Properties

Label 608.2.bf.a.177.10
Level $608$
Weight $2$
Character 608.177
Analytic conductor $4.855$
Analytic rank $0$
Dimension $108$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [608,2,Mod(17,608)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(608, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("608.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 608 = 2^{5} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 608.bf (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.85490444289\)
Analytic rank: \(0\)
Dimension: \(108\)
Relative dimension: \(18\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 152)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 177.10
Character \(\chi\) \(=\) 608.177
Dual form 608.2.bf.a.529.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.178255 - 0.489751i) q^{3} +(3.55335 - 0.626551i) q^{5} +(1.81103 - 3.13680i) q^{7} +(2.09005 + 1.75376i) q^{9} +(0.380026 - 0.219408i) q^{11} +(-1.07650 - 2.95765i) q^{13} +(0.326547 - 1.85194i) q^{15} +(-5.14502 + 4.31719i) q^{17} +(-4.34549 - 0.341661i) q^{19} +(-1.21343 - 1.44610i) q^{21} +(-0.958164 + 5.43402i) q^{23} +(7.53526 - 2.74261i) q^{25} +(2.58554 - 1.49276i) q^{27} +(1.67059 - 1.99093i) q^{29} +(-2.59436 + 4.49356i) q^{31} +(-0.0397139 - 0.225229i) q^{33} +(4.46986 - 12.2808i) q^{35} -5.95511i q^{37} -1.64040 q^{39} +(0.621322 + 0.226143i) q^{41} +(0.376394 - 0.0663684i) q^{43} +(8.52551 + 4.92220i) q^{45} +(3.54751 + 2.97672i) q^{47} +(-3.05967 - 5.29950i) q^{49} +(1.19722 + 3.28934i) q^{51} +(-13.0892 - 2.30798i) q^{53} +(1.21289 - 1.01774i) q^{55} +(-0.941933 + 2.06730i) q^{57} +(8.50400 + 10.1347i) q^{59} +(5.02192 + 0.885501i) q^{61} +(9.28635 - 3.37995i) q^{63} +(-5.67829 - 9.83508i) q^{65} +(-0.576990 + 0.687630i) q^{67} +(2.49052 + 1.43790i) q^{69} +(-1.20549 - 6.83668i) q^{71} +(3.14662 + 1.14528i) q^{73} -4.17929i q^{75} -1.58942i q^{77} +(6.23172 + 2.26816i) q^{79} +(1.15113 + 6.52839i) q^{81} +(-5.47269 - 3.15966i) q^{83} +(-15.5771 + 18.5641i) q^{85} +(-0.677270 - 1.17307i) q^{87} +(2.76705 - 1.00712i) q^{89} +(-11.2271 - 1.97964i) q^{91} +(1.73827 + 2.07159i) q^{93} +(-15.6551 + 1.50863i) q^{95} +(-3.66959 + 3.07915i) q^{97} +(1.17906 + 0.207901i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 108 q + 6 q^{7} - 12 q^{9} + 12 q^{15} - 12 q^{17} + 12 q^{23} - 12 q^{25} - 30 q^{31} - 30 q^{33} + 24 q^{39} - 24 q^{41} + 48 q^{47} - 24 q^{49} + 42 q^{55} - 12 q^{57} - 30 q^{63} - 6 q^{65} + 12 q^{71}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/608\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.178255 0.489751i 0.102915 0.282758i −0.877539 0.479506i \(-0.840816\pi\)
0.980454 + 0.196748i \(0.0630381\pi\)
\(4\) 0 0
\(5\) 3.55335 0.626551i 1.58911 0.280202i 0.691960 0.721936i \(-0.256747\pi\)
0.897146 + 0.441734i \(0.145636\pi\)
\(6\) 0 0
\(7\) 1.81103 3.13680i 0.684506 1.18560i −0.289086 0.957303i \(-0.593351\pi\)
0.973592 0.228295i \(-0.0733152\pi\)
\(8\) 0 0
\(9\) 2.09005 + 1.75376i 0.696684 + 0.584587i
\(10\) 0 0
\(11\) 0.380026 0.219408i 0.114582 0.0661540i −0.441614 0.897205i \(-0.645594\pi\)
0.556196 + 0.831051i \(0.312260\pi\)
\(12\) 0 0
\(13\) −1.07650 2.95765i −0.298566 0.820304i −0.994740 0.102431i \(-0.967338\pi\)
0.696174 0.717873i \(-0.254884\pi\)
\(14\) 0 0
\(15\) 0.326547 1.85194i 0.0843142 0.478170i
\(16\) 0 0
\(17\) −5.14502 + 4.31719i −1.24785 + 1.04707i −0.250984 + 0.967991i \(0.580754\pi\)
−0.996868 + 0.0790806i \(0.974802\pi\)
\(18\) 0 0
\(19\) −4.34549 0.341661i −0.996923 0.0783824i
\(20\) 0 0
\(21\) −1.21343 1.44610i −0.264791 0.315566i
\(22\) 0 0
\(23\) −0.958164 + 5.43402i −0.199791 + 1.13307i 0.705638 + 0.708573i \(0.250661\pi\)
−0.905429 + 0.424498i \(0.860451\pi\)
\(24\) 0 0
\(25\) 7.53526 2.74261i 1.50705 0.548522i
\(26\) 0 0
\(27\) 2.58554 1.49276i 0.497587 0.287282i
\(28\) 0 0
\(29\) 1.67059 1.99093i 0.310221 0.369707i −0.588296 0.808646i \(-0.700201\pi\)
0.898517 + 0.438939i \(0.144646\pi\)
\(30\) 0 0
\(31\) −2.59436 + 4.49356i −0.465960 + 0.807067i −0.999244 0.0388694i \(-0.987624\pi\)
0.533284 + 0.845936i \(0.320958\pi\)
\(32\) 0 0
\(33\) −0.0397139 0.225229i −0.00691330 0.0392073i
\(34\) 0 0
\(35\) 4.46986 12.2808i 0.755545 2.07584i
\(36\) 0 0
\(37\) 5.95511i 0.979014i −0.871999 0.489507i \(-0.837177\pi\)
0.871999 0.489507i \(-0.162823\pi\)
\(38\) 0 0
\(39\) −1.64040 −0.262675
\(40\) 0 0
\(41\) 0.621322 + 0.226143i 0.0970341 + 0.0353175i 0.390081 0.920781i \(-0.372447\pi\)
−0.293047 + 0.956098i \(0.594669\pi\)
\(42\) 0 0
\(43\) 0.376394 0.0663684i 0.0573995 0.0101211i −0.144875 0.989450i \(-0.546278\pi\)
0.202274 + 0.979329i \(0.435167\pi\)
\(44\) 0 0
\(45\) 8.52551 + 4.92220i 1.27091 + 0.733759i
\(46\) 0 0
\(47\) 3.54751 + 2.97672i 0.517458 + 0.434199i 0.863744 0.503930i \(-0.168113\pi\)
−0.346287 + 0.938129i \(0.612558\pi\)
