Properties

Label 608.4.a.e.1.1
Level $608$
Weight $4$
Character 608.1
Self dual yes
Analytic conductor $35.873$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [608,4,Mod(1,608)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(608, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("608.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 608 = 2^{5} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 608.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.8731612835\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 28x^{3} - 8x^{2} + 73x - 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.35870\) of defining polynomial
Character \(\chi\) \(=\) 608.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.68562 q^{3} -15.2627 q^{5} +2.79440 q^{7} +32.0687 q^{9} +0.456205 q^{11} -0.618515 q^{13} +117.303 q^{15} +12.2449 q^{17} +19.0000 q^{19} -21.4767 q^{21} +116.067 q^{23} +107.949 q^{25} -38.9560 q^{27} +100.701 q^{29} +206.884 q^{31} -3.50622 q^{33} -42.6500 q^{35} -212.785 q^{37} +4.75367 q^{39} -42.1719 q^{41} +34.2379 q^{43} -489.453 q^{45} +393.638 q^{47} -335.191 q^{49} -94.1097 q^{51} -497.486 q^{53} -6.96291 q^{55} -146.027 q^{57} +82.9196 q^{59} -655.685 q^{61} +89.6128 q^{63} +9.44018 q^{65} +88.1809 q^{67} -892.045 q^{69} -430.377 q^{71} +65.8355 q^{73} -829.651 q^{75} +1.27482 q^{77} -528.469 q^{79} -566.454 q^{81} -592.763 q^{83} -186.890 q^{85} -773.950 q^{87} +1151.89 q^{89} -1.72838 q^{91} -1590.03 q^{93} -289.990 q^{95} -51.7168 q^{97} +14.6299 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 6 q^{3} + 5 q^{5} + 7 q^{7} - 5 q^{9} - 13 q^{11} - 72 q^{13} + 72 q^{15} - 59 q^{17} + 95 q^{19} - 224 q^{21} + 52 q^{23} - 86 q^{25} - 54 q^{27} - 128 q^{29} - 110 q^{31} - 68 q^{33} + 45 q^{35}+ \cdots - 601 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −7.68562 −1.47910 −0.739549 0.673103i \(-0.764961\pi\)
−0.739549 + 0.673103i \(0.764961\pi\)
\(4\) 0 0
\(5\) −15.2627 −1.36513 −0.682567 0.730823i \(-0.739136\pi\)
−0.682567 + 0.730823i \(0.739136\pi\)
\(6\) 0 0
\(7\) 2.79440 0.150883 0.0754417 0.997150i \(-0.475963\pi\)
0.0754417 + 0.997150i \(0.475963\pi\)
\(8\) 0 0
\(9\) 32.0687 1.18773
\(10\) 0 0
\(11\) 0.456205 0.0125046 0.00625232 0.999980i \(-0.498010\pi\)
0.00625232 + 0.999980i \(0.498010\pi\)
\(12\) 0 0
\(13\) −0.618515 −0.0131958 −0.00659789 0.999978i \(-0.502100\pi\)
−0.00659789 + 0.999978i \(0.502100\pi\)
\(14\) 0 0
\(15\) 117.303 2.01916
\(16\) 0 0
\(17\) 12.2449 0.174696 0.0873479 0.996178i \(-0.472161\pi\)
0.0873479 + 0.996178i \(0.472161\pi\)
\(18\) 0 0
\(19\) 19.0000 0.229416
\(20\) 0 0
\(21\) −21.4767 −0.223171
\(22\) 0 0
\(23\) 116.067 1.05224 0.526122 0.850409i \(-0.323645\pi\)
0.526122 + 0.850409i \(0.323645\pi\)
\(24\) 0 0
\(25\) 107.949 0.863588
\(26\) 0 0
\(27\) −38.9560 −0.277670
\(28\) 0 0
\(29\) 100.701 0.644818 0.322409 0.946600i \(-0.395507\pi\)
0.322409 + 0.946600i \(0.395507\pi\)
\(30\) 0 0
\(31\) 206.884 1.19863 0.599315 0.800513i \(-0.295440\pi\)
0.599315 + 0.800513i \(0.295440\pi\)
\(32\) 0 0
\(33\) −3.50622 −0.0184956
\(34\) 0 0
\(35\) −42.6500 −0.205976
\(36\) 0 0
\(37\) −212.785 −0.945450 −0.472725 0.881210i \(-0.656730\pi\)
−0.472725 + 0.881210i \(0.656730\pi\)
\(38\) 0 0
\(39\) 4.75367 0.0195179
\(40\) 0 0
\(41\) −42.1719 −0.160638 −0.0803189 0.996769i \(-0.525594\pi\)
−0.0803189 + 0.996769i \(0.525594\pi\)
\(42\) 0 0
\(43\) 34.2379 0.121424 0.0607120 0.998155i \(-0.480663\pi\)
0.0607120 + 0.998155i \(0.480663\pi\)
\(44\) 0 0
\(45\) −489.453 −1.62141
\(46\) 0 0
\(47\) 393.638 1.22166 0.610829 0.791762i \(-0.290836\pi\)
0.610829 + 0.791762i \(0.290836\pi\)
\(48\) 0 0
\(49\) −335.191 −0.977234
\(50\) 0 0
\(51\) −94.1097 −0.258392
\(52\) 0 0
\(53\) −497.486 −1.28934 −0.644670 0.764461i \(-0.723005\pi\)
−0.644670 + 0.764461i \(0.723005\pi\)
\(54\) 0 0
\(55\) −6.96291 −0.0170705
\(56\) 0 0
\(57\) −146.027 −0.339328
\(58\) 0 0
\(59\) 82.9196 0.182970 0.0914849 0.995806i \(-0.470839\pi\)
0.0914849 + 0.995806i \(0.470839\pi\)
\(60\) 0 0
\(61\) −655.685 −1.37626 −0.688130 0.725588i \(-0.741568\pi\)
−0.688130 + 0.725588i \(0.741568\pi\)
\(62\) 0 0
\(63\) 89.6128 0.179209
\(64\) 0 0
\(65\) 9.44018 0.0180140
\(66\) 0 0
