Properties

Label 6080.2.a.bf.1.2
Level $6080$
Weight $2$
Character 6080.1
Self dual yes
Analytic conductor $48.549$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6080,2,Mod(1,6080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6080, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6080.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6080 = 2^{6} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6080.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.5490444289\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 760)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 6080.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421 q^{3} +1.00000 q^{5} -2.82843 q^{7} -1.00000 q^{9} +O(q^{10})\) \(q+1.41421 q^{3} +1.00000 q^{5} -2.82843 q^{7} -1.00000 q^{9} +0.828427 q^{11} -3.41421 q^{13} +1.41421 q^{15} +4.82843 q^{17} +1.00000 q^{19} -4.00000 q^{21} +4.00000 q^{23} +1.00000 q^{25} -5.65685 q^{27} +0.828427 q^{29} +1.17157 q^{33} -2.82843 q^{35} -10.2426 q^{37} -4.82843 q^{39} -0.828427 q^{41} -2.82843 q^{43} -1.00000 q^{45} -8.48528 q^{47} +1.00000 q^{49} +6.82843 q^{51} -13.0711 q^{53} +0.828427 q^{55} +1.41421 q^{57} -2.82843 q^{59} +1.65685 q^{61} +2.82843 q^{63} -3.41421 q^{65} +9.41421 q^{67} +5.65685 q^{69} +15.3137 q^{71} +12.1421 q^{73} +1.41421 q^{75} -2.34315 q^{77} -9.17157 q^{79} -5.00000 q^{81} -8.00000 q^{83} +4.82843 q^{85} +1.17157 q^{87} -3.17157 q^{89} +9.65685 q^{91} +1.00000 q^{95} -2.24264 q^{97} -0.828427 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{5} - 2 q^{9} - 4 q^{11} - 4 q^{13} + 4 q^{17} + 2 q^{19} - 8 q^{21} + 8 q^{23} + 2 q^{25} - 4 q^{29} + 8 q^{33} - 12 q^{37} - 4 q^{39} + 4 q^{41} - 2 q^{45} + 2 q^{49} + 8 q^{51} - 12 q^{53} - 4 q^{55} - 8 q^{61} - 4 q^{65} + 16 q^{67} + 8 q^{71} - 4 q^{73} - 16 q^{77} - 24 q^{79} - 10 q^{81} - 16 q^{83} + 4 q^{85} + 8 q^{87} - 12 q^{89} + 8 q^{91} + 2 q^{95} + 4 q^{97} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.41421 0.816497 0.408248 0.912871i \(-0.366140\pi\)
0.408248 + 0.912871i \(0.366140\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −2.82843 −1.06904 −0.534522 0.845154i \(-0.679509\pi\)
−0.534522 + 0.845154i \(0.679509\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 0.828427 0.249780 0.124890 0.992171i \(-0.460142\pi\)
0.124890 + 0.992171i \(0.460142\pi\)
\(12\) 0 0
\(13\) −3.41421 −0.946932 −0.473466 0.880812i \(-0.656997\pi\)
−0.473466 + 0.880812i \(0.656997\pi\)
\(14\) 0 0
\(15\) 1.41421 0.365148
\(16\) 0 0
\(17\) 4.82843 1.17107 0.585533 0.810649i \(-0.300885\pi\)
0.585533 + 0.810649i \(0.300885\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) −4.00000 −0.872872
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −5.65685 −1.08866
\(28\) 0 0
\(29\) 0.828427 0.153835 0.0769175 0.997037i \(-0.475492\pi\)
0.0769175 + 0.997037i \(0.475492\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 1.17157 0.203945
\(34\) 0 0
\(35\) −2.82843 −0.478091
\(36\) 0 0
\(37\) −10.2426 −1.68388 −0.841940 0.539571i \(-0.818586\pi\)
−0.841940 + 0.539571i \(0.818586\pi\)
\(38\) 0 0
\(39\) −4.82843 −0.773167
\(40\) 0 0
\(41\) −0.828427 −0.129379 −0.0646893 0.997905i \(-0.520606\pi\)
−0.0646893 + 0.997905i \(0.520606\pi\)
\(42\) 0 0
\(43\) −2.82843 −0.431331 −0.215666 0.976467i \(-0.569192\pi\)
−0.215666 + 0.976467i \(0.569192\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −8.48528 −1.23771 −0.618853 0.785507i \(-0.712402\pi\)
−0.618853 + 0.785507i \(0.712402\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 6.82843 0.956171
\(52\) 0 0
\(53\) −13.0711 −1.79545 −0.897725 0.440557i \(-0.854781\pi\)
−0.897725 + 0.440557i \(0.854781\pi\)
\(54\) 0 0
\(55\) 0.828427 0.111705
\(56\) 0 0
\(57\) 1.41421 0.187317
\(58\) 0 0
\(59\) −2.82843 −0.368230 −0.184115 0.982905i \(-0.558942\pi\)
−0.184115 + 0.982905i \(0.558942\pi\)
\(60\) 0 0
\(61\) 1.65685 0.212138 0.106069 0.994359i \(-0.466173\pi\)
0.106069 + 0.994359i \(0.466173\pi\)
\(62\) 0 0
\(63\) 2.82843 0.356348
\(64\) 0 0
\(65\) −3.41421 −0.423481
\(66\) 0 0
\(67\) 9.41421 1.15013 0.575065 0.818108i \(-0.304977\pi\)
0.575065 + 0.818108i \(0.304977\pi\)
\(68\) 0 0
\(69\) 5.65685 0.681005
\(70\) 0 0
