 0.843447i \(0.680523\pi\)
\(128\) 0 0
\(129\) 15.0321 1.32350
\(130\) 0 0
\(131\) −13.9684 −1.22042 −0.610211 0.792239i \(-0.708915\pi\)
−0.610211 + 0.792239i \(0.708915\pi\)
\(132\) 0 0
\(133\) 1.52543 0.132271
\(134\) 0 0
\(135\) −5.61285 −0.483077
\(136\) 0 0
\(137\) 1.43801 0.122857 0.0614286 0.998111i \(-0.480434\pi\)
0.0614286 + 0.998111i \(0.480434\pi\)
\(138\) 0 0
\(139\) −3.29036 −0.279085 −0.139543 0.990216i \(-0.544563\pi\)
−0.139543 + 0.990216i \(0.544563\pi\)
\(140\) 0 0
\(141\) −2.00000 −0.168430
\(142\) 0 0
\(143\) 0.917502 0.0767254
\(144\) 0 0
\(145\) 4.23506 0.351703
\(146\) 0 0
\(147\) 6.12690 0.505338
\(148\) 0 0
\(149\) 20.1891 1.65396 0.826979 0.562233i \(-0.190058\pi\)
0.826979 + 0.562233i \(0.190058\pi\)
\(150\) 0 0
\(151\) −0.428639 −0.0348822 −0.0174411 0.999848i \(-0.505552\pi\)
−0.0174411 + 0.999848i \(0.505552\pi\)
\(152\) 0 0
\(153\) −2.56199 −0.207125
\(154\) 0 0
\(155\) −5.18421 −0.416406
\(156\) 0 0
\(157\) −14.5620 −1.16217 −0.581087 0.813842i \(-0.697372\pi\)
−0.581087 + 0.813842i \(0.697372\pi\)
\(158\) 0 0
\(159\) −8.96343 −0.710847
\(160\) 0 0
\(161\) −2.32693 −0.183388
\(162\) 0 0
\(163\) 1.95407 0.153054 0.0765272 0.997067i \(-0.475617\pi\)
0.0765272 + 0.997067i \(0.475617\pi\)
\(164\) 0 0
\(165\) −1.43801 −0.111949
\(166\) 0 0
\(167\) −15.5877 −1.20621 −0.603105 0.797662i \(-0.706070\pi\)
−0.603105 + 0.797662i \(0.706070\pi\)
\(168\) 0 0
\(169\) −12.3002 −0.946170
\(170\) 0 0
\(171\) −1.28100 −0.0979602
\(172\) 0 0
\(173\) 17.3985 1.32279 0.661393 0.750040i \(-0.269966\pi\)
0.661393 + 0.750040i \(0.269966\pi\)
\(174\) 0 0
\(175\) 1.52543 0.115311
\(176\) 0 0
\(177\) 10.2351 0.769314
\(178\) 0 0
\(179\) −7.80642 −0.583480 −0.291740 0.956498i \(-0.594234\pi\)
−0.291740 + 0.956498i \(0.594234\pi\)
\(180\) 0 0
\(181\) 17.3461 1.28933 0.644664 0.764466i \(-0.276997\pi\)
0.644664 + 0.764466i \(0.276997\pi\)
\(182\) 0 0
\(183\) −15.9813 −1.18137
\(184\) 0 0
\(185\) 2.83654 0.208546
\(186\) 0 0
\(187\) −2.19358 −0.160410
\(188\) 0 0
\(189\) 8.56199 0.622793
\(190\) 0 0
\(191\) 18.6637 1.35046 0.675229 0.737608i \(-0.264045\pi\)
0.675229 + 0.737608i \(0.264045\pi\)
\(192\) 0 0
\(193\) −18.7447 −1.34927 −0.674635 0.738151i \(-0.735699\pi\)
−0.674635 + 0.738151i \(0.735699\pi\)
\(194\) 0 0
\(195\) −1.09679 −0.0785426
\(196\) 0 0
\(197\) −4.23506 −0.301736 −0.150868 0.988554i \(-0.548207\pi\)
−0.150868 + 0.988554i \(0.548207\pi\)
\(198\) 0 0
\(199\) 0.857279 0.0607709 0.0303854 0.999538i \(-0.490327\pi\)
0.0303854 + 0.999538i \(0.490327\pi\)
\(200\) 0 0
\(201\) 9.07805 0.640316
\(202\) 0 0
\(203\) −6.46028 −0.453423
\(204\) 0 0
\(205\) −10.2351 −0.714848
\(206\) 0 0
\(207\) 1.95407 0.135817
\(208\) 0 0
\(209\) −1.09679 −0.0758664
\(210\) 0 0
\(211\) −19.5714 −1.34735 −0.673674 0.739029i \(-0.735285\pi\)
−0.673674 + 0.739029i \(0.735285\pi\)
\(212\) 0 0
\(213\) −6.79706 −0.465727
\(214\) 0 0
\(215\) 11.4652 0.781920
\(216\) 0 0
\(217\) 7.90813 0.536839
\(218\) 0 0
\(219\) −16.0415 −1.08398
\(220\) 0 0
\(221\) −1.67307 −0.112543
\(222\) 0 0
\(223\) −10.8222 −0.724711 −0.362356 0.932040i \(-0.618027\pi\)
−0.362356 + 0.932040i \(0.618027\pi\)
\(224\) 0 0
\(225\) −1.28100 −0.0853998
\(226\) 0 0
\(227\) 16.0765 1.06704 0.533518 0.845789i \(-0.320870\pi\)
0.533518 + 0.845789i \(0.320870\pi\)
\(228\) 0 0
\(229\) 6.60793 0.436664 0.218332 0.975875i \(-0.429938\pi\)
0.218332 + 0.975875i \(0.429938\pi\)
\(230\) 0 0