\(67\) 88.1809 0.160791 0.0803956 0.996763i \(-0.474382\pi\)
0.0803956 + 0.996763i \(0.474382\pi\)
\(68\) 0 0
\(69\) −892.045 −1.55637
\(70\) 0 0
\(71\) −430.377 −0.719386 −0.359693 0.933071i \(-0.617119\pi\)
−0.359693 + 0.933071i \(0.617119\pi\)
\(72\) 0 0
\(73\) 65.8355 0.105554 0.0527771 0.998606i \(-0.483193\pi\)
0.0527771 + 0.998606i \(0.483193\pi\)
\(74\) 0 0
\(75\) −829.651 −1.27733
\(76\) 0 0
\(77\) 1.27482 0.00188675
\(78\) 0 0
\(79\) −528.469 −0.752626 −0.376313 0.926493i \(-0.622808\pi\)
−0.376313 + 0.926493i \(0.622808\pi\)
\(80\) 0 0
\(81\) −566.454 −0.777029
\(82\) 0 0
\(83\) −592.763 −0.783906 −0.391953 0.919985i \(-0.628200\pi\)
−0.391953 + 0.919985i \(0.628200\pi\)
\(84\) 0 0
\(85\) −186.890 −0.238483
\(86\) 0 0
\(87\) −773.950 −0.953749
\(88\) 0 0
\(89\) 1151.89 1.37191 0.685955 0.727644i \(-0.259385\pi\)
0.685955 + 0.727644i \(0.259385\pi\)
\(90\) 0 0
\(91\) −1.72838 −0.00199103
\(92\) 0 0
\(93\) −1590.03 −1.77289
\(94\) 0 0
\(95\) −289.990 −0.313183
\(96\) 0 0
\(97\) −51.7168 −0.0541345 −0.0270673 0.999634i \(-0.508617\pi\)
−0.0270673 + 0.999634i \(0.508617\pi\)
\(98\) 0 0
\(99\) 14.6299 0.0148521
\(100\) 0 0
\(101\) 1656.63 1.63209 0.816044 0.577990i \(-0.196163\pi\)
0.816044 + 0.577990i \(0.196163\pi\)
\(102\) 0 0
\(103\) −157.395 −0.150569 −0.0752843 0.997162i \(-0.523986\pi\)
−0.0752843 + 0.997162i \(0.523986\pi\)
\(104\) 0 0
\(105\) 327.791 0.304659
\(106\) 0 0
\(107\) −943.505 −0.852449 −0.426225 0.904617i \(-0.640157\pi\)
−0.426225 + 0.904617i \(0.640157\pi\)
\(108\) 0 0
\(109\) 978.577 0.859915 0.429957 0.902849i \(-0.358529\pi\)
0.429957 + 0.902849i \(0.358529\pi\)
\(110\) 0 0
\(111\) 1635.38 1.39841
\(112\) 0 0
\(113\) −979.602 −0.815515 −0.407758 0.913090i \(-0.633689\pi\)
−0.407758 + 0.913090i \(0.633689\pi\)
\(114\) 0 0
\(115\) −1771.49 −1.43645
\(116\) 0 0
\(117\) −19.8350 −0.0156730
\(118\) 0 0
\(119\) 34.2172 0.0263587
\(120\) 0 0
\(121\) −1330.79 −0.999844
\(122\) 0 0
\(123\) 324.117 0.237599
\(124\) 0 0
\(125\) 260.251 0.186220
\(126\) 0 0
\(127\) 1327.42 0.927473 0.463737 0.885973i \(-0.346508\pi\)
0.463737 + 0.885973i \(0.346508\pi\)
\(128\) 0 0
\(129\) −263.139 −0.179598
\(130\) 0 0
\(131\) 2034.30 1.35678 0.678388 0.734704i \(-0.262679\pi\)
0.678388 + 0.734704i \(0.262679\pi\)
\(132\) 0 0
\(133\) 53.0936 0.0346150
\(134\) 0 0
\(135\) 594.571 0.379056
\(136\) 0 0
\(137\) −1715.79 −1.07000 −0.535001 0.844852i \(-0.679689\pi\)
−0.535001 + 0.844852i \(0.679689\pi\)
\(138\) 0 0
\(139\) −1762.30 −1.07537 −0.537683 0.843147i \(-0.680700\pi\)
−0.537683 + 0.843147i \(0.680700\pi\)
\(140\) 0 0
\(141\) −3025.35 −1.80695
\(142\) 0 0
\(143\) −0.282170 −0.000165009 0
\(144\) 0 0
\(145\) −1536.97 −0.880263
\(146\) 0 0
\(147\) 2576.15 1.44542
\(148\) 0 0
\(149\) 2065.65 1.13574 0.567869 0.823119i \(-0.307768\pi\)
0.567869 + 0.823119i \(0.307768\pi\)
\(150\) 0 0
\(151\) −1177.09 −0.634372 −0.317186 0.948363i \(-0.602738\pi\)
−0.317186 + 0.948363i \(0.602738\pi\)
\(152\) 0 0
\(153\) 392.678 0.207491
\(154\) 0 0
\(155\) −3157.61 −1.63629
\(156\) 0 0
\(157\) −1802.51 −0.916279 −0.458140 0.888880i \(-0.651484\pi\)
−0.458140 + 0.888880i \(0.651484\pi\)
\(158\) 0 0
\(159\) 3823.49 1.90706
\(160\) 0 0
\(161\) 324.337 0.158766
\(162\) 0 0
\(163\) −2084.81 −1.00181 −0.500904 0.865503i \(-0.666999\pi\)
−0.500904 + 0.865503i \(0.666999\pi\)
\(164\) 0 0
\(165\) 53.5142 0.0252489
\(166\) 0 0
\(167\) −939.440 −0.435306 −0.217653 0.976026i \(-0.569840\pi\)
−0.217653 + 0.976026i \(0.569840\pi\)
\(168\) 0 0
\(169\) −2196.62 −0.999826
\(170\) 0 0
\(171\) 609.305 0.272484
\(172\) 0 0
\(173\) −214.271 −0.0941662 −0.0470831 0.998891i \(-0.514993\pi\)
−0.0470831 + 0.998891i \(0.514993\pi\)
\(174\) 0 0
\(175\) 301.651 0.130301
\(176\) 0 0
\(177\) −637.288 −0.270630
\(178\) 0 0
\(179\) 2644.23 1.10413 0.552064 0.833802i \(-0.313840\pi\)
0.552064 + 0.833802i \(0.313840\pi\)
\(180\) 0 0
\(181\) 1405.73 0.577278 0.288639 0.957438i \(-0.406797\pi\)
0.288639 + 0.957438i \(0.406797\pi\)
\(182\) 0 0
\(183\) 5039.34 2.03562
\(184\) 0 0
\(185\) 3247.66 1.29066
\(186\) 0 0
\(187\) 5.58620 0.00218451
\(188\) 0 0
\(189\) −108.859 −0.0418957
\(190\) 0 0
\(191\) −159.777 −0.0605292 −0.0302646 0.999542i \(-0.509635\pi\)