\(71\) 15.3137 1.81740 0.908701 0.417447i \(-0.137075\pi\)
0.908701 + 0.417447i \(0.137075\pi\)
\(72\) 0 0
\(73\) 12.1421 1.42113 0.710565 0.703632i \(-0.248440\pi\)
0.710565 + 0.703632i \(0.248440\pi\)
\(74\) 0 0
\(75\) 1.41421 0.163299
\(76\) 0 0
\(77\) −2.34315 −0.267026
\(78\) 0 0
\(79\) −9.17157 −1.03188 −0.515941 0.856624i \(-0.672558\pi\)
−0.515941 + 0.856624i \(0.672558\pi\)
\(80\) 0 0
\(81\) −5.00000 −0.555556
\(82\) 0 0
\(83\) −8.00000 −0.878114 −0.439057 0.898459i \(-0.644687\pi\)
−0.439057 + 0.898459i \(0.644687\pi\)
\(84\) 0 0
\(85\) 4.82843 0.523716
\(86\) 0 0
\(87\) 1.17157 0.125606
\(88\) 0 0
\(89\) −3.17157 −0.336186 −0.168093 0.985771i \(-0.553761\pi\)
−0.168093 + 0.985771i \(0.553761\pi\)
\(90\) 0 0
\(91\) 9.65685 1.01231
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.00000 0.102598
\(96\) 0 0
\(97\) −2.24264 −0.227706 −0.113853 0.993498i \(-0.536319\pi\)
−0.113853 + 0.993498i \(0.536319\pi\)
\(98\) 0 0
\(99\) −0.828427 −0.0832601
\(100\) 0 0
\(101\) −17.6569 −1.75692 −0.878461 0.477813i \(-0.841429\pi\)
−0.878461 + 0.477813i \(0.841429\pi\)
\(102\) 0 0
\(103\) 8.24264 0.812172 0.406086 0.913835i \(-0.366893\pi\)
0.406086 + 0.913835i \(0.366893\pi\)
\(104\) 0 0
\(105\) −4.00000 −0.390360
\(106\) 0 0
\(107\) −1.41421 −0.136717 −0.0683586 0.997661i \(-0.521776\pi\)
−0.0683586 + 0.997661i \(0.521776\pi\)
\(108\) 0 0
\(109\) −3.65685 −0.350263 −0.175132 0.984545i \(-0.556035\pi\)
−0.175132 + 0.984545i \(0.556035\pi\)
\(110\) 0 0
\(111\) −14.4853 −1.37488
\(112\) 0 0
\(113\) −14.7279 −1.38549 −0.692743 0.721184i \(-0.743598\pi\)
−0.692743 + 0.721184i \(0.743598\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) 0 0
\(117\) 3.41421 0.315644
\(118\) 0 0
\(119\) −13.6569 −1.25192
\(120\) 0 0
\(121\) −10.3137 −0.937610
\(122\) 0 0
\(123\) −1.17157 −0.105637
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −13.4142 −1.19032 −0.595159 0.803608i \(-0.702911\pi\)
−0.595159 + 0.803608i \(0.702911\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) −7.31371 −0.639002 −0.319501 0.947586i \(-0.603515\pi\)
−0.319501 + 0.947586i \(0.603515\pi\)
\(132\) 0 0
\(133\) −2.82843 −0.245256
\(134\) 0 0
\(135\) −5.65685 −0.486864
\(136\) 0 0
\(137\) −7.17157 −0.612709 −0.306354 0.951918i \(-0.599109\pi\)
−0.306354 + 0.951918i \(0.599109\pi\)
\(138\) 0 0
\(139\) 3.17157 0.269009 0.134505 0.990913i \(-0.457056\pi\)
0.134505 + 0.990913i \(0.457056\pi\)
\(140\) 0 0
\(141\) −12.0000 −1.01058
\(142\) 0 0
\(143\) −2.82843 −0.236525
\(144\) 0 0
\(145\) 0.828427 0.0687971
\(146\) 0 0
\(147\) 1.41421 0.116642
\(148\) 0 0
\(149\) −1.65685 −0.135735 −0.0678674 0.997694i \(-0.521619\pi\)
−0.0678674 + 0.997694i \(0.521619\pi\)
\(150\) 0 0
\(151\) 6.14214 0.499840 0.249920 0.968267i \(-0.419596\pi\)
0.249920 + 0.968267i \(0.419596\pi\)
\(152\) 0 0
\(153\) −4.82843 −0.390355
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 10.4853 0.836817 0.418408 0.908259i \(-0.362588\pi\)
0.418408 + 0.908259i \(0.362588\pi\)
\(158\) 0 0
\(159\) −18.4853 −1.46598
\(160\) 0 0
\(161\) −11.3137 −0.891645
\(162\) 0 0
\(163\) −14.8284 −1.16145 −0.580726 0.814099i \(-0.697231\pi\)
−0.580726 + 0.814099i \(0.697231\pi\)
\(164\) 0 0
\(165\) 1.17157 0.0912068
\(166\) 0 0
\(167\) 2.10051 0.162542 0.0812710 0.996692i \(-0.474102\pi\)
0.0812710 + 0.996692i \(0.474102\pi\)
\(168\) 0 0
\(169\) −1.34315 −0.103319
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) 0 0
\(173\) 10.7279 0.815629 0.407814 0.913065i \(-0.366291\pi\)
0.407814 + 0.913065i \(0.366291\pi\)
\(174\) 0 0
\(175\) −2.82843 −0.213809
\(176\) 0 0
\(177\) −4.00000 −0.300658
\(178\) 0 0
\(179\) −8.48528 −0.634220 −0.317110 0.948389i \(-0.602712\pi\)
−0.317110 + 0.948389i \(0.602712\pi\)
\(180\) 0 0
\(181\) 5.31371 0.394965 0.197482 0.980306i \(-0.436723\pi\)
0.197482 + 0.980306i \(0.436723\pi\)
\(182\) 0 0
\(183\) 2.34315 0.173210
\(184\) 0 0
\(185\) −10.2426 −0.753054
\(186\) 0 0
\(187\) 4.00000 0.292509
\(188\) 0 0
\(189\) 16.0000 1.16383
\(190\) 0 0
\(191\) 3.31371 0.239772 0.119886 0.992788i \(-0.461747\pi\)
0.119886 + 0.992788i \(0.461747\pi\)
\(192\) 0 0
\(193\) −6.92893 −0.498755 −0.249378 0.968406i \(-0.580226\pi\)
−0.249378 + 0.968406i \(0.580226\pi\)
\(194\) 0 0