\(48\) 0 0
\(49\) −3.05967 5.29950i −0.437096 0.757072i
\(50\) 0 0
\(51\) 1.19722 + 3.28934i 0.167645 + 0.460600i
\(52\) 0 0
\(53\) −13.0892 2.30798i −1.79794 0.317026i −0.828067 0.560629i \(-0.810560\pi\)
−0.969875 + 0.243603i \(0.921671\pi\)
\(54\) 0 0
\(55\) 1.21289 1.01774i 0.163547 0.137232i
\(56\) 0 0
\(57\) −0.941933 + 2.06730i −0.124762 + 0.273821i
\(58\) 0 0
\(59\) 8.50400 + 10.1347i 1.10713 + 1.31942i 0.942929 + 0.332995i \(0.108059\pi\)
0.164198 + 0.986427i \(0.447496\pi\)
\(60\) 0 0
\(61\) 5.02192 + 0.885501i 0.642991 + 0.113377i 0.485630 0.874164i \(-0.338590\pi\)
0.157361 + 0.987541i \(0.449701\pi\)
\(62\) 0 0
\(63\) 9.28635 3.37995i 1.16997 0.425834i
\(64\) 0 0
\(65\) −5.67829 9.83508i −0.704305 1.21989i
\(66\) 0 0
\(67\) −0.576990 + 0.687630i −0.0704905 + 0.0840073i −0.800137 0.599817i \(-0.795240\pi\)
0.729647 + 0.683824i \(0.239685\pi\)
\(68\) 0 0
\(69\) 2.49052 + 1.43790i 0.299823 + 0.173103i
\(70\) 0 0
\(71\) −1.20549 6.83668i −0.143065 0.811365i −0.968900 0.247452i \(-0.920407\pi\)
0.825835 0.563912i \(-0.190704\pi\)
\(72\) 0 0
\(73\) 3.14662 + 1.14528i 0.368284 + 0.134044i 0.519531 0.854452i \(-0.326107\pi\)
−0.151247 + 0.988496i \(0.548329\pi\)
\(74\) 0 0
\(75\) 4.17929i 0.482582i
\(76\) 0 0
\(77\) 1.58942i 0.181131i
\(78\) 0 0
\(79\) 6.23172 + 2.26816i 0.701123 + 0.255188i 0.667890 0.744260i \(-0.267198\pi\)
0.0332326 + 0.999448i \(0.489420\pi\)
\(80\) 0 0
\(81\) 1.15113 + 6.52839i 0.127904 + 0.725377i
\(82\) 0 0
\(83\) −5.47269 3.15966i −0.600706 0.346818i 0.168613 0.985682i \(-0.446071\pi\)
−0.769319 + 0.638865i \(0.779404\pi\)
\(84\) 0 0
\(85\) −15.5771 + 18.5641i −1.68958 + 2.01356i
\(86\) 0 0
\(87\) −0.677270 1.17307i −0.0726110 0.125766i
\(88\) 0 0
\(89\) 2.76705 1.00712i 0.293306 0.106755i −0.191176 0.981556i \(-0.561230\pi\)
0.484483 + 0.874801i \(0.339008\pi\)
\(90\) 0 0
\(91\) −11.2271 1.97964i −1.17692 0.207523i
\(92\) 0 0
\(93\) 1.73827 + 2.07159i 0.180250 + 0.214814i
\(94\) 0 0
\(95\) −15.6551 + 1.50863i −1.60618 + 0.154782i
\(96\) 0 0
\(97\) −3.66959 + 3.07915i −0.372590 + 0.312640i −0.809785 0.586726i \(-0.800416\pi\)
0.437195 + 0.899367i \(0.355972\pi\)
\(98\) 0 0
\(99\) 1.17906 + 0.207901i 0.118500 + 0.0208948i
\(100\) 0 0
\(101\) −0.421241 1.15735i −0.0419151 0.115161i 0.916969 0.398958i \(-0.130628\pi\)
−0.958884 + 0.283797i \(0.908406\pi\)
\(102\) 0 0
\(103\) −4.23865 7.34155i −0.417646 0.723385i 0.578056 0.815997i \(-0.303812\pi\)
−0.995702 + 0.0926126i \(0.970478\pi\)
\(104\) 0 0
\(105\) −5.21778 4.37824i −0.509203 0.427272i
\(106\) 0 0
\(107\) −3.47844 2.00828i −0.336274 0.194148i 0.322349 0.946621i \(-0.395527\pi\)
−0.658623 + 0.752473i \(0.728861\pi\)
\(108\) 0 0
\(109\) −3.89574 + 0.686925i −0.373145 + 0.0657955i −0.357076 0.934075i \(-0.616226\pi\)
−0.0160689 + 0.999871i \(0.505115\pi\)
\(110\) 0 0
\(111\) −2.91652 1.06153i −0.276824 0.100756i
\(112\) 0 0
\(113\) 4.12504 0.388051 0.194025 0.980996i \(-0.437846\pi\)
0.194025 + 0.980996i \(0.437846\pi\)
\(114\) 0 0
\(115\) 19.9093i 1.85655i
\(116\) 0 0
\(117\) 2.93708 8.06956i 0.271533 0.746031i
\(118\) 0 0
\(119\) 4.22435 + 23.9575i 0.387245 + 2.19618i
\(120\) 0 0
\(121\) −5.40372 + 9.35952i −0.491247 + 0.850865i
\(122\) 0 0
\(123\) 0.221507 0.263982i 0.0199726 0.0238025i
\(124\) 0 0
\(125\) 9.43322 5.44627i 0.843733 0.487129i
\(126\) 0 0
\(127\) −6.06982 + 2.20924i −0.538610 + 0.196038i −0.596979 0.802257i \(-0.703632\pi\)
0.0583688 + 0.998295i \(0.481410\pi\)
\(128\) 0 0
\(129\) 0.0345900 0.196170i 0.00304548 0.0172718i
\(130\) 0 0
\(131\) 12.5465 + 14.9523i 1.09619 + 1.30639i 0.948295 + 0.317390i \(0.102806\pi\)
0.147898 + 0.989003i \(0.452749\pi\)
\(132\) 0 0
\(133\) −8.94154 + 13.0122i −0.775330 + 1.12830i
\(134\) 0 0
\(135\) 8.25203 6.92428i 0.710222 0.595947i
\(136\) 0 0
\(137\) −0.0298899 + 0.169514i −0.00255367 + 0.0144826i −0.986058 0.166402i \(-0.946785\pi\)
0.983504 + 0.180885i \(0.0578961\pi\)
\(138\) 0 0
\(139\) −3.32434 9.13356i −0.281967 0.774698i −0.997128 0.0757382i \(-0.975869\pi\)
0.715161 0.698960i \(-0.246354\pi\)
\(140\) 0 0
\(141\) 2.09021 1.20678i 0.176028 0.101630i
\(142\) 0 0
\(143\) −1.05803 0.887791i −0.0884768 0.0742408i
\(144\) 0 0
\(145\) 4.68877 8.12119i 0.389381 0.674428i
\(146\) 0 0
\(147\) −3.14084 + 0.553815i −0.259052 + 0.0456779i
\(148\) 0 0
\(149\) −3.79804 + 10.4350i −0.311148 + 0.854871i 0.681278 + 0.732025i \(0.261424\pi\)
−0.992426 + 0.122846i \(0.960798\pi\)
\(150\) 0 0
\(151\) −15.4686 −1.25881 −0.629407 0.777076i \(-0.716702\pi\)
−0.629407 + 0.777076i \(0.716702\pi\)
\(152\) 0 0
\(153\) −18.3247 −1.48146
\(154\) 0 0
\(155\) −6.40321 + 17.5927i −0.514318 + 1.41308i
\(156\) 0 0
\(157\) 10.4969 1.85088i 0.837743 0.147717i 0.261713 0.965146i \(-0.415713\pi\)
0.576029 + 0.817429i \(0.304601\pi\)
\(158\) 0 0
\(159\) −3.46355 + 5.99905i −0.274678 + 0.475756i