−0.0302646 + 0.999542i \(0.509635\pi\)
\(192\) 0 0
\(193\) −1991.99 −0.742936 −0.371468 0.928446i \(-0.621145\pi\)
−0.371468 + 0.928446i \(0.621145\pi\)
\(194\) 0 0
\(195\) −72.5536 −0.0266445
\(196\) 0 0
\(197\) 3947.92 1.42781 0.713904 0.700244i \(-0.246925\pi\)
0.713904 + 0.700244i \(0.246925\pi\)
\(198\) 0 0
\(199\) 5073.60 1.80733 0.903663 0.428245i \(-0.140868\pi\)
0.903663 + 0.428245i \(0.140868\pi\)
\(200\) 0 0
\(201\) −677.725 −0.237826
\(202\) 0 0
\(203\) 281.399 0.0972924
\(204\) 0 0
\(205\) 643.656 0.219292
\(206\) 0 0
\(207\) 3722.11 1.24978
\(208\) 0 0
\(209\) 8.66790 0.00286876
\(210\) 0 0
\(211\) −1782.72 −0.581646 −0.290823 0.956777i \(-0.593929\pi\)
−0.290823 + 0.956777i \(0.593929\pi\)
\(212\) 0 0
\(213\) 3307.71 1.06404
\(214\) 0 0
\(215\) −522.561 −0.165760
\(216\) 0 0
\(217\) 578.118 0.180854
\(218\) 0 0
\(219\) −505.986 −0.156125
\(220\) 0 0
\(221\) −7.57366 −0.00230525
\(222\) 0 0
\(223\) 602.235 0.180846 0.0904230 0.995903i \(-0.471178\pi\)
0.0904230 + 0.995903i \(0.471178\pi\)
\(224\) 0 0
\(225\) 3461.77 1.02571
\(226\) 0 0
\(227\) −3549.26 −1.03776 −0.518882 0.854846i \(-0.673652\pi\)
−0.518882 + 0.854846i \(0.673652\pi\)
\(228\) 0 0
\(229\) 664.711 0.191814 0.0959069 0.995390i \(-0.469425\pi\)
0.0959069 + 0.995390i \(0.469425\pi\)
\(230\) 0 0
\(231\) −9.79779 −0.00279068
\(232\) 0 0
\(233\) 597.040 0.167869 0.0839344 0.996471i \(-0.473251\pi\)
0.0839344 + 0.996471i \(0.473251\pi\)
\(234\) 0 0
\(235\) −6007.96 −1.66773
\(236\) 0 0
\(237\) 4061.61 1.11321
\(238\) 0 0
\(239\) −6306.26 −1.70677 −0.853385 0.521281i \(-0.825454\pi\)
−0.853385 + 0.521281i \(0.825454\pi\)
\(240\) 0 0
\(241\) −5991.75 −1.60150 −0.800752 0.598995i \(-0.795567\pi\)
−0.800752 + 0.598995i \(0.795567\pi\)
\(242\) 0 0
\(243\) 5405.36 1.42697
\(244\) 0 0
\(245\) 5115.91 1.33405
\(246\) 0 0
\(247\) −11.7518 −0.00302732
\(248\) 0 0
\(249\) 4555.75 1.15947
\(250\) 0 0
\(251\) −6010.68 −1.51152 −0.755759 0.654850i \(-0.772732\pi\)
−0.755759 + 0.654850i \(0.772732\pi\)
\(252\) 0 0
\(253\) 52.9503 0.0131579
\(254\) 0 0
\(255\) 1436.36 0.352739
\(256\) 0 0
\(257\) −1646.63 −0.399664 −0.199832 0.979830i \(-0.564040\pi\)
−0.199832 + 0.979830i \(0.564040\pi\)
\(258\) 0 0
\(259\) −594.607 −0.142653
\(260\) 0 0
\(261\) 3229.35 0.765869
\(262\) 0 0
\(263\) 1824.24 0.427708 0.213854 0.976866i \(-0.431398\pi\)
0.213854 + 0.976866i \(0.431398\pi\)
\(264\) 0 0
\(265\) 7592.96 1.76012
\(266\) 0 0
\(267\) −8852.97 −2.02919
\(268\) 0 0
\(269\) 4156.89 0.942193 0.471097 0.882082i \(-0.343858\pi\)
0.471097 + 0.882082i \(0.343858\pi\)
\(270\) 0 0
\(271\) −790.092 −0.177102 −0.0885510 0.996072i \(-0.528224\pi\)
−0.0885510 + 0.996072i \(0.528224\pi\)
\(272\) 0 0
\(273\) 13.2837 0.00294492
\(274\) 0 0
\(275\) 49.2467 0.0107989
\(276\) 0 0
\(277\) −2474.69 −0.536785 −0.268393 0.963310i \(-0.586492\pi\)
−0.268393 + 0.963310i \(0.586492\pi\)
\(278\) 0 0
\(279\) 6634.51 1.42365
\(280\) 0 0
\(281\) 5244.82 1.11345 0.556726 0.830696i \(-0.312057\pi\)
0.556726 + 0.830696i \(0.312057\pi\)
\(282\) 0 0
\(283\) 4045.21 0.849691 0.424846 0.905266i \(-0.360328\pi\)
0.424846 + 0.905266i \(0.360328\pi\)
\(284\) 0 0
\(285\) 2228.75 0.463228
\(286\) 0 0
\(287\) −117.845 −0.0242376
\(288\) 0 0
\(289\) −4763.06 −0.969481
\(290\) 0 0
\(291\) 397.476 0.0800702
\(292\) 0 0
\(293\) −6654.39 −1.32680 −0.663402 0.748264i \(-0.730888\pi\)
−0.663402 + 0.748264i \(0.730888\pi\)
\(294\) 0 0
\(295\) −1265.57 −0.249778
\(296\) 0 0
\(297\) −17.7719 −0.00347216
\(298\) 0 0
\(299\) −71.7891 −0.0138852
\(300\) 0 0
\(301\) 95.6745 0.0183209
\(302\) 0 0
\(303\) −12732.2 −2.41402
\(304\) 0 0
\(305\) 10007.5 1.87878
\(306\) 0 0
\(307\) −5788.70 −1.07615 −0.538075 0.842897i \(-0.680848\pi\)
−0.538075 + 0.842897i \(0.680848\pi\)
\(308\) 0 0
\(309\) 1209.68 0.222706
\(310\) 0 0
\(311\) 7503.90 1.36819 0.684095 0.729393i \(-0.260197\pi\)
0.684095 + 0.729393i \(0.260197\pi\)
\(312\) 0 0
\(313\) 10133.5 1.82997 0.914983 0.403492i \(-0.132204\pi\)
0.914983 + 0.403492i \(0.132204\pi\)
\(314\) 0 0
\(315\) −1367.73 −0.244644
\(316\) 0 0
\(317\) −8752.21 −1.55070 −0.775352 0.631529i \(-0.782428\pi\)
−0.775352 + 0.631529i \(0.782428\pi\)
\(318\) 0 0