\(195\) −4.82843 −0.345771
\(196\) 0 0
\(197\) −25.3137 −1.80353 −0.901764 0.432230i \(-0.857727\pi\)
−0.901764 + 0.432230i \(0.857727\pi\)
\(198\) 0 0
\(199\) −5.65685 −0.401004 −0.200502 0.979693i \(-0.564257\pi\)
−0.200502 + 0.979693i \(0.564257\pi\)
\(200\) 0 0
\(201\) 13.3137 0.939077
\(202\) 0 0
\(203\) −2.34315 −0.164457
\(204\) 0 0
\(205\) −0.828427 −0.0578599
\(206\) 0 0
\(207\) −4.00000 −0.278019
\(208\) 0 0
\(209\) 0.828427 0.0573035
\(210\) 0 0
\(211\) 16.4853 1.13489 0.567447 0.823410i \(-0.307931\pi\)
0.567447 + 0.823410i \(0.307931\pi\)
\(212\) 0 0
\(213\) 21.6569 1.48390
\(214\) 0 0
\(215\) −2.82843 −0.192897
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 17.1716 1.16035
\(220\) 0 0
\(221\) −16.4853 −1.10892
\(222\) 0 0
\(223\) 13.4142 0.898282 0.449141 0.893461i \(-0.351730\pi\)
0.449141 + 0.893461i \(0.351730\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) −24.0416 −1.59570 −0.797850 0.602857i \(-0.794029\pi\)
−0.797850 + 0.602857i \(0.794029\pi\)
\(228\) 0 0
\(229\) −11.3137 −0.747631 −0.373815 0.927503i \(-0.621951\pi\)
−0.373815 + 0.927503i \(0.621951\pi\)
\(230\) 0 0
\(231\) −3.31371 −0.218026
\(232\) 0 0
\(233\) −10.0000 −0.655122 −0.327561 0.944830i \(-0.606227\pi\)
−0.327561 + 0.944830i \(0.606227\pi\)
\(234\) 0 0
\(235\) −8.48528 −0.553519
\(236\) 0 0
\(237\) −12.9706 −0.842529
\(238\) 0 0
\(239\) 8.00000 0.517477 0.258738 0.965947i \(-0.416693\pi\)
0.258738 + 0.965947i \(0.416693\pi\)
\(240\) 0 0
\(241\) 8.14214 0.524481 0.262241 0.965003i \(-0.415539\pi\)
0.262241 + 0.965003i \(0.415539\pi\)
\(242\) 0 0
\(243\) 9.89949 0.635053
\(244\) 0 0
\(245\) 1.00000 0.0638877
\(246\) 0 0
\(247\) −3.41421 −0.217241
\(248\) 0 0
\(249\) −11.3137 −0.716977
\(250\) 0 0
\(251\) −28.9706 −1.82861 −0.914303 0.405031i \(-0.867261\pi\)
−0.914303 + 0.405031i \(0.867261\pi\)
\(252\) 0 0
\(253\) 3.31371 0.208331
\(254\) 0 0
\(255\) 6.82843 0.427613
\(256\) 0 0
\(257\) −4.10051 −0.255782 −0.127891 0.991788i \(-0.540821\pi\)
−0.127891 + 0.991788i \(0.540821\pi\)
\(258\) 0 0
\(259\) 28.9706 1.80014
\(260\) 0 0
\(261\) −0.828427 −0.0512784
\(262\) 0 0
\(263\) 27.3137 1.68424 0.842118 0.539294i \(-0.181309\pi\)
0.842118 + 0.539294i \(0.181309\pi\)
\(264\) 0 0
\(265\) −13.0711 −0.802949
\(266\) 0 0
\(267\) −4.48528 −0.274495
\(268\) 0 0
\(269\) 29.3137 1.78729 0.893644 0.448776i \(-0.148140\pi\)
0.893644 + 0.448776i \(0.148140\pi\)
\(270\) 0 0
\(271\) −9.51472 −0.577978 −0.288989 0.957332i \(-0.593319\pi\)
−0.288989 + 0.957332i \(0.593319\pi\)
\(272\) 0 0
\(273\) 13.6569 0.826550
\(274\) 0 0
\(275\) 0.828427 0.0499560
\(276\) 0 0
\(277\) −19.1716 −1.15191 −0.575954 0.817482i \(-0.695369\pi\)
−0.575954 + 0.817482i \(0.695369\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 11.1716 0.666440 0.333220 0.942849i \(-0.391865\pi\)
0.333220 + 0.942849i \(0.391865\pi\)
\(282\) 0 0
\(283\) −6.34315 −0.377061 −0.188530 0.982067i \(-0.560372\pi\)
−0.188530 + 0.982067i \(0.560372\pi\)
\(284\) 0 0
\(285\) 1.41421 0.0837708
\(286\) 0 0
\(287\) 2.34315 0.138312
\(288\) 0 0
\(289\) 6.31371 0.371395
\(290\) 0 0
\(291\) −3.17157 −0.185921
\(292\) 0 0
\(293\) −32.3848 −1.89194 −0.945969 0.324256i \(-0.894886\pi\)
−0.945969 + 0.324256i \(0.894886\pi\)
\(294\) 0 0
\(295\) −2.82843 −0.164677
\(296\) 0 0
\(297\) −4.68629 −0.271926
\(298\) 0 0
\(299\) −13.6569 −0.789796
\(300\) 0 0
\(301\) 8.00000 0.461112
\(302\) 0 0
\(303\) −24.9706 −1.43452
\(304\) 0 0
\(305\) 1.65685 0.0948712
\(306\) 0 0
\(307\) −1.41421 −0.0807134 −0.0403567 0.999185i \(-0.512849\pi\)
−0.0403567 + 0.999185i \(0.512849\pi\)
\(308\) 0 0
\(309\) 11.6569 0.663135
\(310\) 0 0
\(311\) 19.1716 1.08712 0.543560 0.839370i \(-0.317076\pi\)
0.543560 + 0.839370i \(0.317076\pi\)
\(312\) 0 0
\(313\) −5.31371 −0.300349 −0.150174 0.988660i \(-0.547983\pi\)
−0.150174 + 0.988660i \(0.547983\pi\)
\(314\) 0 0
\(315\) 2.82843 0.159364
\(316\) 0 0
\(317\) −0.100505 −0.00564493 −0.00282246 0.999996i \(-0.500898\pi\)
−0.00282246 + 0.999996i \(0.500898\pi\)
\(318\) 0 0
\(319\) 0.686292 0.0384249
\(320\) 0 0
\(321\) −2.00000 −0.111629
\(322\) 0 0
\(323\) 4.82843 0.268661
\(324\) 0 0
\(325\) −3.41421 −0.189386
\(326\) 0 0
\(327\) −5.17157 −0.285989
\(328\) 0 0