\(160\) 0 0
\(161\) 15.3101 + 12.8467i 1.20661 + 1.01246i
\(162\) 0 0
\(163\) −12.5659 + 7.25490i −0.984234 + 0.568248i −0.903546 0.428492i \(-0.859045\pi\)
−0.0806881 + 0.996739i \(0.525712\pi\)
\(164\) 0 0
\(165\) −0.282235 0.775433i −0.0219719 0.0603674i
\(166\) 0 0
\(167\) 2.62542 14.8895i 0.203161 1.15218i −0.697146 0.716929i \(-0.745547\pi\)
0.900307 0.435255i \(-0.143342\pi\)
\(168\) 0 0
\(169\) 2.36973 1.98844i 0.182287 0.152957i
\(170\) 0 0
\(171\) −8.48310 8.33504i −0.648719 0.637396i
\(172\) 0 0
\(173\) 8.86774 + 10.5682i 0.674202 + 0.803482i 0.989349 0.145560i \(-0.0464985\pi\)
−0.315148 + 0.949043i \(0.602054\pi\)
\(174\) 0 0
\(175\) 5.04358 28.6036i 0.381259 2.16223i
\(176\) 0 0
\(177\) 6.47935 2.35829i 0.487018 0.177260i
\(178\) 0 0
\(179\) 9.19239 5.30723i 0.687072 0.396681i −0.115442 0.993314i \(-0.536829\pi\)
0.802514 + 0.596633i \(0.203495\pi\)
\(180\) 0 0
\(181\) −4.23274 + 5.04438i −0.314617 + 0.374946i −0.900059 0.435768i \(-0.856477\pi\)
0.585442 + 0.810714i \(0.300921\pi\)
\(182\) 0 0
\(183\) 1.32886 2.30165i 0.0982319 0.170143i
\(184\) 0 0
\(185\) −3.73118 21.1606i −0.274322 1.55576i
\(186\) 0 0
\(187\) −1.00802 + 2.76950i −0.0737135 + 0.202526i
\(188\) 0 0
\(189\) 10.8138i 0.786585i
\(190\) 0 0
\(191\) 13.9420 1.00880 0.504402 0.863469i \(-0.331713\pi\)
0.504402 + 0.863469i \(0.331713\pi\)
\(192\) 0 0
\(193\) −10.0207 3.64723i −0.721304 0.262533i −0.0448245 0.998995i \(-0.514273\pi\)
−0.676479 + 0.736462i \(0.736495\pi\)
\(194\) 0 0
\(195\) −5.82892 + 1.02780i −0.417418 + 0.0736020i
\(196\) 0 0
\(197\) −16.9554 9.78922i −1.20802 0.697453i −0.245697 0.969347i \(-0.579017\pi\)
−0.962327 + 0.271894i \(0.912350\pi\)
\(198\) 0 0
\(199\) −7.65538 6.42362i −0.542675 0.455359i 0.329776 0.944059i \(-0.393027\pi\)
−0.872452 + 0.488700i \(0.837471\pi\)
\(200\) 0 0
\(201\) 0.233916 + 0.405155i 0.0164992 + 0.0285774i
\(202\) 0 0
\(203\) −3.21966 8.84594i −0.225976 0.620864i
\(204\) 0 0
\(205\) 2.34946 + 0.414274i 0.164094 + 0.0289341i
\(206\) 0 0
\(207\) −11.5326 + 9.67699i −0.801570 + 0.672597i
\(208\) 0 0
\(209\) −1.72636 + 0.823595i −0.119415 + 0.0569693i
\(210\) 0 0
\(211\) 4.97164 + 5.92497i 0.342262 + 0.407892i 0.909528 0.415643i \(-0.136443\pi\)
−0.567266 + 0.823535i \(0.691999\pi\)
\(212\) 0 0
\(213\) −3.56316 0.628281i −0.244143 0.0430491i
\(214\) 0 0
\(215\) 1.29588 0.471660i 0.0883780 0.0321670i
\(216\) 0 0
\(217\) 9.39692 + 16.2759i 0.637905 + 1.10488i
\(218\) 0 0
\(219\) 1.12180 1.33691i 0.0758042 0.0903399i
\(220\) 0 0
\(221\) 18.3073 + 10.5697i 1.23148 + 0.710998i
\(222\) 0 0
\(223\) 1.06597 + 6.04540i 0.0713825 + 0.404830i 0.999473 + 0.0324743i \(0.0103387\pi\)
−0.928090 + 0.372356i \(0.878550\pi\)
\(224\) 0 0
\(225\) 20.5590 + 7.48286i 1.37060 + 0.498857i
\(226\) 0 0
\(227\) 22.5256i 1.49507i −0.664220 0.747537i \(-0.731236\pi\)
0.664220 0.747537i \(-0.268764\pi\)
\(228\) 0 0
\(229\) 2.87289i 0.189846i −0.995485 0.0949230i \(-0.969740\pi\)
0.995485 0.0949230i \(-0.0302605\pi\)
\(230\) 0 0
\(231\) −0.778420 0.283322i −0.0512163 0.0186412i
\(232\) 0 0
\(233\) −0.468956 2.65958i −0.0307223 0.174235i 0.965586 0.260085i \(-0.0837506\pi\)
−0.996308 + 0.0858499i \(0.972639\pi\)
\(234\) 0 0
\(235\) 14.4706 + 8.35462i 0.943959 + 0.544995i
\(236\) 0 0
\(237\) 2.22167 2.64768i 0.144313 0.171985i
\(238\) 0 0
\(239\) 3.74844 + 6.49248i 0.242466 + 0.419964i 0.961416 0.275098i \(-0.0887103\pi\)
−0.718950 + 0.695062i \(0.755377\pi\)
\(240\) 0 0
\(241\) −19.6289 + 7.14435i −1.26441 + 0.460208i −0.885247 0.465122i \(-0.846011\pi\)
−0.379164 + 0.925330i \(0.623788\pi\)
\(242\) 0 0
\(243\) 12.2230 + 2.15524i 0.784105 + 0.138259i
\(244\) 0 0
\(245\) −14.1925 16.9139i −0.906725 1.08059i
\(246\) 0 0
\(247\) 3.66739 + 13.2202i 0.233350 + 0.841183i
\(248\) 0 0
\(249\) −2.52298 + 2.11703i −0.159887 + 0.134161i
\(250\) 0 0
\(251\) 11.5835 + 2.04249i 0.731146 + 0.128921i 0.526814 0.849981i \(-0.323387\pi\)
0.204332 + 0.978902i \(0.434498\pi\)
\(252\) 0 0
\(253\) 0.828140 + 2.27530i 0.0520647 + 0.143047i
\(254\) 0 0
\(255\) 6.31509 + 10.9381i 0.395466 + 0.684968i
\(256\) 0 0
\(257\) 21.7871 + 18.2816i 1.35904 + 1.14037i 0.976276 + 0.216529i \(0.0694735\pi\)
0.382768 + 0.923845i \(0.374971\pi\)
\(258\) 0 0
\(259\) −18.6800 10.7849i −1.16072 0.670141i
\(260\) 0 0
\(261\) 6.98324 1.23133i 0.432252 0.0762176i
\(262\) 0 0
\(263\) 4.40729 + 1.60412i 0.271765 + 0.0989144i 0.474308 0.880359i \(-0.342698\pi\)
−0.202543 + 0.979273i \(0.564921\pi\)
\(264\) 0 0
\(265\) −47.9566 −2.94595
\(266\) 0 0
\(267\) 1.53469i 0.0939214i
\(268\) 0 0
\(269\) 3.37775 9.28030i 0.205945 0.565830i −0.793120 0.609066i \(-0.791545\pi\)
0.999065 + 0.0432360i \(0.0137667\pi\)
\(270\) 0 0
\(271\) −2.81763 15.9795i −0.171159 0.970688i −0.942485 0.334249i \(-0.891517\pi\)
0.771326 0.636440i \(-0.219594\pi\)
\(272\) 0 0