\(231\) 2.19358 0.144327
\(232\) 0 0
\(233\) 8.23506 0.539497 0.269748 0.962931i \(-0.413059\pi\)
0.269748 + 0.962931i \(0.413059\pi\)
\(234\) 0 0
\(235\) −1.52543 −0.0995079
\(236\) 0 0
\(237\) 11.3590 0.737849
\(238\) 0 0
\(239\) −16.0415 −1.03764 −0.518819 0.854884i \(-0.673628\pi\)
−0.518819 + 0.854884i \(0.673628\pi\)
\(240\) 0 0
\(241\) 6.79706 0.437837 0.218918 0.975743i \(-0.429747\pi\)
0.218918 + 0.975743i \(0.429747\pi\)
\(242\) 0 0
\(243\) −12.2286 −0.784466
\(244\) 0 0
\(245\) 4.67307 0.298552
\(246\) 0 0
\(247\) −0.836535 −0.0532275
\(248\) 0 0
\(249\) −9.43801 −0.598109
\(250\) 0 0
\(251\) −28.1748 −1.77838 −0.889190 0.457538i \(-0.848731\pi\)
−0.889190 + 0.457538i \(0.848731\pi\)
\(252\) 0 0
\(253\) 1.67307 0.105185
\(254\) 0 0
\(255\) 2.62222 0.164210
\(256\) 0 0
\(257\) 3.96052 0.247050 0.123525 0.992341i \(-0.460580\pi\)
0.123525 + 0.992341i \(0.460580\pi\)
\(258\) 0 0
\(259\) −4.32693 −0.268862
\(260\) 0 0
\(261\) 5.42510 0.335805
\(262\) 0 0
\(263\) −4.57628 −0.282186 −0.141093 0.989996i \(-0.545062\pi\)
−0.141093 + 0.989996i \(0.545062\pi\)
\(264\) 0 0
\(265\) −6.83654 −0.419965
\(266\) 0 0
\(267\) 10.7971 0.660769
\(268\) 0 0
\(269\) −12.0000 −0.731653 −0.365826 0.930683i \(-0.619214\pi\)
−0.365826 + 0.930683i \(0.619214\pi\)
\(270\) 0 0
\(271\) −19.7605 −1.20036 −0.600182 0.799863i \(-0.704905\pi\)
−0.600182 + 0.799863i \(0.704905\pi\)
\(272\) 0 0
\(273\) 1.67307 0.101259
\(274\) 0 0
\(275\) −1.09679 −0.0661388
\(276\) 0 0
\(277\) −8.78415 −0.527788 −0.263894 0.964552i \(-0.585007\pi\)
−0.263894 + 0.964552i \(0.585007\pi\)
\(278\) 0 0
\(279\) −6.64095 −0.397583
\(280\) 0 0
\(281\) −6.88892 −0.410959 −0.205479 0.978661i \(-0.565875\pi\)
−0.205479 + 0.978661i \(0.565875\pi\)
\(282\) 0 0
\(283\) −6.34122 −0.376946 −0.188473 0.982078i \(-0.560354\pi\)
−0.188473 + 0.982078i \(0.560354\pi\)
\(284\) 0 0
\(285\) 1.31111 0.0776633
\(286\) 0 0
\(287\) 15.6128 0.921597
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 4.45584 0.261206
\(292\) 0 0
\(293\) 10.2745 0.600245 0.300123 0.953901i \(-0.402972\pi\)
0.300123 + 0.953901i \(0.402972\pi\)
\(294\) 0 0
\(295\) 7.80642 0.454508
\(296\) 0 0
\(297\) −6.15610 −0.357213
\(298\) 0 0
\(299\) 1.27607 0.0737973
\(300\) 0 0
\(301\) −17.4893 −1.00807
\(302\) 0 0
\(303\) −1.82516 −0.104853
\(304\) 0 0
\(305\) −12.1891 −0.697948
\(306\) 0 0
\(307\) −5.15902 −0.294441 −0.147220 0.989104i \(-0.547033\pi\)
−0.147220 + 0.989104i \(0.547033\pi\)
\(308\) 0 0
\(309\) −17.0781 −0.971536
\(310\) 0 0
\(311\) 10.6079 0.601520 0.300760 0.953700i \(-0.402760\pi\)
0.300760 + 0.953700i \(0.402760\pi\)
\(312\) 0 0
\(313\) −4.23506 −0.239380 −0.119690 0.992811i \(-0.538190\pi\)
−0.119690 + 0.992811i \(0.538190\pi\)
\(314\) 0 0
\(315\) 1.95407 0.110099
\(316\) 0 0
\(317\) −0.274543 −0.0154199 −0.00770993 0.999970i \(-0.502454\pi\)
−0.00770993 + 0.999970i \(0.502454\pi\)
\(318\) 0 0
\(319\) 4.64497 0.260068
\(320\) 0 0
\(321\) 19.3921 1.08236
\(322\) 0 0
\(323\) 2.00000 0.111283
\(324\) 0 0
\(325\) −0.836535 −0.0464026
\(326\) 0 0
\(327\) 5.98126 0.330765
\(328\) 0 0
\(329\) 2.32693 0.128288
\(330\) 0 0
\(331\) −22.6222 −1.24343 −0.621715 0.783244i \(-0.713564\pi\)
−0.621715 + 0.783244i \(0.713564\pi\)
\(332\) 0 0
\(333\) 3.63359 0.199120
\(334\) 0 0
\(335\) 6.92396 0.378296
\(336\) 0 0
\(337\) −16.1827 −0.881527 −0.440763 0.897623i \(-0.645292\pi\)
−0.440763 + 0.897623i \(0.645292\pi\)