\(329\) 24.0000 1.32316
\(330\) 0 0
\(331\) 17.4558 0.959460 0.479730 0.877416i \(-0.340735\pi\)
0.479730 + 0.877416i \(0.340735\pi\)
\(332\) 0 0
\(333\) 10.2426 0.561293
\(334\) 0 0
\(335\) 9.41421 0.514353
\(336\) 0 0
\(337\) −20.3848 −1.11043 −0.555215 0.831707i \(-0.687364\pi\)
−0.555215 + 0.831707i \(0.687364\pi\)
\(338\) 0 0
\(339\) −20.8284 −1.13124
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 16.9706 0.916324
\(344\) 0 0
\(345\) 5.65685 0.304555
\(346\) 0 0
\(347\) 20.2843 1.08892 0.544458 0.838788i \(-0.316735\pi\)
0.544458 + 0.838788i \(0.316735\pi\)
\(348\) 0 0
\(349\) −12.3431 −0.660713 −0.330357 0.943856i \(-0.607169\pi\)
−0.330357 + 0.943856i \(0.607169\pi\)
\(350\) 0 0
\(351\) 19.3137 1.03089
\(352\) 0 0
\(353\) −12.1421 −0.646261 −0.323130 0.946354i \(-0.604735\pi\)
−0.323130 + 0.946354i \(0.604735\pi\)
\(354\) 0 0
\(355\) 15.3137 0.812767
\(356\) 0 0
\(357\) −19.3137 −1.02219
\(358\) 0 0
\(359\) −19.4558 −1.02684 −0.513420 0.858137i \(-0.671622\pi\)
−0.513420 + 0.858137i \(0.671622\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) −14.5858 −0.765555
\(364\) 0 0
\(365\) 12.1421 0.635548
\(366\) 0 0
\(367\) 31.1127 1.62407 0.812035 0.583609i \(-0.198360\pi\)
0.812035 + 0.583609i \(0.198360\pi\)
\(368\) 0 0
\(369\) 0.828427 0.0431262
\(370\) 0 0
\(371\) 36.9706 1.91942
\(372\) 0 0
\(373\) 33.5563 1.73748 0.868741 0.495267i \(-0.164930\pi\)
0.868741 + 0.495267i \(0.164930\pi\)
\(374\) 0 0
\(375\) 1.41421 0.0730297
\(376\) 0 0
\(377\) −2.82843 −0.145671
\(378\) 0 0
\(379\) −9.65685 −0.496039 −0.248020 0.968755i \(-0.579780\pi\)
−0.248020 + 0.968755i \(0.579780\pi\)
\(380\) 0 0
\(381\) −18.9706 −0.971891
\(382\) 0 0
\(383\) 32.7279 1.67232 0.836159 0.548487i \(-0.184796\pi\)
0.836159 + 0.548487i \(0.184796\pi\)
\(384\) 0 0
\(385\) −2.34315 −0.119418
\(386\) 0 0
\(387\) 2.82843 0.143777
\(388\) 0 0
\(389\) −9.31371 −0.472224 −0.236112 0.971726i \(-0.575873\pi\)
−0.236112 + 0.971726i \(0.575873\pi\)
\(390\) 0 0
\(391\) 19.3137 0.976736
\(392\) 0 0
\(393\) −10.3431 −0.521743
\(394\) 0 0
\(395\) −9.17157 −0.461472
\(396\) 0 0
\(397\) −36.8284 −1.84837 −0.924183 0.381950i \(-0.875253\pi\)
−0.924183 + 0.381950i \(0.875253\pi\)
\(398\) 0 0
\(399\) −4.00000 −0.200250
\(400\) 0 0
\(401\) 14.9706 0.747594 0.373797 0.927510i \(-0.378056\pi\)
0.373797 + 0.927510i \(0.378056\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −5.00000 −0.248452
\(406\) 0 0
\(407\) −8.48528 −0.420600
\(408\) 0 0
\(409\) −30.2843 −1.49746 −0.748730 0.662875i \(-0.769336\pi\)
−0.748730 + 0.662875i \(0.769336\pi\)
\(410\) 0 0
\(411\) −10.1421 −0.500275
\(412\) 0 0
\(413\) 8.00000 0.393654
\(414\) 0 0
\(415\) −8.00000 −0.392705
\(416\) 0 0
\(417\) 4.48528 0.219645
\(418\) 0 0
\(419\) −1.65685 −0.0809426 −0.0404713 0.999181i \(-0.512886\pi\)
−0.0404713 + 0.999181i \(0.512886\pi\)
\(420\) 0 0
\(421\) 20.8284 1.01512 0.507558 0.861618i \(-0.330548\pi\)
0.507558 + 0.861618i \(0.330548\pi\)
\(422\) 0 0
\(423\) 8.48528 0.412568
\(424\) 0 0
\(425\) 4.82843 0.234213
\(426\) 0 0
\(427\) −4.68629 −0.226786
\(428\) 0 0
\(429\) −4.00000 −0.193122
\(430\) 0 0
\(431\) −14.8284 −0.714260 −0.357130 0.934055i \(-0.616245\pi\)
−0.357130 + 0.934055i \(0.616245\pi\)
\(432\) 0 0
\(433\) −18.0416 −0.867025 −0.433513 0.901147i \(-0.642726\pi\)
−0.433513 + 0.901147i \(0.642726\pi\)
\(434\) 0 0
\(435\) 1.17157 0.0561726
\(436\) 0 0
\(437\) 4.00000 0.191346
\(438\) 0 0
\(439\) 14.1421 0.674967 0.337484 0.941331i \(-0.390424\pi\)
0.337484 + 0.941331i \(0.390424\pi\)
\(440\) 0 0
\(441\) −1.00000 −0.0476190
\(442\) 0 0
\(443\) −0.686292 −0.0326067 −0.0163033 0.999867i \(-0.505190\pi\)
−0.0163033 + 0.999867i \(0.505190\pi\)
\(444\) 0 0
\(445\) −3.17157 −0.150347
\(446\) 0 0
\(447\) −2.34315 −0.110827
\(448\) 0 0
\(449\) 26.2843 1.24043 0.620216 0.784431i \(-0.287045\pi\)
0.620216 + 0.784431i \(0.287045\pi\)
\(450\) 0 0
\(451\) −0.686292 −0.0323162
\(452\) 0 0
\(453\) 8.68629 0.408118
\(454\) 0 0
\(455\) 9.65685 0.452720
\(456\) 0 0
\(457\) −34.2843 −1.60375 −0.801875 0.597491i \(-0.796164\pi\)
−0.801875 + 0.597491i \(0.796164\pi\)
\(458\) 0 0
\(459\) −27.3137 −1.27489
\(460\) 0 0
\(461\) 8.62742 0.401819 0.200909 0.979610i \(-0.435610\pi\)