\(273\) −2.97082 + 5.14561i −0.179802 + 0.311427i
\(274\) 0 0
\(275\) 2.26184 2.69556i 0.136394 0.162548i
\(276\) 0 0
\(277\) 8.62292 4.97844i 0.518101 0.299126i −0.218056 0.975936i \(-0.569972\pi\)
0.736157 + 0.676810i \(0.236638\pi\)
\(278\) 0 0
\(279\) −13.3030 + 4.84189i −0.796428 + 0.289876i
\(280\) 0 0
\(281\) 2.34289 13.2872i 0.139765 0.792647i −0.831657 0.555289i \(-0.812608\pi\)
0.971422 0.237358i \(-0.0762813\pi\)
\(282\) 0 0
\(283\) −8.89834 10.6046i −0.528952 0.630380i 0.433721 0.901047i \(-0.357200\pi\)
−0.962673 + 0.270667i \(0.912756\pi\)
\(284\) 0 0
\(285\) −2.05174 + 7.93603i −0.121535 + 0.470090i
\(286\) 0 0
\(287\) 1.83460 1.53941i 0.108293 0.0908685i
\(288\) 0 0
\(289\) 4.88114 27.6823i 0.287126 1.62837i
\(290\) 0 0
\(291\) 0.853896 + 2.34606i 0.0500562 + 0.137528i
\(292\) 0 0
\(293\) −8.10134 + 4.67731i −0.473286 + 0.273252i −0.717614 0.696441i \(-0.754766\pi\)
0.244329 + 0.969693i \(0.421432\pi\)
\(294\) 0 0
\(295\) 36.5676 + 30.6838i 2.12905 + 1.78648i
\(296\) 0 0
\(297\) 0.655048 1.13458i 0.0380097 0.0658348i
\(298\) 0 0
\(299\) 17.1034 3.01579i 0.989114 0.174407i
\(300\) 0 0
\(301\) 0.473477 1.30087i 0.0272907 0.0749807i
\(302\) 0 0
\(303\) −0.641902 −0.0368763
\(304\) 0 0
\(305\) 18.3995 1.05355
\(306\) 0 0
\(307\) 4.23577 11.6377i 0.241748 0.664197i −0.758178 0.652047i \(-0.773910\pi\)
0.999926 0.0121498i \(-0.00386748\pi\)
\(308\) 0 0
\(309\) −4.35109 + 0.767215i −0.247525 + 0.0436453i
\(310\) 0 0
\(311\) −6.64245 + 11.5051i −0.376659 + 0.652392i −0.990574 0.136980i \(-0.956260\pi\)
0.613915 + 0.789372i \(0.289594\pi\)
\(312\) 0 0
\(313\) 13.6701 + 11.4706i 0.772678 + 0.648354i 0.941393 0.337311i \(-0.109517\pi\)
−0.168715 + 0.985665i \(0.553962\pi\)
\(314\) 0 0
\(315\) 30.8799 17.8285i 1.73989 1.00452i
\(316\) 0 0
\(317\) 2.26034 + 6.21023i 0.126953 + 0.348801i 0.986844 0.161677i \(-0.0516904\pi\)
−0.859890 + 0.510479i \(0.829468\pi\)
\(318\) 0 0
\(319\) 0.198041 1.12315i 0.0110882 0.0628841i
\(320\) 0 0
\(321\) −1.60361 + 1.34559i −0.0895046 + 0.0751032i
\(322\) 0 0
\(323\) 23.8327 17.0024i 1.32608 0.946041i
\(324\) 0 0
\(325\) −16.2234 19.3343i −0.899910 1.07247i
\(326\) 0 0
\(327\) −0.358013 + 2.03039i −0.0197982 + 0.112281i
\(328\) 0 0
\(329\) 15.7620 5.73691i 0.868988 0.316286i
\(330\) 0 0
\(331\) −27.1893 + 15.6977i −1.49446 + 0.862825i −0.999980 0.00636473i \(-0.997974\pi\)
−0.494478 + 0.869190i \(0.664641\pi\)
\(332\) 0 0
\(333\) 10.4438 12.4465i 0.572319 0.682064i
\(334\) 0 0
\(335\) −1.61941 + 2.80490i −0.0884779 + 0.153248i
\(336\) 0 0
\(337\) −4.91514 27.8751i −0.267745 1.51845i −0.761104 0.648629i \(-0.775343\pi\)
0.493360 0.869825i \(-0.335769\pi\)
\(338\) 0 0
\(339\) 0.735308 2.02024i 0.0399364 0.109724i
\(340\) 0 0
\(341\) 2.27689i 0.123301i
\(342\) 0 0
\(343\) 3.18981 0.172233
\(344\) 0 0
\(345\) 9.75060 + 3.54893i 0.524955 + 0.191068i
\(346\) 0 0
\(347\) −9.43422 + 1.66351i −0.506456 + 0.0893018i −0.421037 0.907043i \(-0.638334\pi\)
−0.0854184 + 0.996345i \(0.527223\pi\)
\(348\) 0 0
\(349\) −24.8657 14.3562i −1.33103 0.768470i −0.345571 0.938392i \(-0.612315\pi\)
−0.985457 + 0.169923i \(0.945648\pi\)
\(350\) 0 0
\(351\) −7.19839 6.04017i −0.384222 0.322400i
\(352\) 0 0
\(353\) −9.10896 15.7772i −0.484821 0.839735i 0.515027 0.857174i \(-0.327782\pi\)
−0.999848 + 0.0174391i \(0.994449\pi\)
\(354\) 0 0
\(355\) −8.56706 23.5378i −0.454692 1.24926i
\(356\) 0 0
\(357\) 12.4862 + 2.20166i 0.660840 + 0.116524i
\(358\) 0 0
\(359\) 17.5349 14.7135i 0.925455 0.776549i −0.0495409 0.998772i \(-0.515776\pi\)
0.974996 + 0.222223i \(0.0713314\pi\)
\(360\) 0 0
\(361\) 18.7665 + 2.96937i 0.987712 + 0.156282i
\(362\) 0 0
\(363\) 3.62059 + 4.31486i 0.190032 + 0.226471i
\(364\) 0 0
\(365\) 11.8986 + 2.09805i 0.622801 + 0.109817i
\(366\) 0 0
\(367\) 8.79345 3.20055i 0.459014 0.167068i −0.102155 0.994768i \(-0.532574\pi\)
0.561170 + 0.827701i \(0.310352\pi\)
\(368\) 0 0
\(369\) 0.901994 + 1.56230i 0.0469560 + 0.0813301i
\(370\) 0 0
\(371\) −30.9447 + 36.8784i −1.60657 + 1.91463i
\(372\) 0 0
\(373\) −9.42605 5.44213i −0.488062 0.281783i 0.235708 0.971824i \(-0.424259\pi\)
−0.723770 + 0.690041i \(0.757592\pi\)
\(374\) 0 0
\(375\) −0.985801 5.59075i −0.0509065 0.288705i
\(376\) 0 0
\(377\) −7.68686 2.79779i −0.395894 0.144093i
\(378\) 0 0
\(379\) 10.4146i 0.534963i 0.963563 + 0.267482i \(0.0861915\pi\)
−0.963563 + 0.267482i \(0.913809\pi\)
\(380\) 0 0
\(381\) 3.36651i 0.172472i
\(382\) 0 0
\(383\) 20.1708 + 7.34157i 1.03068 + 0.375137i 0.801340 0.598210i \(-0.204121\pi\)
0.229340 + 0.973346i \(0.426343\pi\)
\(384\) 0 0
\(385\) −0.995853 5.64776i −0.0507534 0.287837i
\(386\) 0 0
\(387\) 0.903077 + 0.521392i 0.0459060 + 0.0265038i
\(388\) 0 0
\(389\) 12.0248 14.3306i 0.609684 0.726593i −0.369576 0.929200i \(-0.620497\pi\)
0.979260 + 0.202608i \(0.0649416\pi\)
\(390\) 0 0
\(391\) −18.5299 32.0947i −0.937097 1.62310i
