Properties

Label 608.4
Level 608
Weight 4
Dimension 19162
Nonzero newspaces 18
Sturm bound 92160
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 608 = 2^{5} \cdot 19 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 18 \)
Sturm bound: \(92160\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(608))\).

Total New Old
Modular forms 35136 19502 15634
Cusp forms 33984 19162 14822
Eisenstein series 1152 340 812

Trace form

\( 19162 q - 64 q^{2} - 46 q^{3} - 64 q^{4} - 68 q^{5} - 64 q^{6} - 78 q^{7} - 64 q^{8} - 190 q^{9} - 304 q^{10} - 46 q^{11} + 32 q^{12} + 172 q^{13} + 352 q^{14} + 170 q^{15} + 536 q^{16} + 328 q^{17} + 296 q^{18}+ \cdots + 10794 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(608))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
608.4.a \(\chi_{608}(1, \cdot)\) 608.4.a.a 1 1
608.4.a.b 1
608.4.a.c 2
608.4.a.d 2
608.4.a.e 5
608.4.a.f 5
608.4.a.g 5
608.4.a.h 5
608.4.a.i 7
608.4.a.j 7
608.4.a.k 7
608.4.a.l 7
608.4.b \(\chi_{608}(303, \cdot)\) 608.4.b.a 2 1
608.4.b.b 56
608.4.c \(\chi_{608}(305, \cdot)\) 608.4.c.a 54 1
608.4.h \(\chi_{608}(607, \cdot)\) 608.4.h.a 60 1
608.4.i \(\chi_{608}(353, \cdot)\) n/a 120 2
608.4.k \(\chi_{608}(153, \cdot)\) None 0 2
608.4.m \(\chi_{608}(151, \cdot)\) None 0 2
608.4.n \(\chi_{608}(31, \cdot)\) n/a 120 2
608.4.s \(\chi_{608}(335, \cdot)\) n/a 116 2
608.4.t \(\chi_{608}(49, \cdot)\) n/a 116 2
608.4.u \(\chi_{608}(75, \cdot)\) n/a 952 4
608.4.v \(\chi_{608}(77, \cdot)\) n/a 864 4
608.4.y \(\chi_{608}(161, \cdot)\) n/a 360 6
608.4.z \(\chi_{608}(121, \cdot)\) None 0 4
608.4.bb \(\chi_{608}(103, \cdot)\) None 0 4
608.4.bf \(\chi_{608}(17, \cdot)\) n/a 348 6
608.4.bh \(\chi_{608}(15, \cdot)\) n/a 348 6
608.4.bi \(\chi_{608}(127, \cdot)\) n/a 360 6
608.4.bm \(\chi_{608}(45, \cdot)\) n/a 1904 8
608.4.bn \(\chi_{608}(27, \cdot)\) n/a 1904 8
608.4.bo \(\chi_{608}(71, \cdot)\) None 0 12
608.4.bq \(\chi_{608}(9, \cdot)\) None 0 12
608.4.bs \(\chi_{608}(5, \cdot)\) n/a 5712 24
608.4.bt \(\chi_{608}(3, \cdot)\) n/a 5712 24

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(608))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(608)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(76))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(152))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(304))\)\(^{\oplus 2}\)