\(319\) 45.9404 0.00806322
\(320\) 0 0
\(321\) 7251.41 1.26086
\(322\) 0 0
\(323\) 232.653 0.0400779
\(324\) 0 0
\(325\) −66.7678 −0.0113957
\(326\) 0 0
\(327\) −7520.97 −1.27190
\(328\) 0 0
\(329\) 1099.98 0.184328
\(330\) 0 0
\(331\) −6268.49 −1.04093 −0.520464 0.853883i \(-0.674241\pi\)
−0.520464 + 0.853883i \(0.674241\pi\)
\(332\) 0 0
\(333\) −6823.74 −1.12294
\(334\) 0 0
\(335\) −1345.87 −0.219501
\(336\) 0 0
\(337\) −8373.12 −1.35345 −0.676725 0.736236i \(-0.736602\pi\)
−0.676725 + 0.736236i \(0.736602\pi\)
\(338\) 0 0
\(339\) 7528.85 1.20623
\(340\) 0 0
\(341\) 94.3818 0.0149885
\(342\) 0 0
\(343\) −1895.14 −0.298332
\(344\) 0 0
\(345\) 13615.0 2.12465
\(346\) 0 0
\(347\) 3172.02 0.490729 0.245365 0.969431i \(-0.421092\pi\)
0.245365 + 0.969431i \(0.421092\pi\)
\(348\) 0 0
\(349\) 7706.05 1.18194 0.590968 0.806695i \(-0.298746\pi\)
0.590968 + 0.806695i \(0.298746\pi\)
\(350\) 0 0
\(351\) 24.0948 0.00366407
\(352\) 0 0
\(353\) −9170.03 −1.38264 −0.691319 0.722550i \(-0.742970\pi\)
−0.691319 + 0.722550i \(0.742970\pi\)
\(354\) 0 0
\(355\) 6568.70 0.982057
\(356\) 0 0
\(357\) −262.980 −0.0389871
\(358\) 0 0
\(359\) −3545.04 −0.521171 −0.260585 0.965451i \(-0.583916\pi\)
−0.260585 + 0.965451i \(0.583916\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) 0 0
\(363\) 10228.0 1.47887
\(364\) 0 0
\(365\) −1004.82 −0.144096
\(366\) 0 0
\(367\) −10096.4 −1.43604 −0.718021 0.696021i \(-0.754952\pi\)
−0.718021 + 0.696021i \(0.754952\pi\)
\(368\) 0 0
\(369\) −1352.40 −0.190794
\(370\) 0 0
\(371\) −1390.18 −0.194540
\(372\) 0 0
\(373\) −8445.91 −1.17242 −0.586210 0.810159i \(-0.699381\pi\)
−0.586210 + 0.810159i \(0.699381\pi\)
\(374\) 0 0
\(375\) −2000.19 −0.275438
\(376\) 0 0
\(377\) −62.2852 −0.00850888
\(378\) 0 0
\(379\) 4057.60 0.549933 0.274967 0.961454i \(-0.411333\pi\)
0.274967 + 0.961454i \(0.411333\pi\)
\(380\) 0 0
\(381\) −10202.0 −1.37182
\(382\) 0 0
\(383\) −1348.64 −0.179927 −0.0899637 0.995945i \(-0.528675\pi\)
−0.0899637 + 0.995945i \(0.528675\pi\)
\(384\) 0 0
\(385\) −19.4572 −0.00257566
\(386\) 0 0
\(387\) 1097.96 0.144219
\(388\) 0 0
\(389\) 1764.98 0.230047 0.115024 0.993363i \(-0.463306\pi\)
0.115024 + 0.993363i \(0.463306\pi\)
\(390\) 0 0
\(391\) 1421.23 0.183823
\(392\) 0 0
\(393\) −15634.9 −2.00680
\(394\) 0 0
\(395\) 8065.85 1.02743
\(396\) 0 0
\(397\) 1813.78 0.229297 0.114648 0.993406i \(-0.463426\pi\)
0.114648 + 0.993406i \(0.463426\pi\)
\(398\) 0 0
\(399\) −408.057 −0.0511990
\(400\) 0 0
\(401\) 1987.91 0.247560 0.123780 0.992310i \(-0.460498\pi\)
0.123780 + 0.992310i \(0.460498\pi\)
\(402\) 0 0
\(403\) −127.961 −0.0158169
\(404\) 0 0
\(405\) 8645.59 1.06075
\(406\) 0 0
\(407\) −97.0737 −0.0118225
\(408\) 0 0
\(409\) −9369.41 −1.13273 −0.566366 0.824154i \(-0.691651\pi\)
−0.566366 + 0.824154i \(0.691651\pi\)
\(410\) 0 0
\(411\) 13186.9 1.58264
\(412\) 0 0
\(413\) 231.711 0.0276071
\(414\) 0 0
\(415\) 9047.14 1.07014
\(416\) 0 0
\(417\) 13544.3 1.59057
\(418\) 0 0
\(419\) −3469.26 −0.404497 −0.202249 0.979334i \(-0.564825\pi\)
−0.202249 + 0.979334i \(0.564825\pi\)
\(420\) 0 0
\(421\) −6978.44 −0.807858 −0.403929 0.914790i \(-0.632356\pi\)
−0.403929 + 0.914790i \(0.632356\pi\)
\(422\) 0 0
\(423\) 12623.4 1.45100
\(424\) 0 0
\(425\) 1321.82 0.150865
\(426\) 0 0
\(427\) −1832.25 −0.207655
\(428\) 0 0
\(429\) 2.16865 0.000244064 0
\(430\) 0 0
\(431\) 141.266 0.0157878 0.00789391 0.999969i \(-0.497487\pi\)
0.00789391 + 0.999969i \(0.497487\pi\)
\(432\) 0 0
\(433\) 4320.19 0.479480 0.239740 0.970837i \(-0.422938\pi\)
0.239740 + 0.970837i \(0.422938\pi\)
\(434\) 0 0
\(435\) 11812.5 1.30199
\(436\) 0 0
\(437\) 2205.27 0.241401
\(438\) 0 0
\(439\) 14353.3 1.56047 0.780234 0.625488i \(-0.215100\pi\)
0.780234 + 0.625488i \(0.215100\pi\)
\(440\) 0 0
\(441\) −10749.1 −1.16069
\(442\) 0 0
\(443\) 10320.9 1.10691 0.553453 0.832881i \(-0.313310\pi\)
0.553453 + 0.832881i \(0.313310\pi\)
\(444\) 0 0
\(445\) −17580.9 −1.87284
\(446\) 0 0
\(447\) −15875.8 −1.67987
\(448\) 0 0
\(449\) −15853.2 −1.66628 −0.833140 0.553062i \(-0.813459\pi\)
−0.833140 + 0.553062i \(0.813459\pi\)
\(450\) 0 0
\(451\) −19.2391 −0.00200872
\(452\) 0 0
\(453\) 9046.65 0.938298
\(454\) 0 0
\(455\) 26.3797 0.00271802
\(456\) 0 0