\(392\) 0 0
\(393\) 9.55940 3.47934i 0.482208 0.175509i
\(394\) 0 0
\(395\) 23.5646 + 4.15507i 1.18566 + 0.209064i
\(396\) 0 0
\(397\) −0.0151058 0.0180024i −0.000758139 0.000903515i 0.765665 0.643239i \(-0.222410\pi\)
−0.766423 + 0.642336i \(0.777965\pi\)
\(398\) 0 0
\(399\) 4.77885 + 6.69861i 0.239242 + 0.335350i
\(400\) 0 0
\(401\) −9.71472 + 8.15162i −0.485130 + 0.407072i −0.852277 0.523091i \(-0.824779\pi\)
0.367147 + 0.930163i \(0.380335\pi\)
\(402\) 0 0
\(403\) 16.0832 + 2.83590i 0.801161 + 0.141266i
\(404\) 0 0
\(405\) 8.18075 + 22.4764i 0.406505 + 1.11686i
\(406\) 0 0
\(407\) −1.30660 2.26310i −0.0647657 0.112178i
\(408\) 0 0
\(409\) 8.05259 + 6.75693i 0.398175 + 0.334109i 0.819788 0.572667i \(-0.194091\pi\)
−0.421613 + 0.906776i \(0.638536\pi\)
\(410\) 0 0
\(411\) 0.0776917 + 0.0448553i 0.00383225 + 0.00221255i
\(412\) 0 0
\(413\) 47.1914 8.32113i 2.32214 0.409456i
\(414\) 0 0
\(415\) −21.4261 7.79845i −1.05176 0.382811i
\(416\) 0 0
\(417\) −5.06575 −0.248071
\(418\) 0 0
\(419\) 30.4034i 1.48531i −0.669677 0.742653i \(-0.733567\pi\)
0.669677 0.742653i \(-0.266433\pi\)
\(420\) 0 0
\(421\) −11.1442 + 30.6184i −0.543134 + 1.49225i 0.299677 + 0.954041i \(0.403121\pi\)
−0.842812 + 0.538209i \(0.819101\pi\)
\(422\) 0 0
\(423\) 2.19403 + 12.4430i 0.106678 + 0.604999i
\(424\) 0 0
\(425\) −26.9287 + 46.6420i −1.30624 + 2.26247i
\(426\) 0 0
\(427\) 11.8725 14.1491i 0.574551 0.684723i
\(428\) 0 0
\(429\) −0.623395 + 0.359918i −0.0300978 + 0.0173770i
\(430\) 0 0
\(431\) −29.1465 + 10.6084i −1.40394 + 0.510991i −0.929344 0.369215i \(-0.879627\pi\)
−0.474592 + 0.880206i \(0.657404\pi\)
\(432\) 0 0
\(433\) −4.85572 + 27.5382i −0.233351 + 1.32340i 0.612707 + 0.790310i \(0.290080\pi\)
−0.846058 + 0.533090i \(0.821031\pi\)
\(434\) 0 0
\(435\) −3.14156 3.74397i −0.150626 0.179510i
\(436\) 0 0
\(437\) 6.02028 23.2861i 0.287989 1.11392i
\(438\) 0 0
\(439\) 18.9839 15.9294i 0.906054 0.760269i −0.0653103 0.997865i \(-0.520804\pi\)
0.971364 + 0.237596i \(0.0763593\pi\)
\(440\) 0 0
\(441\) 2.89920 16.4422i 0.138057 0.782960i
\(442\) 0 0
\(443\) −1.79167 4.92257i −0.0851248 0.233879i 0.889826 0.456301i \(-0.150826\pi\)
−0.974950 + 0.222422i \(0.928604\pi\)
\(444\) 0 0
\(445\) 9.20127 5.31236i 0.436182 0.251830i
\(446\) 0 0
\(447\) 4.43355 + 3.72019i 0.209700 + 0.175959i
\(448\) 0 0
\(449\) −12.7259 + 22.0418i −0.600570 + 1.04022i 0.392165 + 0.919895i \(0.371726\pi\)
−0.992735 + 0.120323i \(0.961607\pi\)
\(450\) 0 0
\(451\) 0.285736 0.0503829i 0.0134548 0.00237244i
\(452\) 0 0
\(453\) −2.75735 + 7.57575i −0.129551 + 0.355940i
\(454\) 0 0
\(455\) −41.1342 −1.92840
\(456\) 0 0
\(457\) 36.2633 1.69633 0.848163 0.529736i \(-0.177709\pi\)
0.848163 + 0.529736i \(0.177709\pi\)
\(458\) 0 0
\(459\) −6.85813 + 18.8426i −0.320110 + 0.879495i
\(460\) 0 0
\(461\) −2.09253 + 0.368969i −0.0974588 + 0.0171846i −0.222165 0.975009i \(-0.571312\pi\)
0.124706 + 0.992194i \(0.460201\pi\)
\(462\) 0 0
\(463\) −5.19412 + 8.99648i −0.241391 + 0.418102i −0.961111 0.276163i \(-0.910937\pi\)
0.719720 + 0.694265i \(0.244270\pi\)
\(464\) 0 0
\(465\) 7.47463 + 6.27196i 0.346628 + 0.290855i
\(466\) 0 0
\(467\) −23.6707 + 13.6663i −1.09535 + 0.632400i −0.934995 0.354660i \(-0.884597\pi\)
−0.160353 + 0.987060i \(0.551263\pi\)
\(468\) 0 0
\(469\) 1.11201 + 3.05522i 0.0513478 + 0.141077i
\(470\) 0 0
\(471\) 0.964648 5.47079i 0.0444486 0.252081i
\(472\) 0 0
\(473\) 0.128478 0.107806i 0.00590741 0.00495690i
\(474\) 0 0
\(475\) −33.6814 + 9.34348i −1.54541 + 0.428708i
\(476\) 0 0
\(477\) −23.3095 27.7792i −1.06727 1.27192i
\(478\) 0 0
\(479\) 7.02555 39.8439i 0.321006 1.82051i −0.215368 0.976533i \(-0.569095\pi\)
0.536374 0.843980i \(-0.319794\pi\)
\(480\) 0 0
\(481\) −17.6131 + 6.41066i −0.803090 + 0.292301i
\(482\) 0 0
\(483\) 9.02081 5.20817i 0.410461 0.236980i
\(484\) 0 0
\(485\) −11.1101 + 13.2405i −0.504483 + 0.601219i
\(486\) 0 0
\(487\) −12.3436 + 21.3797i −0.559341 + 0.968807i 0.438210 + 0.898872i \(0.355613\pi\)
−0.997552 + 0.0699350i \(0.977721\pi\)
\(488\) 0 0
\(489\) 1.31317 + 7.44736i 0.0593836 + 0.336781i
\(490\) 0 0
\(491\) −13.0447 + 35.8400i −0.588698 + 1.61744i 0.184188 + 0.982891i \(0.441034\pi\)
−0.772887 + 0.634544i \(0.781188\pi\)
\(492\) 0 0
\(493\) 17.4556i 0.786163i
\(494\) 0 0
\(495\) 4.31988 0.194164
\(496\) 0 0
\(497\) −23.6285 8.60006i −1.05988 0.385765i
\(498\) 0 0
\(499\) −34.4027 + 6.06613i −1.54008 + 0.271557i −0.878288 0.478132i \(-0.841314\pi\)
−0.661790 + 0.749689i \(0.730203\pi\)
\(500\) 0 0
\(501\) −6.82415 3.93993i −0.304881 0.176023i
\(502\) 0 0
\(503\) 18.2787 + 15.3377i 0.815008 + 0.683873i 0.951797 0.306727i \(-0.0992339\pi\)
−0.136789 + 0.990600i \(0.543678\pi\)
\(504\) 0 0
\(505\) −2.22196 3.84854i −0.0988758 0.171258i
\(506\) 0 0
\(507\) −0.551425 1.51503i −0.0244896 0.0672847i
\(508\) 0 0