\(338\) 0 0
\(339\) −4.02720 −0.218727
\(340\) 0 0
\(341\) −5.68598 −0.307913
\(342\) 0 0
\(343\) −17.8064 −0.961457
\(344\) 0 0
\(345\) −2.00000 −0.107676
\(346\) 0 0
\(347\) 17.1383 0.920031 0.460015 0.887911i \(-0.347844\pi\)
0.460015 + 0.887911i \(0.347844\pi\)
\(348\) 0 0
\(349\) −0.326929 −0.0175001 −0.00875006 0.999962i \(-0.502785\pi\)
−0.00875006 + 0.999962i \(0.502785\pi\)
\(350\) 0 0
\(351\) −4.69535 −0.250619
\(352\) 0 0
\(353\) −1.34614 −0.0716479 −0.0358239 0.999358i \(-0.511406\pi\)
−0.0358239 + 0.999358i \(0.511406\pi\)
\(354\) 0 0
\(355\) −5.18421 −0.275149
\(356\) 0 0
\(357\) −4.00000 −0.211702
\(358\) 0 0
\(359\) −0.119063 −0.00628390 −0.00314195 0.999995i \(-0.501000\pi\)
−0.00314195 + 0.999995i \(0.501000\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 12.8450 0.674187
\(364\) 0 0
\(365\) −12.2351 −0.640412
\(366\) 0 0
\(367\) −6.34122 −0.331009 −0.165504 0.986209i \(-0.552925\pi\)
−0.165504 + 0.986209i \(0.552925\pi\)
\(368\) 0 0
\(369\) −13.1111 −0.682535
\(370\) 0 0
\(371\) 10.4286 0.541428
\(372\) 0 0
\(373\) 31.2148 1.61624 0.808120 0.589017i \(-0.200485\pi\)
0.808120 + 0.589017i \(0.200485\pi\)
\(374\) 0 0
\(375\) 1.31111 0.0677053
\(376\) 0 0
\(377\) 3.54278 0.182462
\(378\) 0 0
\(379\) −25.9813 −1.33457 −0.667284 0.744803i \(-0.732543\pi\)
−0.667284 + 0.744803i \(0.732543\pi\)
\(380\) 0 0
\(381\) 15.8751 0.813306
\(382\) 0 0
\(383\) 2.58718 0.132199 0.0660994 0.997813i \(-0.478945\pi\)
0.0660994 + 0.997813i \(0.478945\pi\)
\(384\) 0 0
\(385\) 1.67307 0.0852676
\(386\) 0 0
\(387\) 14.6869 0.746576
\(388\) 0 0
\(389\) −23.0192 −1.16712 −0.583560 0.812070i \(-0.698341\pi\)
−0.583560 + 0.812070i \(0.698341\pi\)
\(390\) 0 0
\(391\) −3.05086 −0.154288
\(392\) 0 0
\(393\) 18.3140 0.923820
\(394\) 0 0
\(395\) 8.66370 0.435918
\(396\) 0 0
\(397\) −11.6731 −0.585855 −0.292927 0.956135i \(-0.594629\pi\)
−0.292927 + 0.956135i \(0.594629\pi\)
\(398\) 0 0
\(399\) −2.00000 −0.100125
\(400\) 0 0
\(401\) −21.9081 −1.09404 −0.547020 0.837120i \(-0.684238\pi\)
−0.547020 + 0.837120i \(0.684238\pi\)
\(402\) 0 0
\(403\) −4.33677 −0.216030
\(404\) 0 0
\(405\) 3.51606 0.174714
\(406\) 0 0
\(407\) 3.11108 0.154210
\(408\) 0 0
\(409\) −2.87601 −0.142210 −0.0711049 0.997469i \(-0.522653\pi\)
−0.0711049 + 0.997469i \(0.522653\pi\)
\(410\) 0 0
\(411\) −1.88538 −0.0929991
\(412\) 0 0
\(413\) −11.9081 −0.585961
\(414\) 0 0
\(415\) −7.19850 −0.353360
\(416\) 0 0
\(417\) 4.31402 0.211259
\(418\) 0 0
\(419\) −9.08250 −0.443709 −0.221855 0.975080i \(-0.571211\pi\)
−0.221855 + 0.975080i \(0.571211\pi\)
\(420\) 0 0
\(421\) 11.4509 0.558083 0.279042 0.960279i \(-0.409983\pi\)
0.279042 + 0.960279i \(0.409983\pi\)
\(422\) 0 0
\(423\) −1.95407 −0.0950100
\(424\) 0 0
\(425\) 2.00000 0.0970143
\(426\) 0 0
\(427\) 18.5936 0.899809
\(428\) 0 0
\(429\) −1.20294 −0.0580787
\(430\) 0 0
\(431\) −2.62222 −0.126308 −0.0631538 0.998004i \(-0.520116\pi\)
−0.0631538 + 0.998004i \(0.520116\pi\)
\(432\) 0 0
\(433\) −15.6207 −0.750682 −0.375341 0.926887i \(-0.622474\pi\)
−0.375341 + 0.926887i \(0.622474\pi\)
\(434\) 0 0
\(435\) −5.55262 −0.266228
\(436\) 0 0
\(437\) −1.52543 −0.0729711
\(438\) 0 0
\(439\) −32.4514 −1.54882 −0.774410 0.632684i \(-0.781953\pi\)
−0.774410 + 0.632684i \(0.781953\pi\)
\(440\) 0 0
\(441\) 5.98619 0.285056
\(442\) 0 0
\(443\) −26.2908 −1.24912 −0.624558 0.780979i \(-0.714721\pi\)
−0.624558 + 0.780979i \(0.714721\pi\)
\(444\) 0 0