\(457\) 6963.89 0.712816 0.356408 0.934330i \(-0.384001\pi\)
0.356408 + 0.934330i \(0.384001\pi\)
\(458\) 0 0
\(459\) −477.012 −0.0485077
\(460\) 0 0
\(461\) 9994.12 1.00970 0.504851 0.863207i \(-0.331547\pi\)
0.504851 + 0.863207i \(0.331547\pi\)
\(462\) 0 0
\(463\) −3474.18 −0.348723 −0.174362 0.984682i \(-0.555786\pi\)
−0.174362 + 0.984682i \(0.555786\pi\)
\(464\) 0 0
\(465\) 24268.1 2.42023
\(466\) 0 0
\(467\) −6248.92 −0.619199 −0.309599 0.950867i \(-0.600195\pi\)
−0.309599 + 0.950867i \(0.600195\pi\)
\(468\) 0 0
\(469\) 246.413 0.0242607
\(470\) 0 0
\(471\) 13853.4 1.35527
\(472\) 0 0
\(473\) 15.6195 0.00151836
\(474\) 0 0
\(475\) 2051.02 0.198121
\(476\) 0 0
\(477\) −15953.7 −1.53139
\(478\) 0 0
\(479\) −6277.23 −0.598777 −0.299388 0.954131i \(-0.596783\pi\)
−0.299388 + 0.954131i \(0.596783\pi\)
\(480\) 0 0
\(481\) 131.611 0.0124760
\(482\) 0 0
\(483\) −2492.73 −0.234831
\(484\) 0 0
\(485\) 789.336 0.0739008
\(486\) 0 0
\(487\) −7311.96 −0.680363 −0.340181 0.940360i \(-0.610488\pi\)
−0.340181 + 0.940360i \(0.610488\pi\)
\(488\) 0 0
\(489\) 16023.0 1.48177
\(490\) 0 0
\(491\) −17240.0 −1.58458 −0.792289 0.610145i \(-0.791111\pi\)
−0.792289 + 0.610145i \(0.791111\pi\)
\(492\) 0 0
\(493\) 1233.08 0.112647
\(494\) 0 0
\(495\) −223.291 −0.0202751
\(496\) 0 0
\(497\) −1202.65 −0.108543
\(498\) 0 0
\(499\) −843.857 −0.0757039 −0.0378519 0.999283i \(-0.512052\pi\)
−0.0378519 + 0.999283i \(0.512052\pi\)
\(500\) 0 0
\(501\) 7220.18 0.643860
\(502\) 0 0
\(503\) −18235.7 −1.61648 −0.808242 0.588850i \(-0.799581\pi\)
−0.808242 + 0.588850i \(0.799581\pi\)
\(504\) 0 0
\(505\) −25284.6 −2.22802
\(506\) 0 0
\(507\) 16882.4 1.47884
\(508\) 0 0
\(509\) −4978.87 −0.433565 −0.216783 0.976220i \(-0.569556\pi\)
−0.216783 + 0.976220i \(0.569556\pi\)
\(510\) 0 0
\(511\) 183.971 0.0159264
\(512\) 0 0
\(513\) −740.163 −0.0637018
\(514\) 0 0
\(515\) 2402.26 0.205546
\(516\) 0 0
\(517\) 179.580 0.0152764
\(518\) 0 0
\(519\) 1646.81 0.139281
\(520\) 0 0
\(521\) −9413.57 −0.791585 −0.395793 0.918340i \(-0.629530\pi\)
−0.395793 + 0.918340i \(0.629530\pi\)
\(522\) 0 0
\(523\) −18142.6 −1.51687 −0.758434 0.651750i \(-0.774035\pi\)
−0.758434 + 0.651750i \(0.774035\pi\)
\(524\) 0 0
\(525\) −2318.38 −0.192728
\(526\) 0 0
\(527\) 2533.28 0.209396
\(528\) 0 0
\(529\) 1304.52 0.107218
\(530\) 0 0
\(531\) 2659.12 0.217319
\(532\) 0 0
\(533\) 26.0840 0.00211974
\(534\) 0 0
\(535\) 14400.4 1.16371
\(536\) 0 0
\(537\) −20322.5 −1.63311
\(538\) 0 0
\(539\) −152.916 −0.0122200
\(540\) 0 0
\(541\) 7901.85 0.627961 0.313981 0.949429i \(-0.398337\pi\)
0.313981 + 0.949429i \(0.398337\pi\)
\(542\) 0 0
\(543\) −10803.9 −0.853850
\(544\) 0 0
\(545\) −14935.7 −1.17390
\(546\) 0 0
\(547\) −12821.6 −1.00222 −0.501109 0.865384i \(-0.667074\pi\)
−0.501109 + 0.865384i \(0.667074\pi\)
\(548\) 0 0
\(549\) −21026.9 −1.63462
\(550\) 0 0
\(551\) 1913.32 0.147931
\(552\) 0 0
\(553\) −1476.76 −0.113559
\(554\) 0 0
\(555\) −24960.3 −1.90902
\(556\) 0 0
\(557\) 14141.8 1.07577 0.537886 0.843017i \(-0.319223\pi\)
0.537886 + 0.843017i \(0.319223\pi\)
\(558\) 0 0
\(559\) −21.1767 −0.00160229
\(560\) 0 0
\(561\) −42.9334 −0.00323110
\(562\) 0 0
\(563\) 20912.4 1.56546 0.782729 0.622363i \(-0.213827\pi\)
0.782729 + 0.622363i \(0.213827\pi\)
\(564\) 0 0
\(565\) 14951.3 1.11329
\(566\) 0 0
\(567\) −1582.90 −0.117241
\(568\) 0 0
\(569\) −20364.1 −1.50036 −0.750181 0.661232i \(-0.770034\pi\)
−0.750181 + 0.661232i \(0.770034\pi\)
\(570\) 0 0
\(571\) 14151.3 1.03715 0.518575 0.855032i \(-0.326463\pi\)
0.518575 + 0.855032i \(0.326463\pi\)
\(572\) 0 0
\(573\) 1227.99 0.0895285
\(574\) 0 0
\(575\) 12529.2 0.908706
\(576\) 0 0
\(577\) −22908.6 −1.65285 −0.826427 0.563044i \(-0.809630\pi\)
−0.826427 + 0.563044i \(0.809630\pi\)
\(578\) 0 0
\(579\) 15309.7 1.09887
\(580\) 0 0
\(581\) −1656.42 −0.118278
\(582\) 0 0
\(583\) −226.956 −0.0161227
\(584\) 0 0
\(585\) 302.734 0.0213958
\(586\) 0 0
\(587\) −22949.0 −1.61364 −0.806819 0.590798i \(-0.798813\pi\)
−0.806819 + 0.590798i \(0.798813\pi\)
\(588\) 0 0
\(589\) 3930.80 0.274985
\(590\) 0 0
\(591\) −30342.2 −2.11187
\(592\) 0 0
\(593\) −17528.1 −1.21381 −0.606907 0.794773i \(-0.707590\pi\)
−0.606907 + 0.794773i \(0.707590\pi\)