\(509\) 5.87494 + 1.03591i 0.260402 + 0.0459159i 0.302325 0.953205i \(-0.402237\pi\)
−0.0419228 + 0.999121i \(0.513348\pi\)
\(510\) 0 0
\(511\) 9.29112 7.79618i 0.411015 0.344883i
\(512\) 0 0
\(513\) −11.7455 + 5.60340i −0.518574 + 0.247396i
\(514\) 0 0
\(515\) −19.6613 23.4314i −0.866378 1.03251i
\(516\) 0 0
\(517\) 2.00126 + 0.352877i 0.0880154 + 0.0155195i
\(518\) 0 0
\(519\) 6.75648 2.45916i 0.296577 0.107945i
\(520\) 0 0
\(521\) −5.49276 9.51375i −0.240642 0.416805i 0.720255 0.693709i \(-0.244025\pi\)
−0.960897 + 0.276904i \(0.910691\pi\)
\(522\) 0 0
\(523\) 17.0985 20.3773i 0.747667 0.891035i −0.249334 0.968418i \(-0.580212\pi\)
0.997001 + 0.0773823i \(0.0246562\pi\)
\(524\) 0 0
\(525\) −13.1096 7.56882i −0.572149 0.330330i
\(526\) 0 0
\(527\) −6.05151 34.3198i −0.263608 1.49499i
\(528\) 0 0
\(529\) −6.99752 2.54689i −0.304240 0.110734i
\(530\) 0 0
\(531\) 36.0960i 1.56643i
\(532\) 0 0
\(533\) 2.08109i 0.0901422i
\(534\) 0 0
\(535\) −13.6184 4.95670i −0.588775 0.214297i
\(536\) 0 0
\(537\) −0.960634 5.44802i −0.0414544 0.235100i
\(538\) 0 0
\(539\) −2.32551 1.34263i −0.100167 0.0578313i
\(540\) 0 0
\(541\) −27.5103 + 32.7855i −1.18276 + 1.40956i −0.291200 + 0.956662i \(0.594054\pi\)
−0.891562 + 0.452898i \(0.850390\pi\)
\(542\) 0 0
\(543\) 1.71599 + 2.97217i 0.0736400 + 0.127548i
\(544\) 0 0
\(545\) −13.4125 + 4.88177i −0.574530 + 0.209112i
\(546\) 0 0
\(547\) 20.2198 + 3.56530i 0.864536 + 0.152441i 0.588294 0.808647i \(-0.299800\pi\)
0.276242 + 0.961088i \(0.410911\pi\)
\(548\) 0 0
\(549\) 8.94313 + 10.6580i 0.381683 + 0.454872i
\(550\) 0 0
\(551\) −7.93975 + 8.08079i −0.338245 + 0.344253i
\(552\) 0 0
\(553\) 18.4006 15.4399i 0.782473 0.656573i
\(554\) 0 0
\(555\) −11.0285 1.94463i −0.468135 0.0825448i
\(556\) 0 0
\(557\) 3.60818 + 9.91340i 0.152884 + 0.420044i 0.992364 0.123346i \(-0.0393626\pi\)
−0.839480 + 0.543390i \(0.817140\pi\)
\(558\) 0 0
\(559\) −0.601481 1.04180i −0.0254399 0.0440633i
\(560\) 0 0
\(561\) 1.17668 + 0.987354i 0.0496796 + 0.0416861i
\(562\) 0 0
\(563\) 36.5165 + 21.0828i 1.53899 + 0.888534i 0.998898 + 0.0469245i \(0.0149420\pi\)
0.540087 + 0.841609i \(0.318391\pi\)
\(564\) 0 0
\(565\) 14.6577 2.58455i 0.616654 0.108733i
\(566\) 0 0
\(567\) 22.5630 + 8.21226i 0.947557 + 0.344882i
\(568\) 0 0
\(569\) 8.23726 0.345324 0.172662 0.984981i \(-0.444763\pi\)
0.172662 + 0.984981i \(0.444763\pi\)
\(570\) 0 0
\(571\) 13.0718i 0.547038i 0.961867 + 0.273519i \(0.0881877\pi\)
−0.961867 + 0.273519i \(0.911812\pi\)
\(572\) 0 0
\(573\) 2.48522 6.82809i 0.103822 0.285248i
\(574\) 0 0
\(575\) 7.68338 + 43.5746i 0.320419 + 1.81719i
\(576\) 0 0
\(577\) 14.4695 25.0619i 0.602374 1.04334i −0.390087 0.920778i \(-0.627555\pi\)
0.992461 0.122564i \(-0.0391116\pi\)
\(578\) 0 0
\(579\) −3.57247 + 4.25750i −0.148467 + 0.176936i
\(580\) 0 0
\(581\) −19.8224 + 11.4445i −0.822373 + 0.474797i
\(582\) 0 0
\(583\) −5.48063 + 1.99479i −0.226985 + 0.0826156i
\(584\) 0 0
\(585\) 5.38048 30.5142i 0.222455 1.26161i
\(586\) 0 0
\(587\) −27.2123 32.4304i −1.12317 1.33855i −0.934277 0.356548i \(-0.883954\pi\)
−0.188896 0.981997i \(-0.560491\pi\)
\(588\) 0 0
\(589\) 12.8090 18.6403i 0.527786 0.768061i
\(590\) 0 0
\(591\) −7.81667 + 6.55896i −0.321535 + 0.269800i
\(592\) 0 0
\(593\) 4.67524 26.5146i 0.191989 1.08882i −0.724653 0.689114i \(-0.758000\pi\)
0.916642 0.399710i \(-0.130889\pi\)
\(594\) 0 0
\(595\) 30.0212 + 82.4825i 1.23075 + 3.38145i
\(596\) 0 0
\(597\) −4.51058 + 2.60419i −0.184606 + 0.106582i
\(598\) 0 0
\(599\) −21.1301 17.7303i −0.863354 0.724440i 0.0993337 0.995054i \(-0.468329\pi\)
−0.962688 + 0.270614i \(0.912773\pi\)
\(600\) 0 0
\(601\) 16.5323 28.6348i 0.674367 1.16804i −0.302287 0.953217i \(-0.597750\pi\)
0.976654 0.214821i \(-0.0689167\pi\)
\(602\) 0 0
\(603\) −2.41188 + 0.425279i −0.0982192 + 0.0173187i
\(604\) 0 0
\(605\) −13.3371 + 36.6433i −0.542230 + 1.48976i
\(606\) 0 0
\(607\) −40.8887 −1.65962 −0.829811 0.558045i \(-0.811552\pi\)
−0.829811 + 0.558045i \(0.811552\pi\)
\(608\) 0 0
\(609\) −4.90623 −0.198810
\(610\) 0 0
\(611\) 4.98520 13.6967i 0.201680 0.554110i
\(612\) 0 0
\(613\) −35.2118 + 6.20880i −1.42219 + 0.250771i −0.831230 0.555928i \(-0.812363\pi\)
−0.590962 + 0.806699i \(0.701252\pi\)
\(614\) 0 0
\(615\) 0.621694 1.07681i 0.0250691 0.0434210i
\(616\) 0 0
\(617\) 3.08965 + 2.59252i 0.124384 + 0.104371i 0.702858 0.711330i \(-0.251907\pi\)
−0.578474 + 0.815701i \(0.696351\pi\)
\(618\) 0 0
\(619\) 31.7781 18.3471i 1.27727 0.737432i 0.300924 0.953648i \(-0.402705\pi\)
0.976346 + 0.216216i \(0.0693716\pi\)
\(620\) 0 0
\(621\) 5.63432 + 15.4802i 0.226098 + 0.621198i
\(622\) 0 0
\(623\) 1.85207 10.5036i 0.0742016 0.420818i
\(624\) 0 0
\(625\) −0.606854 + 0.509211i −0.0242742 + 0.0203684i
\(626\) 0 0
\(627\) 0.0956244 + 0.992297i 0.00381887 + 0.0396285i
\(628\) 0 0