0.200909 + 0.979610i \(0.435610\pi\)
\(462\) 0 0
\(463\) 26.6274 1.23748 0.618741 0.785595i \(-0.287643\pi\)
0.618741 + 0.785595i \(0.287643\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −24.0000 −1.11059 −0.555294 0.831654i \(-0.687394\pi\)
−0.555294 + 0.831654i \(0.687394\pi\)
\(468\) 0 0
\(469\) −26.6274 −1.22954
\(470\) 0 0
\(471\) 14.8284 0.683258
\(472\) 0 0
\(473\) −2.34315 −0.107738
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) 0 0
\(477\) 13.0711 0.598483
\(478\) 0 0
\(479\) 23.4558 1.07172 0.535862 0.844305i \(-0.319987\pi\)
0.535862 + 0.844305i \(0.319987\pi\)
\(480\) 0 0
\(481\) 34.9706 1.59452
\(482\) 0 0
\(483\) −16.0000 −0.728025
\(484\) 0 0
\(485\) −2.24264 −0.101833
\(486\) 0 0
\(487\) 27.5563 1.24870 0.624349 0.781146i \(-0.285364\pi\)
0.624349 + 0.781146i \(0.285364\pi\)
\(488\) 0 0
\(489\) −20.9706 −0.948322
\(490\) 0 0
\(491\) 12.9706 0.585353 0.292677 0.956211i \(-0.405454\pi\)
0.292677 + 0.956211i \(0.405454\pi\)
\(492\) 0 0
\(493\) 4.00000 0.180151
\(494\) 0 0
\(495\) −0.828427 −0.0372350
\(496\) 0 0
\(497\) −43.3137 −1.94289
\(498\) 0 0
\(499\) −4.14214 −0.185427 −0.0927137 0.995693i \(-0.529554\pi\)
−0.0927137 + 0.995693i \(0.529554\pi\)
\(500\) 0 0
\(501\) 2.97056 0.132715
\(502\) 0 0
\(503\) −1.65685 −0.0738755 −0.0369377 0.999318i \(-0.511760\pi\)
−0.0369377 + 0.999318i \(0.511760\pi\)
\(504\) 0 0
\(505\) −17.6569 −0.785720
\(506\) 0 0
\(507\) −1.89949 −0.0843595
\(508\) 0 0
\(509\) 15.4558 0.685068 0.342534 0.939505i \(-0.388715\pi\)
0.342534 + 0.939505i \(0.388715\pi\)
\(510\) 0 0
\(511\) −34.3431 −1.51925
\(512\) 0 0
\(513\) −5.65685 −0.249756
\(514\) 0 0
\(515\) 8.24264 0.363214
\(516\) 0 0
\(517\) −7.02944 −0.309154
\(518\) 0 0
\(519\) 15.1716 0.665958
\(520\) 0 0
\(521\) 14.6863 0.643418 0.321709 0.946839i \(-0.395743\pi\)
0.321709 + 0.946839i \(0.395743\pi\)
\(522\) 0 0
\(523\) 36.2426 1.58478 0.792390 0.610015i \(-0.208837\pi\)
0.792390 + 0.610015i \(0.208837\pi\)
\(524\) 0 0
\(525\) −4.00000 −0.174574
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 2.82843 0.122743
\(532\) 0 0
\(533\) 2.82843 0.122513
\(534\) 0 0
\(535\) −1.41421 −0.0611418
\(536\) 0 0
\(537\) −12.0000 −0.517838
\(538\) 0 0
\(539\) 0.828427 0.0356829
\(540\) 0 0
\(541\) −36.2843 −1.55998 −0.779991 0.625790i \(-0.784777\pi\)
−0.779991 + 0.625790i \(0.784777\pi\)
\(542\) 0 0
\(543\) 7.51472 0.322487
\(544\) 0 0
\(545\) −3.65685 −0.156642
\(546\) 0 0
\(547\) 39.0711 1.67056 0.835279 0.549826i \(-0.185306\pi\)
0.835279 + 0.549826i \(0.185306\pi\)
\(548\) 0 0
\(549\) −1.65685 −0.0707128
\(550\) 0 0
\(551\) 0.828427 0.0352922
\(552\) 0 0
\(553\) 25.9411 1.10313
\(554\) 0 0
\(555\) −14.4853 −0.614866
\(556\) 0 0
\(557\) 5.79899 0.245711 0.122856 0.992425i \(-0.460795\pi\)
0.122856 + 0.992425i \(0.460795\pi\)
\(558\) 0 0
\(559\) 9.65685 0.408441
\(560\) 0 0
\(561\) 5.65685 0.238833
\(562\) 0 0
\(563\) 4.24264 0.178806 0.0894030 0.995996i \(-0.471504\pi\)
0.0894030 + 0.995996i \(0.471504\pi\)
\(564\) 0 0
\(565\) −14.7279 −0.619608
\(566\) 0 0
\(567\) 14.1421 0.593914
\(568\) 0 0
\(569\) −31.9411 −1.33904 −0.669521 0.742793i \(-0.733501\pi\)
−0.669521 + 0.742793i \(0.733501\pi\)
\(570\) 0 0
\(571\) 30.4853 1.27577 0.637885 0.770132i \(-0.279810\pi\)
0.637885 + 0.770132i \(0.279810\pi\)
\(572\) 0 0
\(573\) 4.68629 0.195773
\(574\) 0 0
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) 44.6274 1.85786 0.928932 0.370251i \(-0.120728\pi\)
0.928932 + 0.370251i \(0.120728\pi\)
\(578\) 0 0
\(579\) −9.79899 −0.407232
\(580\) 0 0
\(581\) 22.6274 0.938743
\(582\) 0 0
\(583\) −10.8284 −0.448468
\(584\) 0 0
\(585\) 3.41421 0.141160
\(586\) 0 0
\(587\) 5.65685 0.233483 0.116742 0.993162i \(-0.462755\pi\)
0.116742 + 0.993162i \(0.462755\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −35.7990 −1.47257
\(592\) 0 0
\(593\) 16.6274 0.682806 0.341403 0.939917i \(-0.389098\pi\)
0.341403 + 0.939917i \(0.389098\pi\)
\(594\) 0 0
\(595\) −13.6569 −0.559876
\(596\) 0 0
\(597\) −8.00000 −0.327418
\(598\) 0 0
\(599\) 6.14214 0.250961 0.125480 0.992096i \(-0.459953\pi\)
0.125480 + 0.992096i \(0.459953\pi\)
\(600\) 0 0
\(601\) −14.4853 −0.590867 −0.295433 0.955363i \(-0.595464\pi\)