\(594\) 0 0
\(595\) −522.245 −0.0359831
\(596\) 0 0
\(597\) −38993.7 −2.67321
\(598\) 0 0
\(599\) −8232.99 −0.561587 −0.280794 0.959768i \(-0.590598\pi\)
−0.280794 + 0.959768i \(0.590598\pi\)
\(600\) 0 0
\(601\) −25516.6 −1.73185 −0.865927 0.500170i \(-0.833271\pi\)
−0.865927 + 0.500170i \(0.833271\pi\)
\(602\) 0 0
\(603\) 2827.85 0.190976
\(604\) 0 0
\(605\) 20311.4 1.36492
\(606\) 0 0
\(607\) −28319.1 −1.89363 −0.946816 0.321775i \(-0.895721\pi\)
−0.946816 + 0.321775i \(0.895721\pi\)
\(608\) 0 0
\(609\) −2162.73 −0.143905
\(610\) 0 0
\(611\) −243.471 −0.0161207
\(612\) 0 0
\(613\) −22313.5 −1.47020 −0.735100 0.677959i \(-0.762865\pi\)
−0.735100 + 0.677959i \(0.762865\pi\)
\(614\) 0 0
\(615\) −4946.89 −0.324354
\(616\) 0 0
\(617\) 4432.54 0.289218 0.144609 0.989489i \(-0.453808\pi\)
0.144609 + 0.989489i \(0.453808\pi\)
\(618\) 0 0
\(619\) 24084.8 1.56390 0.781948 0.623344i \(-0.214226\pi\)
0.781948 + 0.623344i \(0.214226\pi\)
\(620\) 0 0
\(621\) −4521.50 −0.292176
\(622\) 0 0
\(623\) 3218.84 0.206998
\(624\) 0 0
\(625\) −17465.7 −1.11780
\(626\) 0 0
\(627\) −66.6182 −0.00424318
\(628\) 0 0
\(629\) −2605.53 −0.165166
\(630\) 0 0
\(631\) −16357.1 −1.03196 −0.515979 0.856601i \(-0.672572\pi\)
−0.515979 + 0.856601i \(0.672572\pi\)
\(632\) 0 0
\(633\) 13701.3 0.860311
\(634\) 0 0
\(635\) −20259.9 −1.26612
\(636\) 0 0
\(637\) 207.321 0.0128954
\(638\) 0 0
\(639\) −13801.6 −0.854436
\(640\) 0 0
\(641\) 9044.36 0.557302 0.278651 0.960392i \(-0.410113\pi\)
0.278651 + 0.960392i \(0.410113\pi\)
\(642\) 0 0
\(643\) 16.0941 0.000987073 0 0.000493537 1.00000i \(-0.499843\pi\)
0.000493537 1.00000i \(0.499843\pi\)
\(644\) 0 0
\(645\) 4016.21 0.245175
\(646\) 0 0
\(647\) 5673.50 0.344743 0.172371 0.985032i \(-0.444857\pi\)
0.172371 + 0.985032i \(0.444857\pi\)
\(648\) 0 0
\(649\) 37.8284 0.00228797
\(650\) 0 0
\(651\) −4443.19 −0.267500
\(652\) 0 0
\(653\) 24349.4 1.45921 0.729605 0.683869i \(-0.239704\pi\)
0.729605 + 0.683869i \(0.239704\pi\)
\(654\) 0 0
\(655\) −31048.8 −1.85218
\(656\) 0 0
\(657\) 2111.26 0.125370
\(658\) 0 0
\(659\) 19990.2 1.18165 0.590825 0.806800i \(-0.298802\pi\)
0.590825 + 0.806800i \(0.298802\pi\)
\(660\) 0 0
\(661\) 7138.48 0.420052 0.210026 0.977696i \(-0.432645\pi\)
0.210026 + 0.977696i \(0.432645\pi\)
\(662\) 0 0
\(663\) 58.2083 0.00340969
\(664\) 0 0
\(665\) −810.349 −0.0472541
\(666\) 0 0
\(667\) 11688.1 0.678506
\(668\) 0 0
\(669\) −4628.55 −0.267489
\(670\) 0 0
\(671\) −299.127 −0.0172096
\(672\) 0 0
\(673\) 331.701 0.0189987 0.00949936 0.999955i \(-0.496976\pi\)
0.00949936 + 0.999955i \(0.496976\pi\)
\(674\) 0 0
\(675\) −4205.24 −0.239792
\(676\) 0 0
\(677\) −23542.7 −1.33651 −0.668257 0.743930i \(-0.732959\pi\)
−0.668257 + 0.743930i \(0.732959\pi\)
\(678\) 0 0
\(679\) −144.518 −0.00816801
\(680\) 0 0
\(681\) 27278.2 1.53495
\(682\) 0 0
\(683\) 20417.1 1.14383 0.571917 0.820312i \(-0.306200\pi\)
0.571917 + 0.820312i \(0.306200\pi\)
\(684\) 0 0
\(685\) 26187.6 1.46069
\(686\) 0 0
\(687\) −5108.71 −0.283711
\(688\) 0 0
\(689\) 307.703 0.0170138
\(690\) 0 0
\(691\) 15846.0 0.872372 0.436186 0.899857i \(-0.356329\pi\)
0.436186 + 0.899857i \(0.356329\pi\)
\(692\) 0 0
\(693\) 40.8818 0.00224094
\(694\) 0 0
\(695\) 26897.3 1.46802
\(696\) 0 0
\(697\) −516.392 −0.0280627
\(698\) 0 0
\(699\) −4588.62 −0.248294
\(700\) 0 0
\(701\) −16511.6 −0.889636 −0.444818 0.895621i \(-0.646732\pi\)
−0.444818 + 0.895621i \(0.646732\pi\)
\(702\) 0 0
\(703\) −4042.92 −0.216901
\(704\) 0 0
\(705\) 46174.8 2.46673
\(706\) 0 0
\(707\) 4629.29 0.246255
\(708\) 0 0
\(709\) 5585.31 0.295854 0.147927 0.988998i \(-0.452740\pi\)
0.147927 + 0.988998i \(0.452740\pi\)
\(710\) 0 0
\(711\) −16947.3 −0.893916
\(712\) 0 0
\(713\) 24012.4 1.26125
\(714\) 0 0
\(715\) 4.30666 0.000225259 0
\(716\) 0 0
\(717\) 48467.5 2.52448
\(718\) 0 0
\(719\) 19604.0 1.01684 0.508418 0.861110i \(-0.330230\pi\)
0.508418 + 0.861110i \(0.330230\pi\)
\(720\) 0 0
\(721\) −439.824 −0.0227183
\(722\) 0 0
\(723\) 46050.3 2.36878
\(724\) 0 0
\(725\) 10870.5 0.556857
\(726\) 0 0
\(727\) 19691.4 1.00456 0.502279 0.864706i \(-0.332495\pi\)
0.502279 + 0.864706i \(0.332495\pi\)
\(728\) 0 0
\(729\) −26249.2 −1.33360
\(730\) 0 0