\(445\) 8.23506 0.390379
\(446\) 0 0
\(447\) −26.4701 −1.25199
\(448\) 0 0
\(449\) −16.5620 −0.781609 −0.390804 0.920474i \(-0.627803\pi\)
−0.390804 + 0.920474i \(0.627803\pi\)
\(450\) 0 0
\(451\) −11.2257 −0.528597
\(452\) 0 0
\(453\) 0.561993 0.0264047
\(454\) 0 0
\(455\) 1.27607 0.0598233
\(456\) 0 0
\(457\) 25.8163 1.20763 0.603817 0.797123i \(-0.293646\pi\)
0.603817 + 0.797123i \(0.293646\pi\)
\(458\) 0 0
\(459\) 11.2257 0.523971
\(460\) 0 0
\(461\) −26.0000 −1.21094 −0.605470 0.795868i \(-0.707015\pi\)
−0.605470 + 0.795868i \(0.707015\pi\)
\(462\) 0 0
\(463\) −31.8938 −1.48223 −0.741116 0.671377i \(-0.765703\pi\)
−0.741116 + 0.671377i \(0.765703\pi\)
\(464\) 0 0
\(465\) 6.79706 0.315206
\(466\) 0 0
\(467\) 32.7511 1.51554 0.757771 0.652521i \(-0.226289\pi\)
0.757771 + 0.652521i \(0.226289\pi\)
\(468\) 0 0
\(469\) −10.5620 −0.487708
\(470\) 0 0
\(471\) 19.0923 0.879729
\(472\) 0 0
\(473\) 12.5749 0.578194
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) 0 0
\(477\) −8.75758 −0.400982
\(478\) 0 0
\(479\) −34.1575 −1.56070 −0.780348 0.625346i \(-0.784958\pi\)
−0.780348 + 0.625346i \(0.784958\pi\)
\(480\) 0 0
\(481\) 2.37286 0.108193
\(482\) 0 0
\(483\) 3.05086 0.138819
\(484\) 0 0
\(485\) 3.39853 0.154319
\(486\) 0 0
\(487\) −16.1269 −0.730780 −0.365390 0.930855i \(-0.619064\pi\)
−0.365390 + 0.930855i \(0.619064\pi\)
\(488\) 0 0
\(489\) −2.56199 −0.115857
\(490\) 0 0
\(491\) −29.1526 −1.31564 −0.657818 0.753177i \(-0.728521\pi\)
−0.657818 + 0.753177i \(0.728521\pi\)
\(492\) 0 0
\(493\) −8.47013 −0.381475
\(494\) 0 0
\(495\) −1.40498 −0.0631492
\(496\) 0 0
\(497\) 7.90813 0.354728
\(498\) 0 0
\(499\) 30.9862 1.38713 0.693566 0.720393i \(-0.256039\pi\)
0.693566 + 0.720393i \(0.256039\pi\)
\(500\) 0 0
\(501\) 20.4371 0.913062
\(502\) 0 0
\(503\) 24.5763 1.09580 0.547901 0.836543i \(-0.315427\pi\)
0.547901 + 0.836543i \(0.315427\pi\)
\(504\) 0 0
\(505\) −1.39207 −0.0619465
\(506\) 0 0
\(507\) 16.1269 0.716221
\(508\) 0 0
\(509\) −3.20294 −0.141968 −0.0709840 0.997477i \(-0.522614\pi\)
−0.0709840 + 0.997477i \(0.522614\pi\)
\(510\) 0 0
\(511\) 18.6637 0.825634
\(512\) 0 0
\(513\) 5.61285 0.247813
\(514\) 0 0
\(515\) −13.0257 −0.573979
\(516\) 0 0
\(517\) −1.67307 −0.0735816
\(518\) 0 0
\(519\) −22.8113 −1.00131
\(520\) 0 0
\(521\) −7.68598 −0.336729 −0.168364 0.985725i \(-0.553849\pi\)
−0.168364 + 0.985725i \(0.553849\pi\)
\(522\) 0 0
\(523\) 15.9462 0.697280 0.348640 0.937257i \(-0.386644\pi\)
0.348640 + 0.937257i \(0.386644\pi\)
\(524\) 0 0
\(525\) −2.00000 −0.0872872
\(526\) 0 0
\(527\) 10.3684 0.451655
\(528\) 0 0
\(529\) −20.6731 −0.898829
\(530\) 0 0
\(531\) 10.0000 0.433963
\(532\) 0 0
\(533\) −8.56199 −0.370861
\(534\) 0 0
\(535\) 14.7906 0.639454
\(536\) 0 0
\(537\) 10.2351 0.441676
\(538\) 0 0
\(539\) 5.12537 0.220765
\(540\) 0 0
\(541\) −29.3921 −1.26366 −0.631832 0.775105i \(-0.717697\pi\)
−0.631832 + 0.775105i \(0.717697\pi\)
\(542\) 0 0
\(543\) −22.7427 −0.975981
\(544\) 0 0
\(545\) 4.56199 0.195414
\(546\) 0 0
\(547\) 36.1367 1.54510 0.772548 0.634957i \(-0.218982\pi\)
0.772548 + 0.634957i \(0.218982\pi\)
\(548\) 0 0
\(549\) −15.6142 −0.666399
\(550\) 0 0
\(551\) −4.23506 −0.180420
\(552\) 0 0
\(553\) −13.2159 −0.561995
\(554\) 0 0
\(555\) −3.71900 −0.157863
\(556\) 0 0
\(557\) −10.0919 −0.427606 −0.213803 0.976877i \(-0.568585\pi\)
−0.213803 + 0.976877i \(0.568585\pi\)
\(558\) 0 0
\(559\) 9.59105 0.405658