−0.295433 + 0.955363i \(0.595464\pi\)
\(602\) 0 0
\(603\) −9.41421 −0.383376
\(604\) 0 0
\(605\) −10.3137 −0.419312
\(606\) 0 0
\(607\) −7.75736 −0.314862 −0.157431 0.987530i \(-0.550321\pi\)
−0.157431 + 0.987530i \(0.550321\pi\)
\(608\) 0 0
\(609\) −3.31371 −0.134278
\(610\) 0 0
\(611\) 28.9706 1.17202
\(612\) 0 0
\(613\) −17.7990 −0.718894 −0.359447 0.933165i \(-0.617035\pi\)
−0.359447 + 0.933165i \(0.617035\pi\)
\(614\) 0 0
\(615\) −1.17157 −0.0472424
\(616\) 0 0
\(617\) −37.7990 −1.52173 −0.760865 0.648910i \(-0.775225\pi\)
−0.760865 + 0.648910i \(0.775225\pi\)
\(618\) 0 0
\(619\) −40.1421 −1.61345 −0.806724 0.590928i \(-0.798762\pi\)
−0.806724 + 0.590928i \(0.798762\pi\)
\(620\) 0 0
\(621\) −22.6274 −0.908007
\(622\) 0 0
\(623\) 8.97056 0.359398
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 1.17157 0.0467881
\(628\) 0 0
\(629\) −49.4558 −1.97193
\(630\) 0 0
\(631\) −34.4853 −1.37284 −0.686419 0.727207i \(-0.740818\pi\)
−0.686419 + 0.727207i \(0.740818\pi\)
\(632\) 0 0
\(633\) 23.3137 0.926637
\(634\) 0 0
\(635\) −13.4142 −0.532327
\(636\) 0 0
\(637\) −3.41421 −0.135276
\(638\) 0 0
\(639\) −15.3137 −0.605801
\(640\) 0 0
\(641\) 27.4558 1.08444 0.542220 0.840236i \(-0.317584\pi\)
0.542220 + 0.840236i \(0.317584\pi\)
\(642\) 0 0
\(643\) 35.3137 1.39264 0.696318 0.717733i \(-0.254820\pi\)
0.696318 + 0.717733i \(0.254820\pi\)
\(644\) 0 0
\(645\) −4.00000 −0.157500
\(646\) 0 0
\(647\) −16.6863 −0.656006 −0.328003 0.944677i \(-0.606376\pi\)
−0.328003 + 0.944677i \(0.606376\pi\)
\(648\) 0 0
\(649\) −2.34315 −0.0919765
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −12.1421 −0.475158 −0.237579 0.971368i \(-0.576354\pi\)
−0.237579 + 0.971368i \(0.576354\pi\)
\(654\) 0 0
\(655\) −7.31371 −0.285770
\(656\) 0 0
\(657\) −12.1421 −0.473710
\(658\) 0 0
\(659\) 28.4853 1.10963 0.554815 0.831974i \(-0.312789\pi\)
0.554815 + 0.831974i \(0.312789\pi\)
\(660\) 0 0
\(661\) −8.82843 −0.343386 −0.171693 0.985151i \(-0.554924\pi\)
−0.171693 + 0.985151i \(0.554924\pi\)
\(662\) 0 0
\(663\) −23.3137 −0.905429
\(664\) 0 0
\(665\) −2.82843 −0.109682
\(666\) 0 0
\(667\) 3.31371 0.128307
\(668\) 0 0
\(669\) 18.9706 0.733444
\(670\) 0 0
\(671\) 1.37258 0.0529880
\(672\) 0 0
\(673\) 8.38478 0.323209 0.161605 0.986856i \(-0.448333\pi\)
0.161605 + 0.986856i \(0.448333\pi\)
\(674\) 0 0
\(675\) −5.65685 −0.217732
\(676\) 0 0
\(677\) 7.61522 0.292677 0.146338 0.989235i \(-0.453251\pi\)
0.146338 + 0.989235i \(0.453251\pi\)
\(678\) 0 0
\(679\) 6.34315 0.243428
\(680\) 0 0
\(681\) −34.0000 −1.30288
\(682\) 0 0
\(683\) 9.89949 0.378794 0.189397 0.981901i \(-0.439347\pi\)
0.189397 + 0.981901i \(0.439347\pi\)
\(684\) 0 0
\(685\) −7.17157 −0.274012
\(686\) 0 0
\(687\) −16.0000 −0.610438
\(688\) 0 0
\(689\) 44.6274 1.70017
\(690\) 0 0
\(691\) 35.1716 1.33799 0.668995 0.743267i \(-0.266725\pi\)
0.668995 + 0.743267i \(0.266725\pi\)
\(692\) 0 0
\(693\) 2.34315 0.0890087
\(694\) 0 0
\(695\) 3.17157 0.120305
\(696\) 0 0
\(697\) −4.00000 −0.151511
\(698\) 0 0
\(699\) −14.1421 −0.534905
\(700\) 0 0
\(701\) 24.0000 0.906467 0.453234 0.891392i \(-0.350270\pi\)
0.453234 + 0.891392i \(0.350270\pi\)
\(702\) 0 0
\(703\) −10.2426 −0.386309
\(704\) 0 0
\(705\) −12.0000 −0.451946
\(706\) 0 0
\(707\) 49.9411 1.87823
\(708\) 0 0
\(709\) 18.2843 0.686680 0.343340 0.939211i \(-0.388442\pi\)
0.343340 + 0.939211i \(0.388442\pi\)
\(710\) 0 0
\(711\) 9.17157 0.343961
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −2.82843 −0.105777
\(716\) 0 0
\(717\) 11.3137 0.422518
\(718\) 0 0
\(719\) −31.4558 −1.17311 −0.586553 0.809911i \(-0.699515\pi\)
−0.586553 + 0.809911i \(0.699515\pi\)
\(720\) 0 0
\(721\) −23.3137 −0.868248
\(722\) 0 0
\(723\) 11.5147 0.428237
\(724\) 0 0
\(725\) 0.828427 0.0307670
\(726\) 0 0
\(727\) −41.4558 −1.53751 −0.768756 0.639542i \(-0.779124\pi\)
−0.768756 + 0.639542i \(0.779124\pi\)
\(728\) 0 0
\(729\) 29.0000 1.07407
\(730\) 0 0
\(731\) −13.6569 −0.505117
\(732\) 0 0
\(733\) −4.34315 −0.160418 −0.0802089 0.996778i \(-0.525559\pi\)
−0.0802089 + 0.996778i \(0.525559\pi\)
\(734\) 0 0
\(735\) 1.41421 0.0521641
\(736\) 0 0
\(737\) 7.79899 0.287279
\(738\) 0 0
\(739\) −0.686292 −0.0252456 −0.0126228 0.999920i \(-0.504018\pi\)