\(629\) 25.7093 + 30.6392i 1.02510 + 1.22166i
\(630\) 0 0
\(631\) −0.183226 + 1.03913i −0.00729412 + 0.0413670i −0.988238 0.152926i \(-0.951130\pi\)
0.980943 + 0.194293i \(0.0622414\pi\)
\(632\) 0 0
\(633\) 3.78798 1.37871i 0.150559 0.0547989i
\(634\) 0 0
\(635\) −20.1840 + 11.6532i −0.800978 + 0.462445i
\(636\) 0 0
\(637\) −12.3804 + 14.7543i −0.490527 + 0.584588i
\(638\) 0 0
\(639\) 9.47037 16.4032i 0.374642 0.648899i
\(640\) 0 0
\(641\) −0.252757 1.43346i −0.00998330 0.0566181i 0.979409 0.201885i \(-0.0647069\pi\)
−0.989392 + 0.145267i \(0.953596\pi\)
\(642\) 0 0
\(643\) 4.69667 12.9040i 0.185218 0.508884i −0.811980 0.583685i \(-0.801610\pi\)
0.997198 + 0.0748018i \(0.0238324\pi\)
\(644\) 0 0
\(645\) 0.718732i 0.0283001i
\(646\) 0 0
\(647\) 18.7166 0.735825 0.367913 0.929860i \(-0.380073\pi\)
0.367913 + 0.929860i \(0.380073\pi\)
\(648\) 0 0
\(649\) 5.45537 + 1.98559i 0.214142 + 0.0779413i
\(650\) 0 0
\(651\) 9.64621 1.70089i 0.378065 0.0666630i
\(652\) 0 0
\(653\) −16.6282 9.60032i −0.650714 0.375690i 0.138016 0.990430i \(-0.455927\pi\)
−0.788730 + 0.614740i \(0.789261\pi\)
\(654\) 0 0
\(655\) 53.9505 + 45.2699i 2.10802 + 1.76884i
\(656\) 0 0
\(657\) 4.56805 + 7.91210i 0.178217 + 0.308681i
\(658\) 0 0
\(659\) 0.514540 + 1.41369i 0.0200436 + 0.0550694i 0.949311 0.314339i \(-0.101783\pi\)
−0.929267 + 0.369408i \(0.879560\pi\)
\(660\) 0 0
\(661\) 29.4696 + 5.19629i 1.14624 + 0.202112i 0.714332 0.699807i \(-0.246731\pi\)
0.431904 + 0.901920i \(0.357842\pi\)
\(662\) 0 0
\(663\) 8.43991 7.08193i 0.327779 0.275039i
\(664\) 0 0
\(665\) −23.6196 + 51.8391i −0.915930 + 2.01023i
\(666\) 0 0
\(667\) 9.21806 + 10.9857i 0.356925 + 0.425366i
\(668\) 0 0
\(669\) 3.15076 + 0.555563i 0.121815 + 0.0214793i
\(670\) 0 0
\(671\) 2.10275 0.765337i 0.0811756 0.0295455i
\(672\) 0 0
\(673\) −24.4237 42.3031i −0.941464 1.63066i −0.762681 0.646775i \(-0.776117\pi\)
−0.178783 0.983889i \(-0.557216\pi\)
\(674\) 0 0
\(675\) 15.3887 18.3395i 0.592310 0.705887i
\(676\) 0 0
\(677\) −16.9015 9.75807i −0.649576 0.375033i 0.138718 0.990332i \(-0.455702\pi\)
−0.788294 + 0.615299i \(0.789035\pi\)
\(678\) 0 0
\(679\) 3.01293 + 17.0872i 0.115626 + 0.655747i
\(680\) 0 0
\(681\) −11.0319 4.01529i −0.422744 0.153866i
\(682\) 0 0
\(683\) 28.6592i 1.09662i −0.836277 0.548308i \(-0.815272\pi\)
0.836277 0.548308i \(-0.184728\pi\)
\(684\) 0 0
\(685\) 0.621071i 0.0237299i
\(686\) 0 0
\(687\) −1.40700 0.512107i −0.0536804 0.0195381i
\(688\) 0 0
\(689\) 7.26429 + 41.1979i 0.276748 + 1.56951i
\(690\) 0 0
\(691\) −12.0352 6.94855i −0.457842 0.264335i 0.253295 0.967389i \(-0.418486\pi\)
−0.711136 + 0.703054i \(0.751819\pi\)
\(692\) 0 0
\(693\) 2.78746 3.32197i 0.105887 0.126191i
\(694\) 0 0
\(695\) −17.5352 30.3719i −0.665148 1.15207i
\(696\) 0 0
\(697\) −4.17302 + 1.51885i −0.158064 + 0.0575307i
\(698\) 0 0
\(699\) −1.38613 0.244412i −0.0524282 0.00924450i
\(700\) 0 0
\(701\) −2.84915 3.39548i −0.107611 0.128246i 0.709551 0.704655i \(-0.248898\pi\)
−0.817161 + 0.576409i \(0.804454\pi\)
\(702\) 0 0
\(703\) −2.03463 + 25.8779i −0.0767375 + 0.976002i
\(704\) 0 0
\(705\) 6.67114 5.59775i 0.251250 0.210824i
\(706\) 0 0
\(707\) −4.39326 0.774650i −0.165225 0.0291337i
\(708\) 0 0
\(709\) −9.17608 25.2111i −0.344615 0.946822i −0.984037 0.177966i \(-0.943048\pi\)
0.639422 0.768856i \(-0.279174\pi\)
\(710\) 0 0
\(711\) 9.04680 + 15.6695i 0.339281 + 0.587653i
\(712\) 0 0
\(713\) −21.9322 18.4033i −0.821369 0.689211i
\(714\) 0 0
\(715\) −4.31579 2.49172i −0.161401 0.0931852i
\(716\) 0 0
\(717\) 3.84788 0.678484i 0.143702 0.0253385i
\(718\) 0 0
\(719\) 2.76943 + 1.00799i 0.103282 + 0.0375916i 0.393144 0.919477i \(-0.371387\pi\)
−0.289862 + 0.957068i \(0.593609\pi\)
\(720\) 0 0
\(721\) −30.7053 −1.14352
\(722\) 0 0
\(723\) 10.8868i 0.404885i
\(724\) 0 0
\(725\) 7.12798 19.5840i 0.264727 0.727330i
\(726\) 0 0
\(727\) −6.04291 34.2710i −0.224119 1.27104i −0.864362 0.502870i \(-0.832278\pi\)
0.640243 0.768172i \(-0.278834\pi\)
\(728\) 0 0
\(729\) −6.70932 + 11.6209i −0.248493 + 0.430403i
\(730\) 0 0
\(731\) −1.65003 + 1.96643i −0.0610286 + 0.0727310i
\(732\) 0 0
\(733\) 1.42948 0.825308i 0.0527989 0.0304835i −0.473368 0.880865i \(-0.656962\pi\)
0.526167 + 0.850381i \(0.323629\pi\)
\(734\) 0 0
\(735\) −10.8135 + 3.93579i −0.398862 + 0.145174i
\(736\) 0 0
\(737\) −0.0683996 + 0.387913i −0.00251953 + 0.0142890i
\(738\) 0 0
\(739\) 3.40363 + 4.05629i 0.125204 + 0.149213i 0.825005 0.565125i \(-0.191172\pi\)
−0.699801 + 0.714338i \(0.746728\pi\)
\(740\) 0 0
\(741\) 7.12835 + 0.560461i 0.261867 + 0.0205891i
\(742\) 0 0
\(743\) −19.8541 + 16.6596i −0.728376 + 0.611180i −0.929688 0.368347i \(-0.879924\pi\)
0.201313 + 0.979527i \(0.435479\pi\)
\(744\) 0 0
\(745\) −6.95768 + 39.4590i −0.254910 + 1.44567i
\(746\) 0 0
\(747\) −5.89692 16.2016i −0.215757 0.592787i
\(748\) 0 0
\(749\) −12.5991 + 7.27411i −0.460362 + 0.265790i