\(560\) 0 0
\(561\) 2.87601 0.121425
\(562\) 0 0
\(563\) −15.2795 −0.643953 −0.321976 0.946748i \(-0.604347\pi\)
−0.321976 + 0.946748i \(0.604347\pi\)
\(564\) 0 0
\(565\) −3.07160 −0.129223
\(566\) 0 0
\(567\) −5.36349 −0.225246
\(568\) 0 0
\(569\) −12.4701 −0.522775 −0.261387 0.965234i \(-0.584180\pi\)
−0.261387 + 0.965234i \(0.584180\pi\)
\(570\) 0 0
\(571\) −10.6079 −0.443928 −0.221964 0.975055i \(-0.571247\pi\)
−0.221964 + 0.975055i \(0.571247\pi\)
\(572\) 0 0
\(573\) −24.4701 −1.02225
\(574\) 0 0
\(575\) −1.52543 −0.0636147
\(576\) 0 0
\(577\) −28.7052 −1.19501 −0.597506 0.801864i \(-0.703842\pi\)
−0.597506 + 0.801864i \(0.703842\pi\)
\(578\) 0 0
\(579\) 24.5763 1.02136
\(580\) 0 0
\(581\) 10.9808 0.455560
\(582\) 0 0
\(583\) −7.49823 −0.310545
\(584\) 0 0
\(585\) −1.07160 −0.0443052
\(586\) 0 0
\(587\) −8.05578 −0.332498 −0.166249 0.986084i \(-0.553165\pi\)
−0.166249 + 0.986084i \(0.553165\pi\)
\(588\) 0 0
\(589\) 5.18421 0.213612
\(590\) 0 0
\(591\) 5.55262 0.228404
\(592\) 0 0
\(593\) −43.5941 −1.79020 −0.895098 0.445870i \(-0.852894\pi\)
−0.895098 + 0.445870i \(0.852894\pi\)
\(594\) 0 0
\(595\) −3.05086 −0.125073
\(596\) 0 0
\(597\) −1.12399 −0.0460017
\(598\) 0 0
\(599\) −4.75557 −0.194307 −0.0971536 0.995269i \(-0.530974\pi\)
−0.0971536 + 0.995269i \(0.530974\pi\)
\(600\) 0 0
\(601\) 19.2672 0.785925 0.392962 0.919555i \(-0.371450\pi\)
0.392962 + 0.919555i \(0.371450\pi\)
\(602\) 0 0
\(603\) 8.86956 0.361196
\(604\) 0 0
\(605\) 9.79706 0.398307
\(606\) 0 0
\(607\) −39.7941 −1.61519 −0.807597 0.589735i \(-0.799232\pi\)
−0.807597 + 0.589735i \(0.799232\pi\)
\(608\) 0 0
\(609\) 8.47013 0.343227
\(610\) 0 0
\(611\) −1.27607 −0.0516244
\(612\) 0 0
\(613\) −20.8889 −0.843696 −0.421848 0.906667i \(-0.638618\pi\)
−0.421848 + 0.906667i \(0.638618\pi\)
\(614\) 0 0
\(615\) 13.4193 0.541117
\(616\) 0 0
\(617\) 3.11108 0.125247 0.0626236 0.998037i \(-0.480053\pi\)
0.0626236 + 0.998037i \(0.480053\pi\)
\(618\) 0 0
\(619\) −8.41435 −0.338201 −0.169101 0.985599i \(-0.554086\pi\)
−0.169101 + 0.985599i \(0.554086\pi\)
\(620\) 0 0
\(621\) −8.56199 −0.343581
\(622\) 0 0
\(623\) −12.5620 −0.503286
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 1.43801 0.0574285
\(628\) 0 0
\(629\) −5.67307 −0.226200
\(630\) 0 0
\(631\) −29.2716 −1.16529 −0.582643 0.812729i \(-0.697981\pi\)
−0.582643 + 0.812729i \(0.697981\pi\)
\(632\) 0 0
\(633\) 25.6602 1.01990
\(634\) 0 0
\(635\) 12.1082 0.480498
\(636\) 0 0
\(637\) 3.90919 0.154888
\(638\) 0 0
\(639\) −6.64095 −0.262712
\(640\) 0 0
\(641\) 22.1432 0.874604 0.437302 0.899315i \(-0.355934\pi\)
0.437302 + 0.899315i \(0.355934\pi\)
\(642\) 0 0
\(643\) 31.4148 1.23888 0.619440 0.785044i \(-0.287360\pi\)
0.619440 + 0.785044i \(0.287360\pi\)
\(644\) 0 0
\(645\) −15.0321 −0.591889
\(646\) 0 0
\(647\) 20.7382 0.815303 0.407652 0.913137i \(-0.366348\pi\)
0.407652 + 0.913137i \(0.366348\pi\)
\(648\) 0 0
\(649\) 8.56199 0.336088
\(650\) 0 0
\(651\) −10.3684 −0.406370
\(652\) 0 0
\(653\) 27.7649 1.08653 0.543263 0.839563i \(-0.317189\pi\)
0.543263 + 0.839563i \(0.317189\pi\)
\(654\) 0 0
\(655\) 13.9684 0.545789
\(656\) 0 0
\(657\) −15.6731 −0.611465
\(658\) 0 0
\(659\) 34.7654 1.35427 0.677134 0.735860i \(-0.263222\pi\)
0.677134 + 0.735860i \(0.263222\pi\)
\(660\) 0 0
\(661\) −2.79706 −0.108793 −0.0543964 0.998519i \(-0.517323\pi\)
−0.0543964 + 0.998519i \(0.517323\pi\)
\(662\) 0 0
\(663\) 2.19358 0.0851914
\(664\) 0 0