−0.0126228 + 0.999920i \(0.504018\pi\)
\(740\) 0 0
\(741\) −4.82843 −0.177377
\(742\) 0 0
\(743\) −15.7574 −0.578081 −0.289041 0.957317i \(-0.593336\pi\)
−0.289041 + 0.957317i \(0.593336\pi\)
\(744\) 0 0
\(745\) −1.65685 −0.0607024
\(746\) 0 0
\(747\) 8.00000 0.292705
\(748\) 0 0
\(749\) 4.00000 0.146157
\(750\) 0 0
\(751\) −44.4853 −1.62329 −0.811645 0.584150i \(-0.801428\pi\)
−0.811645 + 0.584150i \(0.801428\pi\)
\(752\) 0 0
\(753\) −40.9706 −1.49305
\(754\) 0 0
\(755\) 6.14214 0.223535
\(756\) 0 0
\(757\) 22.2843 0.809936 0.404968 0.914331i \(-0.367283\pi\)
0.404968 + 0.914331i \(0.367283\pi\)
\(758\) 0 0
\(759\) 4.68629 0.170102
\(760\) 0 0
\(761\) 1.37258 0.0497561 0.0248780 0.999690i \(-0.492080\pi\)
0.0248780 + 0.999690i \(0.492080\pi\)
\(762\) 0 0
\(763\) 10.3431 0.374447
\(764\) 0 0
\(765\) −4.82843 −0.174572
\(766\) 0 0
\(767\) 9.65685 0.348689
\(768\) 0 0
\(769\) 40.0000 1.44244 0.721218 0.692708i \(-0.243582\pi\)
0.721218 + 0.692708i \(0.243582\pi\)
\(770\) 0 0
\(771\) −5.79899 −0.208846
\(772\) 0 0
\(773\) 48.8701 1.75773 0.878867 0.477067i \(-0.158300\pi\)
0.878867 + 0.477067i \(0.158300\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 40.9706 1.46981
\(778\) 0 0
\(779\) −0.828427 −0.0296815
\(780\) 0 0
\(781\) 12.6863 0.453951
\(782\) 0 0
\(783\) −4.68629 −0.167474
\(784\) 0 0
\(785\) 10.4853 0.374236
\(786\) 0 0
\(787\) 1.41421 0.0504113 0.0252056 0.999682i \(-0.491976\pi\)
0.0252056 + 0.999682i \(0.491976\pi\)
\(788\) 0 0
\(789\) 38.6274 1.37517
\(790\) 0 0
\(791\) 41.6569 1.48115
\(792\) 0 0
\(793\) −5.65685 −0.200881
\(794\) 0 0
\(795\) −18.4853 −0.655605
\(796\) 0 0
\(797\) −27.6985 −0.981131 −0.490565 0.871404i \(-0.663210\pi\)
−0.490565 + 0.871404i \(0.663210\pi\)
\(798\) 0 0
\(799\) −40.9706 −1.44943
\(800\) 0 0
\(801\) 3.17157 0.112062
\(802\) 0 0
\(803\) 10.0589 0.354970
\(804\) 0 0
\(805\) −11.3137 −0.398756
\(806\) 0 0
\(807\) 41.4558 1.45931
\(808\) 0 0
\(809\) 38.0000 1.33601 0.668004 0.744157i \(-0.267149\pi\)
0.668004 + 0.744157i \(0.267149\pi\)
\(810\) 0 0
\(811\) 0.686292 0.0240990 0.0120495 0.999927i \(-0.496164\pi\)
0.0120495 + 0.999927i \(0.496164\pi\)
\(812\) 0 0
\(813\) −13.4558 −0.471917
\(814\) 0 0
\(815\) −14.8284 −0.519417
\(816\) 0 0
\(817\) −2.82843 −0.0989541
\(818\) 0 0
\(819\) −9.65685 −0.337438
\(820\) 0 0
\(821\) 49.5980 1.73098 0.865491 0.500925i \(-0.167007\pi\)
0.865491 + 0.500925i \(0.167007\pi\)
\(822\) 0 0
\(823\) −16.4853 −0.574641 −0.287320 0.957835i \(-0.592764\pi\)
−0.287320 + 0.957835i \(0.592764\pi\)
\(824\) 0 0
\(825\) 1.17157 0.0407889
\(826\) 0 0
\(827\) −13.6985 −0.476343 −0.238171 0.971223i \(-0.576548\pi\)
−0.238171 + 0.971223i \(0.576548\pi\)
\(828\) 0 0
\(829\) 49.5980 1.72261 0.861305 0.508089i \(-0.169648\pi\)
0.861305 + 0.508089i \(0.169648\pi\)
\(830\) 0 0
\(831\) −27.1127 −0.940529
\(832\) 0 0
\(833\) 4.82843 0.167295
\(834\) 0 0
\(835\) 2.10051 0.0726910
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0.201010 0.00693964 0.00346982 0.999994i \(-0.498896\pi\)
0.00346982 + 0.999994i \(0.498896\pi\)
\(840\) 0 0
\(841\) −28.3137 −0.976335
\(842\) 0 0
\(843\) 15.7990 0.544146
\(844\) 0 0
\(845\) −1.34315 −0.0462056
\(846\) 0 0
\(847\) 29.1716 1.00235
\(848\) 0 0
\(849\) −8.97056 −0.307869
\(850\) 0 0
\(851\) −40.9706 −1.40445
\(852\) 0 0
\(853\) 27.9411 0.956686 0.478343 0.878173i \(-0.341238\pi\)
0.478343 + 0.878173i \(0.341238\pi\)
\(854\) 0 0
\(855\) −1.00000 −0.0341993
\(856\) 0 0
\(857\) 31.2132 1.06622 0.533111 0.846045i \(-0.321023\pi\)
0.533111 + 0.846045i \(0.321023\pi\)
\(858\) 0 0
\(859\) −6.34315 −0.216425 −0.108213 0.994128i \(-0.534513\pi\)
−0.108213 + 0.994128i \(0.534513\pi\)
\(860\) 0 0
\(861\) 3.31371 0.112931
\(862\) 0 0
\(863\) −44.0416 −1.49919 −0.749597 0.661894i \(-0.769753\pi\)
−0.749597 + 0.661894i \(0.769753\pi\)
\(864\) 0 0
\(865\) 10.7279 0.364760
\(866\) 0 0
\(867\) 8.92893 0.303242
\(868\) 0 0
\(869\) −7.59798 −0.257744
\(870\) 0 0
\(871\) −32.1421 −1.08909
\(872\) 0 0
\(873\) 2.24264 0.0759019
\(874\) 0 0
\(875\) −2.82843 −0.0956183
\(876\) 0 0
\(877\) −18.7279 −0.632397 −0.316198 0.948693i \(-0.602407\pi\)
−0.316198 + 0.948693i \(0.602407\pi\)
\(878\) 0 0
\(879\) −45.7990 −1.54476
