Properties

Label 608.4.b
Level 608608
Weight 44
Character orbit 608.b
Rep. character χ608(303,)\chi_{608}(303,\cdot)
Character field Q\Q
Dimension 5858
Newform subspaces 22
Sturm bound 320320
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 608=2519 608 = 2^{5} \cdot 19
Weight: k k == 4 4
Character orbit: [χ][\chi] == 608.b (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 152 152
Character field: Q\Q
Newform subspaces: 2 2
Sturm bound: 320320
Trace bound: 11
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M4(608,[χ])M_{4}(608, [\chi]).

Total New Old
Modular forms 248 62 186
Cusp forms 232 58 174
Eisenstein series 16 4 12

Trace form

58q490q9+4q114q1722q191254q2540q35+4q432978q49288q57+428q73+2586q812676q83+5468q99+O(q100) 58 q - 490 q^{9} + 4 q^{11} - 4 q^{17} - 22 q^{19} - 1254 q^{25} - 40 q^{35} + 4 q^{43} - 2978 q^{49} - 288 q^{57} + 428 q^{73} + 2586 q^{81} - 2676 q^{83} + 5468 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(608,[χ])S_{4}^{\mathrm{new}}(608, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
608.4.b.a 608.b 152.b 22 35.87335.873 Q(2)\Q(\sqrt{-2}) Q(2)\Q(\sqrt{-2}) 152.4.b.a 00 00 00 00 U(1)[D2]\mathrm{U}(1)[D_{2}] q+2βq3+19q918q11+90q17+q+2\beta q^{3}+19q^{9}-18q^{11}+90q^{17}+\cdots
608.4.b.b 608.b 152.b 5656 35.87335.873 None 152.4.b.b 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Decomposition of S4old(608,[χ])S_{4}^{\mathrm{old}}(608, [\chi]) into lower level spaces

S4old(608,[χ]) S_{4}^{\mathrm{old}}(608, [\chi]) \simeq S4new(152,[χ])S_{4}^{\mathrm{new}}(152, [\chi])3^{\oplus 3}