\(665\) −1.52543 −0.0591535
\(666\) 0 0
\(667\) 6.46028 0.250143
\(668\) 0 0
\(669\) 14.1891 0.548583
\(670\) 0 0
\(671\) −13.3689 −0.516100
\(672\) 0 0
\(673\) 21.3067 0.821311 0.410656 0.911790i \(-0.365300\pi\)
0.410656 + 0.911790i \(0.365300\pi\)
\(674\) 0 0
\(675\) 5.61285 0.216039
\(676\) 0 0
\(677\) 10.9284 0.420013 0.210006 0.977700i \(-0.432652\pi\)
0.210006 + 0.977700i \(0.432652\pi\)
\(678\) 0 0
\(679\) −5.18421 −0.198952
\(680\) 0 0
\(681\) −21.0781 −0.807713
\(682\) 0 0
\(683\) 34.3718 1.31520 0.657600 0.753367i \(-0.271572\pi\)
0.657600 + 0.753367i \(0.271572\pi\)
\(684\) 0 0
\(685\) −1.43801 −0.0549434
\(686\) 0 0
\(687\) −8.66370 −0.330541
\(688\) 0 0
\(689\) −5.71900 −0.217877
\(690\) 0 0
\(691\) 29.3921 1.11813 0.559064 0.829125i \(-0.311161\pi\)
0.559064 + 0.829125i \(0.311161\pi\)
\(692\) 0 0
\(693\) 2.14320 0.0814133
\(694\) 0 0
\(695\) 3.29036 0.124811
\(696\) 0 0
\(697\) 20.4701 0.775361
\(698\) 0 0
\(699\) −10.7971 −0.408382
\(700\) 0 0
\(701\) −0.372862 −0.0140828 −0.00704141 0.999975i \(-0.502241\pi\)
−0.00704141 + 0.999975i \(0.502241\pi\)
\(702\) 0 0
\(703\) −2.83654 −0.106982
\(704\) 0 0
\(705\) 2.00000 0.0753244
\(706\) 0 0
\(707\) 2.12351 0.0798628
\(708\) 0 0
\(709\) −32.6133 −1.22482 −0.612410 0.790541i \(-0.709800\pi\)
−0.612410 + 0.790541i \(0.709800\pi\)
\(710\) 0 0
\(711\) 11.0982 0.416214
\(712\) 0 0
\(713\) −7.90813 −0.296162
\(714\) 0 0
\(715\) −0.917502 −0.0343126
\(716\) 0 0
\(717\) 21.0321 0.785459
\(718\) 0 0
\(719\) −28.4143 −1.05968 −0.529838 0.848099i \(-0.677747\pi\)
−0.529838 + 0.848099i \(0.677747\pi\)
\(720\) 0 0
\(721\) 19.8697 0.739987
\(722\) 0 0
\(723\) −8.91167 −0.331429
\(724\) 0 0
\(725\) −4.23506 −0.157286
\(726\) 0 0
\(727\) −2.07451 −0.0769394 −0.0384697 0.999260i \(-0.512248\pi\)
−0.0384697 + 0.999260i \(0.512248\pi\)
\(728\) 0 0
\(729\) 26.5812 0.984489
\(730\) 0 0
\(731\) −22.9304 −0.848112
\(732\) 0 0
\(733\) 11.0192 0.407004 0.203502 0.979075i \(-0.434768\pi\)
0.203502 + 0.979075i \(0.434768\pi\)
\(734\) 0 0
\(735\) −6.12690 −0.225994
\(736\) 0 0
\(737\) 7.59411 0.279733
\(738\) 0 0
\(739\) −33.9180 −1.24769 −0.623847 0.781547i \(-0.714431\pi\)
−0.623847 + 0.781547i \(0.714431\pi\)
\(740\) 0 0
\(741\) 1.09679 0.0402915
\(742\) 0 0
\(743\) 39.1175 1.43508 0.717542 0.696516i \(-0.245267\pi\)
0.717542 + 0.696516i \(0.245267\pi\)
\(744\) 0 0
\(745\) −20.1891 −0.739673
\(746\) 0 0
\(747\) −9.22125 −0.337388
\(748\) 0 0
\(749\) −22.5620 −0.824397
\(750\) 0 0
\(751\) 25.0736 0.914949 0.457474 0.889223i \(-0.348754\pi\)
0.457474 + 0.889223i \(0.348754\pi\)
\(752\) 0 0
\(753\) 36.9403 1.34618
\(754\) 0 0
\(755\) 0.428639 0.0155998
\(756\) 0 0
\(757\) 11.7649 0.427604 0.213802 0.976877i \(-0.431415\pi\)
0.213802 + 0.976877i \(0.431415\pi\)
\(758\) 0 0
\(759\) −2.19358 −0.0796218
\(760\) 0 0
\(761\) −13.3921 −0.485462 −0.242731 0.970094i \(-0.578043\pi\)
−0.242731 + 0.970094i \(0.578043\pi\)
\(762\) 0 0
\(763\) −6.95899 −0.251932
\(764\) 0 0
\(765\) 2.56199 0.0926290
\(766\) 0 0
\(767\) 6.53035 0.235797
\(768\) 0 0
\(769\) 7.26178 0.261867 0.130933 0.991391i \(-0.458203\pi\)
0.130933 + 0.991391i \(0.458203\pi\)
\(770\) 0 0
\(771\) −5.19267 −0.187009
\(772\) 0 0
\(773\) 6.41774 0.230830 0.115415 0.993317i \(-0.463180\pi\)
0.115415 + 0.993317i \(0.463180\pi\)
\(774\) 0 0
\(775\) 5.18421 0.186222
\(776\) 0 0
\(777\) 5.67307 0.203520
\(778\) 0 0
\(779\) 10.2351 0.366709