\(731\) 419.240 0.0212123
\(732\) 0 0
\(733\) −20622.2 −1.03915 −0.519576 0.854424i \(-0.673910\pi\)
−0.519576 + 0.854424i \(0.673910\pi\)
\(734\) 0 0
\(735\) −39318.9 −1.97320
\(736\) 0 0
\(737\) 40.2286 0.00201064
\(738\) 0 0
\(739\) 29541.2 1.47049 0.735243 0.677804i \(-0.237068\pi\)
0.735243 + 0.677804i \(0.237068\pi\)
\(740\) 0 0
\(741\) 90.3197 0.00447770
\(742\) 0 0
\(743\) 10131.7 0.500263 0.250132 0.968212i \(-0.419526\pi\)
0.250132 + 0.968212i \(0.419526\pi\)
\(744\) 0 0
\(745\) −31527.4 −1.55043
\(746\) 0 0
\(747\) −19009.1 −0.931068
\(748\) 0 0
\(749\) −2636.53 −0.128620
\(750\) 0 0
\(751\) 31366.0 1.52405 0.762025 0.647547i \(-0.224205\pi\)
0.762025 + 0.647547i \(0.224205\pi\)
\(752\) 0 0
\(753\) 46195.8 2.23568
\(754\) 0 0
\(755\) 17965.5 0.866002
\(756\) 0 0
\(757\) −2836.37 −0.136182 −0.0680909 0.997679i \(-0.521691\pi\)
−0.0680909 + 0.997679i \(0.521691\pi\)
\(758\) 0 0
\(759\) −406.956 −0.0194619
\(760\) 0 0
\(761\) 33195.4 1.58125 0.790626 0.612300i \(-0.209755\pi\)
0.790626 + 0.612300i \(0.209755\pi\)
\(762\) 0 0
\(763\) 2734.54 0.129747
\(764\) 0 0
\(765\) −5993.31 −0.283253
\(766\) 0 0
\(767\) −51.2870 −0.00241443
\(768\) 0 0
\(769\) −378.413 −0.0177450 −0.00887252 0.999961i \(-0.502824\pi\)
−0.00887252 + 0.999961i \(0.502824\pi\)
\(770\) 0 0
\(771\) 12655.3 0.591142
\(772\) 0 0
\(773\) 9764.06 0.454319 0.227160 0.973858i \(-0.427056\pi\)
0.227160 + 0.973858i \(0.427056\pi\)
\(774\) 0 0
\(775\) 22332.9 1.03512
\(776\) 0 0
\(777\) 4569.92 0.210997
\(778\) 0 0
\(779\) −801.267 −0.0368528
\(780\) 0 0
\(781\) −196.341 −0.00899567
\(782\) 0 0
\(783\) −3922.91 −0.179046
\(784\) 0 0
\(785\) 27511.1 1.25084
\(786\) 0 0
\(787\) −11958.2 −0.541631 −0.270816 0.962631i \(-0.587293\pi\)
−0.270816 + 0.962631i \(0.587293\pi\)
\(788\) 0 0
\(789\) −14020.4 −0.632622
\(790\) 0 0
\(791\) −2737.40 −0.123048
\(792\) 0 0
\(793\) 405.551 0.0181608
\(794\) 0 0
\(795\) −58356.6 −2.60339
\(796\) 0 0
\(797\) 14502.1 0.644529 0.322264 0.946650i \(-0.395556\pi\)
0.322264 + 0.946650i \(0.395556\pi\)
\(798\) 0 0
\(799\) 4820.06 0.213419
\(800\) 0 0
\(801\) 36939.5 1.62946
\(802\) 0 0
\(803\) 30.0345 0.00131992
\(804\) 0 0
\(805\) −4950.25 −0.216737
\(806\) 0 0
\(807\) −31948.3 −1.39360
\(808\) 0 0
\(809\) −23743.3 −1.03185 −0.515926 0.856633i \(-0.672552\pi\)
−0.515926 + 0.856633i \(0.672552\pi\)
\(810\) 0 0
\(811\) 1788.53 0.0774398 0.0387199 0.999250i \(-0.487672\pi\)
0.0387199 + 0.999250i \(0.487672\pi\)
\(812\) 0 0
\(813\) 6072.34 0.261951
\(814\) 0 0
\(815\) 31819.7 1.36760
\(816\) 0 0
\(817\) 650.520 0.0278566
\(818\) 0 0
\(819\) −55.4269 −0.00236480
\(820\) 0 0
\(821\) 16960.6 0.720987 0.360493 0.932762i \(-0.382608\pi\)
0.360493 + 0.932762i \(0.382608\pi\)
\(822\) 0 0
\(823\) 9066.84 0.384022 0.192011 0.981393i \(-0.438499\pi\)
0.192011 + 0.981393i \(0.438499\pi\)
\(824\) 0 0
\(825\) −378.491 −0.0159726
\(826\) 0 0
\(827\) −31217.7 −1.31263 −0.656315 0.754487i \(-0.727886\pi\)
−0.656315 + 0.754487i \(0.727886\pi\)
\(828\) 0 0
\(829\) −33513.6 −1.40407 −0.702035 0.712142i \(-0.747725\pi\)
−0.702035 + 0.712142i \(0.747725\pi\)
\(830\) 0 0
\(831\) 19019.5 0.793958
\(832\) 0 0
\(833\) −4104.39 −0.170719
\(834\) 0 0
\(835\) 14338.3 0.594250
\(836\) 0 0
\(837\) −8059.38 −0.332823
\(838\) 0 0
\(839\) 46369.9 1.90807 0.954033 0.299703i \(-0.0968875\pi\)
0.954033 + 0.299703i \(0.0968875\pi\)
\(840\) 0 0
\(841\) −14248.3 −0.584210
\(842\) 0 0
\(843\) −40309.7 −1.64690
\(844\) 0 0
\(845\) 33526.2 1.36490
\(846\) 0 0
\(847\) −3718.77 −0.150860
\(848\) 0 0
\(849\) −31089.9 −1.25678
\(850\) 0 0
\(851\) −24697.3 −0.994844
\(852\) 0 0
\(853\) −217.304 −0.00872257 −0.00436129 0.999990i \(-0.501388\pi\)
−0.00436129 + 0.999990i \(0.501388\pi\)
\(854\) 0 0
\(855\) −9299.61 −0.371977
\(856\) 0 0
\(857\) 27096.2 1.08003 0.540016 0.841654i \(-0.318418\pi\)
0.540016 + 0.841654i \(0.318418\pi\)
\(858\) 0 0
\(859\) 11922.6 0.473565 0.236783 0.971563i \(-0.423907\pi\)
0.236783 + 0.971563i \(0.423907\pi\)
\(860\) 0 0
\(861\) 905.714 0.0358498
\(862\) 0 0
\(863\) 7376.00 0.290941 0.145471 0.989363i \(-0.453530\pi\)
0.145471 + 0.989363i \(0.453530\pi\)
\(864\) 0 0
\(865\) 3270.35 0.128549
\(866\) 0 0
\(867\) 36607.1 1.43396