\(880\) 0 0
\(881\) −1.65685 −0.0558208 −0.0279104 0.999610i \(-0.508885\pi\)
−0.0279104 + 0.999610i \(0.508885\pi\)
\(882\) 0 0
\(883\) 10.8284 0.364406 0.182203 0.983261i \(-0.441677\pi\)
0.182203 + 0.983261i \(0.441677\pi\)
\(884\) 0 0
\(885\) −4.00000 −0.134459
\(886\) 0 0
\(887\) −15.2721 −0.512786 −0.256393 0.966573i \(-0.582534\pi\)
−0.256393 + 0.966573i \(0.582534\pi\)
\(888\) 0 0
\(889\) 37.9411 1.27250
\(890\) 0 0
\(891\) −4.14214 −0.138767
\(892\) 0 0
\(893\) −8.48528 −0.283949
\(894\) 0 0
\(895\) −8.48528 −0.283632
\(896\) 0 0
\(897\) −19.3137 −0.644866
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −63.1127 −2.10259
\(902\) 0 0
\(903\) 11.3137 0.376497
\(904\) 0 0
\(905\) 5.31371 0.176634
\(906\) 0 0
\(907\) −48.0416 −1.59520 −0.797598 0.603189i \(-0.793896\pi\)
−0.797598 + 0.603189i \(0.793896\pi\)
\(908\) 0 0
\(909\) 17.6569 0.585641
\(910\) 0 0
\(911\) −9.17157 −0.303868 −0.151934 0.988391i \(-0.548550\pi\)
−0.151934 + 0.988391i \(0.548550\pi\)
\(912\) 0 0
\(913\) −6.62742 −0.219335
\(914\) 0 0
\(915\) 2.34315 0.0774620
\(916\) 0 0
\(917\) 20.6863 0.683122
\(918\) 0 0
\(919\) −17.9411 −0.591823 −0.295912 0.955215i \(-0.595623\pi\)
−0.295912 + 0.955215i \(0.595623\pi\)
\(920\) 0 0
\(921\) −2.00000 −0.0659022
\(922\) 0 0
\(923\) −52.2843 −1.72096
\(924\) 0 0
\(925\) −10.2426 −0.336776
\(926\) 0 0
\(927\) −8.24264 −0.270724
\(928\) 0 0
\(929\) 41.3137 1.35546 0.677729 0.735311i \(-0.262964\pi\)
0.677729 + 0.735311i \(0.262964\pi\)
\(930\) 0 0
\(931\) 1.00000 0.0327737
\(932\) 0 0
\(933\) 27.1127 0.887630
\(934\) 0 0
\(935\) 4.00000 0.130814
\(936\) 0 0
\(937\) 55.4558 1.81166 0.905832 0.423638i \(-0.139247\pi\)
0.905832 + 0.423638i \(0.139247\pi\)
\(938\) 0 0
\(939\) −7.51472 −0.245234
\(940\) 0 0
\(941\) −21.5980 −0.704074 −0.352037 0.935986i \(-0.614511\pi\)
−0.352037 + 0.935986i \(0.614511\pi\)
\(942\) 0 0
\(943\) −3.31371 −0.107909
\(944\) 0 0
\(945\) 16.0000 0.520480
\(946\) 0 0
\(947\) −47.3137 −1.53749 −0.768744 0.639556i \(-0.779118\pi\)
−0.768744 + 0.639556i \(0.779118\pi\)
\(948\) 0 0
\(949\) −41.4558 −1.34571
\(950\) 0 0
\(951\) −0.142136 −0.00460906
\(952\) 0 0
\(953\) −34.7279 −1.12495 −0.562474 0.826815i \(-0.690150\pi\)
−0.562474 + 0.826815i \(0.690150\pi\)
\(954\) 0 0
\(955\) 3.31371 0.107229
\(956\) 0 0
\(957\) 0.970563 0.0313738
\(958\) 0 0
\(959\) 20.2843 0.655013
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 1.41421 0.0455724
\(964\) 0 0
\(965\) −6.92893 −0.223050
\(966\) 0 0
\(967\) 37.6569 1.21096 0.605481 0.795859i \(-0.292981\pi\)
0.605481 + 0.795859i \(0.292981\pi\)
\(968\) 0 0
\(969\) 6.82843 0.219361
\(970\) 0 0
\(971\) −25.9411 −0.832490 −0.416245 0.909252i \(-0.636654\pi\)
−0.416245 + 0.909252i \(0.636654\pi\)
\(972\) 0 0
\(973\) −8.97056 −0.287583
\(974\) 0 0
\(975\) −4.82843 −0.154633
\(976\) 0 0
\(977\) −53.8406 −1.72251 −0.861257 0.508170i \(-0.830322\pi\)
−0.861257 + 0.508170i \(0.830322\pi\)
\(978\) 0 0
\(979\) −2.62742 −0.0839726
\(980\) 0 0
\(981\) 3.65685 0.116754
\(982\) 0 0
\(983\) 4.04163 0.128908 0.0644540 0.997921i \(-0.479469\pi\)
0.0644540 + 0.997921i \(0.479469\pi\)
\(984\) 0 0
\(985\) −25.3137 −0.806562
\(986\) 0 0
\(987\) 33.9411 1.08036
\(988\) 0 0
\(989\) −11.3137 −0.359755
\(990\) 0 0
\(991\) 44.7696 1.42215 0.711076 0.703115i \(-0.248208\pi\)
0.711076 + 0.703115i \(0.248208\pi\)
\(992\) 0 0
\(993\) 24.6863 0.783396
\(994\) 0 0
\(995\) −5.65685 −0.179334
\(996\) 0 0
\(997\) −12.8284 −0.406280 −0.203140 0.979150i \(-0.565115\pi\)
−0.203140 + 0.979150i \(0.565115\pi\)
\(998\) 0 0
\(999\) 57.9411 1.83318
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6080.2.a.bf.1.2 2
4.3 odd 2 6080.2.a.bg.1.1 2
8.3 odd 2 1520.2.a.m.1.2 2
8.5 even 2 760.2.a.f.1.1 2
24.5 odd 2 6840.2.a.z.1.1 2
40.13 odd 4 3800.2.d.i.3649.1 4
40.19 odd 2 7600.2.a.ba.1.1 2
40.29 even 2 3800.2.a.n.1.2 2
40.37 odd 4 3800.2.d.i.3649.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.a.f.1.1 2 8.5 even 2
1520.2.a.m.1.2 2 8.3 odd 2
3800.2.a.n.1.2 2 40.29 even 2
3800.2.d.i.3649.1 4 40.13 odd 4
3800.2.d.i.3649.3 4 40.37 odd 4
6080.2.a.bf.1.2 2 1.1 even 1 trivial
6080.2.a.bg.1.1 2 4.3 odd 2
6840.2.a.z.1.1 2 24.5 odd 2
7600.2.a.ba.1.1 2 40.19 odd 2