\(780\) 0 0
\(781\) −5.68598 −0.203460
\(782\) 0 0
\(783\) −23.7708 −0.849498
\(784\) 0 0
\(785\) 14.5620 0.519740
\(786\) 0 0
\(787\) 25.6479 0.914248 0.457124 0.889403i \(-0.348880\pi\)
0.457124 + 0.889403i \(0.348880\pi\)
\(788\) 0 0
\(789\) 6.00000 0.213606
\(790\) 0 0
\(791\) 4.68550 0.166597
\(792\) 0 0
\(793\) −10.1966 −0.362093
\(794\) 0 0
\(795\) 8.96343 0.317900
\(796\) 0 0
\(797\) 47.1229 1.66918 0.834590 0.550872i \(-0.185705\pi\)
0.834590 + 0.550872i \(0.185705\pi\)
\(798\) 0 0
\(799\) 3.05086 0.107931
\(800\) 0 0
\(801\) 10.5491 0.372734
\(802\) 0 0
\(803\) −13.4193 −0.473556
\(804\) 0 0
\(805\) 2.32693 0.0820135
\(806\) 0 0
\(807\) 15.7333 0.553838
\(808\) 0 0
\(809\) 20.6133 0.724726 0.362363 0.932037i \(-0.381970\pi\)
0.362363 + 0.932037i \(0.381970\pi\)
\(810\) 0 0
\(811\) 7.87649 0.276581 0.138291 0.990392i \(-0.455839\pi\)
0.138291 + 0.990392i \(0.455839\pi\)
\(812\) 0 0
\(813\) 25.9081 0.908638
\(814\) 0 0
\(815\) −1.95407 −0.0684480
\(816\) 0 0
\(817\) −11.4652 −0.401117
\(818\) 0 0
\(819\) 1.63465 0.0571192
\(820\) 0 0
\(821\) −4.32693 −0.151011 −0.0755054 0.997145i \(-0.524057\pi\)
−0.0755054 + 0.997145i \(0.524057\pi\)
\(822\) 0 0
\(823\) −40.6178 −1.41585 −0.707923 0.706289i \(-0.750368\pi\)
−0.707923 + 0.706289i \(0.750368\pi\)
\(824\) 0 0
\(825\) 1.43801 0.0500650
\(826\) 0 0
\(827\) 23.1461 0.804869 0.402435 0.915449i \(-0.368164\pi\)
0.402435 + 0.915449i \(0.368164\pi\)
\(828\) 0 0
\(829\) 37.5022 1.30251 0.651253 0.758860i \(-0.274243\pi\)
0.651253 + 0.758860i \(0.274243\pi\)
\(830\) 0 0
\(831\) 11.5170 0.399519
\(832\) 0 0
\(833\) −9.34614 −0.323825
\(834\) 0 0
\(835\) 15.5877 0.539433
\(836\) 0 0
\(837\) 29.0982 1.00578
\(838\) 0 0
\(839\) 26.5906 0.918009 0.459004 0.888434i \(-0.348206\pi\)
0.459004 + 0.888434i \(0.348206\pi\)
\(840\) 0 0
\(841\) −11.0642 −0.381525
\(842\) 0 0
\(843\) 9.03212 0.311083
\(844\) 0 0
\(845\) 12.3002 0.423140
\(846\) 0 0
\(847\) −14.9447 −0.513506
\(848\) 0 0
\(849\) 8.31402 0.285337
\(850\) 0 0
\(851\) 4.32693 0.148325
\(852\) 0 0
\(853\) 32.1561 1.10100 0.550502 0.834834i \(-0.314436\pi\)
0.550502 + 0.834834i \(0.314436\pi\)
\(854\) 0 0
\(855\) 1.28100 0.0438091
\(856\) 0 0
\(857\) −47.8816 −1.63560 −0.817801 0.575500i \(-0.804807\pi\)
−0.817801 + 0.575500i \(0.804807\pi\)
\(858\) 0 0
\(859\) 1.28592 0.0438750 0.0219375 0.999759i \(-0.493017\pi\)
0.0219375 + 0.999759i \(0.493017\pi\)
\(860\) 0 0
\(861\) −20.4701 −0.697620
\(862\) 0 0
\(863\) −1.26073 −0.0429157 −0.0214579 0.999770i \(-0.506831\pi\)
−0.0214579 + 0.999770i \(0.506831\pi\)
\(864\) 0 0
\(865\) −17.3985 −0.591568
\(866\) 0 0
\(867\) 17.0444 0.578858
\(868\) 0 0
\(869\) 9.50225 0.322342
\(870\) 0 0
\(871\) 5.79213 0.196259
\(872\) 0 0
\(873\) 4.35350 0.147344
\(874\) 0 0
\(875\) −1.52543 −0.0515689
\(876\) 0 0
\(877\) 24.9668 0.843070 0.421535 0.906812i \(-0.361491\pi\)
0.421535 + 0.906812i \(0.361491\pi\)
\(878\) 0 0
\(879\) −13.4710 −0.454367
\(880\) 0 0
\(881\) −4.28100 −0.144230 −0.0721152 0.997396i \(-0.522975\pi\)
−0.0721152 + 0.997396i \(0.522975\pi\)
\(882\) 0 0
\(883\) 6.64941 0.223771 0.111885 0.993721i \(-0.464311\pi\)
0.111885 + 0.993721i \(0.464311\pi\)
\(884\) 0 0
\(885\) −10.2351 −0.344048
\(886\) 0 0
\(887\) 34.1911 1.14803 0.574013 0.818846i \(-0.305386\pi\)
0.574013 + 0.818846i \(0.305386\pi\)
\(888\) 0 0
\(889\) −18.4701 −0.619468
\(890\) 0 0
\(891\) 3.85637 0.129193
\(892\) 0 0