\(868\) 0 0
\(869\) −241.091 −0.00941132
\(870\) 0 0
\(871\) −54.5412 −0.00212177
\(872\) 0 0
\(873\) −1658.49 −0.0642971
\(874\) 0 0
\(875\) 727.245 0.0280976
\(876\) 0 0
\(877\) −50755.4 −1.95426 −0.977131 0.212637i \(-0.931795\pi\)
−0.977131 + 0.212637i \(0.931795\pi\)
\(878\) 0 0
\(879\) 51143.0 1.96247
\(880\) 0 0
\(881\) 28803.5 1.10149 0.550746 0.834673i \(-0.314343\pi\)
0.550746 + 0.834673i \(0.314343\pi\)
\(882\) 0 0
\(883\) 51864.4 1.97664 0.988322 0.152381i \(-0.0486941\pi\)
0.988322 + 0.152381i \(0.0486941\pi\)
\(884\) 0 0
\(885\) 9726.71 0.369446
\(886\) 0 0
\(887\) −14211.4 −0.537962 −0.268981 0.963145i \(-0.586687\pi\)
−0.268981 + 0.963145i \(0.586687\pi\)
\(888\) 0 0
\(889\) 3709.33 0.139940
\(890\) 0 0
\(891\) −258.419 −0.00971647
\(892\) 0 0
\(893\) 7479.12 0.280268
\(894\) 0 0
\(895\) −40357.9 −1.50728
\(896\) 0 0
\(897\) 551.743 0.0205375
\(898\) 0 0
\(899\) 20833.5 0.772899
\(900\) 0 0
\(901\) −6091.68 −0.225242
\(902\) 0 0
\(903\) −735.317 −0.0270984
\(904\) 0 0
\(905\) −21455.2 −0.788061
\(906\) 0 0
\(907\) −2766.42 −0.101276 −0.0506381 0.998717i \(-0.516125\pi\)
−0.0506381 + 0.998717i \(0.516125\pi\)
\(908\) 0 0
\(909\) 53126.0 1.93848
\(910\) 0 0
\(911\) 1282.52 0.0466430 0.0233215 0.999728i \(-0.492576\pi\)
0.0233215 + 0.999728i \(0.492576\pi\)
\(912\) 0 0
\(913\) −270.422 −0.00980247
\(914\) 0 0
\(915\) −76913.7 −2.77889
\(916\) 0 0
\(917\) 5684.65 0.204715
\(918\) 0 0
\(919\) 31183.4 1.11931 0.559655 0.828725i \(-0.310934\pi\)
0.559655 + 0.828725i \(0.310934\pi\)
\(920\) 0 0
\(921\) 44489.7 1.59173
\(922\) 0 0
\(923\) 266.195 0.00949286
\(924\) 0 0
\(925\) −22969.8 −0.816479
\(926\) 0 0
\(927\) −5047.44 −0.178835
\(928\) 0 0
\(929\) 35037.3 1.23739 0.618696 0.785630i \(-0.287661\pi\)
0.618696 + 0.785630i \(0.287661\pi\)
\(930\) 0 0
\(931\) −6368.64 −0.224193
\(932\) 0 0
\(933\) −57672.1 −2.02369
\(934\) 0 0
\(935\) −85.2602 −0.00298214
\(936\) 0 0
\(937\) 12969.3 0.452175 0.226087 0.974107i \(-0.427407\pi\)
0.226087 + 0.974107i \(0.427407\pi\)
\(938\) 0 0
\(939\) −77882.2 −2.70670
\(940\) 0 0
\(941\) 11958.5 0.414279 0.207140 0.978311i \(-0.433585\pi\)
0.207140 + 0.978311i \(0.433585\pi\)
\(942\) 0 0
\(943\) −4894.76 −0.169030
\(944\) 0 0
\(945\) 1661.47 0.0571933
\(946\) 0 0
\(947\) −39481.6 −1.35478 −0.677392 0.735622i \(-0.736890\pi\)
−0.677392 + 0.735622i \(0.736890\pi\)
\(948\) 0 0
\(949\) −40.7202 −0.00139287
\(950\) 0 0
\(951\) 67266.1 2.29364
\(952\) 0 0
\(953\) 31129.5 1.05811 0.529057 0.848586i \(-0.322546\pi\)
0.529057 + 0.848586i \(0.322546\pi\)
\(954\) 0 0
\(955\) 2438.62 0.0826303
\(956\) 0 0
\(957\) −353.080 −0.0119263
\(958\) 0 0
\(959\) −4794.62 −0.161446
\(960\) 0 0
\(961\) 13010.2 0.436715
\(962\) 0 0
\(963\) −30257.0 −1.01248
\(964\) 0 0
\(965\) 30403.1 1.01421
\(966\) 0 0
\(967\) −25627.5 −0.852250 −0.426125 0.904664i \(-0.640122\pi\)
−0.426125 + 0.904664i \(0.640122\pi\)
\(968\) 0 0
\(969\) −1788.08 −0.0592792
\(970\) 0 0
\(971\) −18600.8 −0.614756 −0.307378 0.951587i \(-0.599452\pi\)
−0.307378 + 0.951587i \(0.599452\pi\)
\(972\) 0 0
\(973\) −4924.56 −0.162255
\(974\) 0 0
\(975\) 513.151 0.0168554
\(976\) 0 0
\(977\) 14081.2 0.461103 0.230552 0.973060i \(-0.425947\pi\)
0.230552 + 0.973060i \(0.425947\pi\)
\(978\) 0 0
\(979\) 525.498 0.0171552
\(980\) 0 0
\(981\) 31381.7 1.02135
\(982\) 0 0
\(983\) 13359.2 0.433462 0.216731 0.976231i \(-0.430460\pi\)
0.216731 + 0.976231i \(0.430460\pi\)
\(984\) 0 0
\(985\) −60255.8 −1.94915
\(986\) 0 0
\(987\) −8454.04 −0.272639
\(988\) 0 0
\(989\) 3973.89 0.127768
\(990\) 0 0
\(991\) −52748.2 −1.69082 −0.845409 0.534119i \(-0.820643\pi\)
−0.845409 + 0.534119i \(0.820643\pi\)
\(992\) 0 0
\(993\) 48177.2 1.53963
\(994\) 0 0
\(995\) −77436.5 −2.46724
\(996\) 0 0
\(997\) −6334.73 −0.201226 −0.100613 0.994926i \(-0.532080\pi\)
−0.100613 + 0.994926i \(0.532080\pi\)
\(998\) 0 0
\(999\) 8289.24 0.262523
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 608.4.a.e.1.1 5
4.3 odd 2 608.4.a.h.1.5 yes 5
8.3 odd 2 1216.4.a.y.1.1 5
8.5 even 2 1216.4.a.bd.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
608.4.a.e.1.1 5 1.1 even 1 trivial
608.4.a.h.1.5 yes 5 4.3 odd 2
1216.4.a.y.1.1 5 8.3 odd 2
1216.4.a.bd.1.5 5 8.5 even 2