\(893\) 1.52543 0.0510465
\(894\) 0 0
\(895\) 7.80642 0.260940
\(896\) 0 0
\(897\) −1.67307 −0.0558622
\(898\) 0 0
\(899\) −21.9555 −0.732255
\(900\) 0 0
\(901\) 13.6731 0.455516
\(902\) 0 0
\(903\) 22.9304 0.763076
\(904\) 0 0
\(905\) −17.3461 −0.576605
\(906\) 0 0
\(907\) 54.7402 1.81762 0.908810 0.417211i \(-0.136992\pi\)
0.908810 + 0.417211i \(0.136992\pi\)
\(908\) 0 0
\(909\) −1.78324 −0.0591464
\(910\) 0 0
\(911\) 46.9086 1.55415 0.777076 0.629407i \(-0.216702\pi\)
0.777076 + 0.629407i \(0.216702\pi\)
\(912\) 0 0
\(913\) −7.89523 −0.261294
\(914\) 0 0
\(915\) 15.9813 0.528324
\(916\) 0 0
\(917\) −21.3077 −0.703643
\(918\) 0 0
\(919\) −45.5723 −1.50329 −0.751646 0.659567i \(-0.770740\pi\)
−0.751646 + 0.659567i \(0.770740\pi\)
\(920\) 0 0
\(921\) 6.76403 0.222882
\(922\) 0 0
\(923\) −4.33677 −0.142747
\(924\) 0 0
\(925\) −2.83654 −0.0932647
\(926\) 0 0
\(927\) −16.6858 −0.548035
\(928\) 0 0
\(929\) 44.0642 1.44570 0.722850 0.691005i \(-0.242832\pi\)
0.722850 + 0.691005i \(0.242832\pi\)
\(930\) 0 0
\(931\) −4.67307 −0.153154
\(932\) 0 0
\(933\) −13.9081 −0.455332
\(934\) 0 0
\(935\) 2.19358 0.0717376
\(936\) 0 0
\(937\) 41.1753 1.34514 0.672569 0.740034i \(-0.265191\pi\)
0.672569 + 0.740034i \(0.265191\pi\)
\(938\) 0 0
\(939\) 5.55262 0.181203
\(940\) 0 0
\(941\) 3.21585 0.104834 0.0524169 0.998625i \(-0.483308\pi\)
0.0524169 + 0.998625i \(0.483308\pi\)
\(942\) 0 0
\(943\) −15.6128 −0.508424
\(944\) 0 0
\(945\) −8.56199 −0.278522
\(946\) 0 0
\(947\) 23.7190 0.770764 0.385382 0.922757i \(-0.374070\pi\)
0.385382 + 0.922757i \(0.374070\pi\)
\(948\) 0 0
\(949\) −10.2351 −0.332244
\(950\) 0 0
\(951\) 0.359955 0.0116723
\(952\) 0 0
\(953\) 19.3985 0.628380 0.314190 0.949360i \(-0.398267\pi\)
0.314190 + 0.949360i \(0.398267\pi\)
\(954\) 0 0
\(955\) −18.6637 −0.603943
\(956\) 0 0
\(957\) −6.09005 −0.196863
\(958\) 0 0
\(959\) 2.19358 0.0708343
\(960\) 0 0
\(961\) −4.12399 −0.133032
\(962\) 0 0
\(963\) 18.9467 0.610549
\(964\) 0 0
\(965\) 18.7447 0.603412
\(966\) 0 0
\(967\) 14.1378 0.454641 0.227320 0.973820i \(-0.427004\pi\)
0.227320 + 0.973820i \(0.427004\pi\)
\(968\) 0 0
\(969\) −2.62222 −0.0842377
\(970\) 0 0
\(971\) −23.1111 −0.741670 −0.370835 0.928699i \(-0.620928\pi\)
−0.370835 + 0.928699i \(0.620928\pi\)
\(972\) 0 0
\(973\) −5.01921 −0.160909
\(974\) 0 0
\(975\) 1.09679 0.0351253
\(976\) 0 0
\(977\) −33.2019 −1.06222 −0.531111 0.847302i \(-0.678225\pi\)
−0.531111 + 0.847302i \(0.678225\pi\)
\(978\) 0 0
\(979\) 9.03212 0.288668
\(980\) 0 0
\(981\) 5.84390 0.186581
\(982\) 0 0
\(983\) 39.6765 1.26548 0.632741 0.774363i \(-0.281930\pi\)
0.632741 + 0.774363i \(0.281930\pi\)
\(984\) 0 0
\(985\) 4.23506 0.134940
\(986\) 0 0
\(987\) −3.05086 −0.0971098
\(988\) 0 0
\(989\) 17.4893 0.556129
\(990\) 0 0
\(991\) 5.79352 0.184037 0.0920186 0.995757i \(-0.470668\pi\)
0.0920186 + 0.995757i \(0.470668\pi\)
\(992\) 0 0
\(993\) 29.6602 0.941237
\(994\) 0 0
\(995\) −0.857279 −0.0271776
\(996\) 0 0
\(997\) −35.1240 −1.11239 −0.556194 0.831053i \(-0.687739\pi\)
−0.556194 + 0.831053i \(0.687739\pi\)
\(998\) 0 0
\(999\) −15.9210 −0.503719
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6080.2.a.bm.1.2 3
4.3 odd 2 6080.2.a.ca.1.2 3
8.3 odd 2 3040.2.a.j.1.2 3
8.5 even 2 3040.2.a.p.1.2 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3040.2.a.j.1.2 3 8.3 odd 2
3040.2.a.p.1.2 yes 3 8.5 even 2
6080.2.a.bm.1.2 3 1.1 even 1 trivial
6080.2.a.ca.1.2 3 4.3 odd 2