\(750\) 0 0
\(751\) −9.20184 7.72126i −0.335780 0.281753i 0.459270 0.888297i \(-0.348111\pi\)
−0.795050 + 0.606544i \(0.792555\pi\)
\(752\) 0 0
\(753\) 3.06513 5.30896i 0.111700 0.193469i
\(754\) 0 0
\(755\) −54.9652 + 9.69185i −2.00039 + 0.352723i
\(756\) 0 0
\(757\) 18.1225 49.7911i 0.658673 1.80969i 0.0758026 0.997123i \(-0.475848\pi\)
0.582870 0.812565i \(-0.301930\pi\)
\(758\) 0 0
\(759\) 1.26195 0.0458058
\(760\) 0 0
\(761\) −5.98803 −0.217066 −0.108533 0.994093i \(-0.534615\pi\)
−0.108533 + 0.994093i \(0.534615\pi\)
\(762\) 0 0
\(763\) −4.90057 + 13.4642i −0.177413 + 0.487437i
\(764\) 0 0
\(765\) −65.1140 + 11.4814i −2.35420 + 0.415109i
\(766\) 0 0
\(767\) 20.8203 36.0618i 0.751777 1.30212i
\(768\) 0 0
\(769\) 26.6631 + 22.3730i 0.961495 + 0.806790i 0.981196 0.193016i \(-0.0618269\pi\)
−0.0197007 + 0.999806i \(0.506271\pi\)
\(770\) 0 0
\(771\) 12.8371 7.41149i 0.462316 0.266918i
\(772\) 0 0
\(773\) −3.40354 9.35115i −0.122417 0.336337i 0.863314 0.504667i \(-0.168385\pi\)
−0.985731 + 0.168330i \(0.946163\pi\)
\(774\) 0 0
\(775\) −7.22508 + 40.9755i −0.259532 + 1.47188i
\(776\) 0 0
\(777\) −8.61171 + 7.22608i −0.308943 + 0.259234i
\(778\) 0 0
\(779\) −2.62268 1.19498i −0.0939673 0.0428146i
\(780\) 0 0
\(781\) −1.95814 2.33362i −0.0700678 0.0835035i
\(782\) 0 0
\(783\) 1.34739 7.64143i 0.0481518 0.273082i
\(784\) 0 0
\(785\) 36.1394 13.1537i 1.28987 0.469475i
\(786\) 0 0
\(787\) 32.6750 18.8649i 1.16474 0.672461i 0.212302 0.977204i \(-0.431904\pi\)
0.952435 + 0.304743i \(0.0985707\pi\)
\(788\) 0 0
\(789\) 1.57124 1.87253i 0.0559377 0.0666639i
\(790\) 0 0
\(791\) 7.47057 12.9394i 0.265623 0.460072i
\(792\) 0 0
\(793\) −2.78708 15.8063i −0.0989722 0.561299i
\(794\) 0 0
\(795\) −8.54850 + 23.4868i −0.303184 + 0.832991i
\(796\) 0 0
\(797\) 18.2325i 0.645830i −0.946428 0.322915i \(-0.895337\pi\)
0.946428 0.322915i \(-0.104663\pi\)
\(798\) 0 0
\(799\) −31.1031 −1.10035
\(800\) 0 0
\(801\) 7.54953 + 2.74780i 0.266749 + 0.0970889i
\(802\) 0 0
\(803\) 1.44708 0.255159i 0.0510663 0.00900437i
\(804\) 0 0
\(805\) 62.4515 + 36.0564i 2.20112 + 1.27082i
\(806\) 0 0
\(807\) −3.94294 3.30852i −0.138798 0.116465i
\(808\) 0 0
\(809\) −18.6895 32.3711i −0.657086 1.13811i −0.981366 0.192146i \(-0.938455\pi\)
0.324280 0.945961i \(-0.394878\pi\)
\(810\) 0 0
\(811\) 2.07199 + 5.69274i 0.0727574 + 0.199899i 0.970741 0.240130i \(-0.0771902\pi\)
−0.897983 + 0.440030i \(0.854968\pi\)
\(812\) 0 0
\(813\) −8.32826 1.46850i −0.292085 0.0515024i
\(814\) 0 0
\(815\) −40.1053 + 33.6523i −1.40483 + 1.17879i
\(816\) 0 0
\(817\) −1.65829 + 0.159804i −0.0580162 + 0.00559083i
\(818\) 0 0
\(819\) −19.9934 23.8273i −0.698627 0.832592i
\(820\) 0 0
\(821\) 3.02314 + 0.533062i 0.105508 + 0.0186040i 0.226153 0.974092i \(-0.427385\pi\)
−0.120645 + 0.992696i \(0.538496\pi\)
\(822\) 0 0
\(823\) 43.8007 15.9421i 1.52680 0.555708i 0.563961 0.825801i \(-0.309277\pi\)
0.962834 + 0.270093i \(0.0870545\pi\)
\(824\) 0 0
\(825\) −0.916969 1.58824i −0.0319248 0.0552953i
\(826\) 0 0
\(827\) −2.44449 + 2.91324i −0.0850034 + 0.101303i −0.806870 0.590729i \(-0.798840\pi\)
0.721866 + 0.692033i \(0.243285\pi\)
\(828\) 0 0
\(829\) 0.877638 + 0.506704i 0.0304816 + 0.0175986i 0.515163 0.857092i \(-0.327731\pi\)
−0.484682 + 0.874691i \(0.661065\pi\)
\(830\) 0 0
\(831\) −0.901122 5.11051i −0.0312596 0.177282i
\(832\) 0 0
\(833\) 38.6210 + 14.0569i 1.33814 + 0.487043i
\(834\) 0 0
\(835\) 54.5526i 1.88787i
\(836\) 0 0
\(837\) 15.4910i 0.535448i
\(838\) 0 0
\(839\) 13.3269 + 4.85058i 0.460095 + 0.167461i 0.561660 0.827368i \(-0.310163\pi\)
−0.101565 + 0.994829i \(0.532385\pi\)
\(840\) 0 0
\(841\) 3.86286 + 21.9074i 0.133202 + 0.755426i
\(842\) 0 0
\(843\) −6.08978 3.51594i −0.209743 0.121095i
\(844\) 0 0
\(845\) 7.17462 8.55038i 0.246815 0.294142i
\(846\) 0 0
\(847\) 19.5726 + 33.9008i 0.672523 + 1.16484i
\(848\) 0 0
\(849\) −6.77980 + 2.46765i −0.232682 + 0.0846894i
\(850\) 0 0
\(851\) 32.3602 + 5.70597i 1.10929 + 0.195598i
\(852\) 0 0
\(853\) 10.9246 + 13.0194i 0.374050 + 0.445775i 0.919927 0.392090i \(-0.128248\pi\)
−0.545877 + 0.837865i \(0.683803\pi\)
\(854\) 0 0
\(855\) −35.3658 24.3022i −1.20948 0.831118i
\(856\) 0 0
\(857\) 7.76836 6.51843i 0.265362 0.222665i −0.500392 0.865799i \(-0.666811\pi\)
0.765754 + 0.643134i \(0.222366\pi\)
\(858\) 0 0
\(859\) 16.0564 + 2.83118i 0.547839 + 0.0965988i 0.440715 0.897647i \(-0.354725\pi\)
0.107124 + 0.994246i \(0.465836\pi\)
\(860\) 0 0
\(861\) −0.426902 1.17290i −0.0145488 0.0399724i
\(862\) 0 0
\(863\) −19.8160 34.3223i −0.674545 1.16835i −0.976602 0.215056i \(-0.931007\pi\)
0.302057 0.953290i \(-0.402327\pi\)
\(864\) 0 0
\(865\) 38.1317 + 31.9963i 1.29652 + 1.08791i
\(866\) 0 0
\(867\) −12.6874 7.32506i −0.430886 0.248772i
\(868\) 0 0
\(869\) 2.86587 0.505329i 0.0972178 0.0171421i
\(870\) 0 0
\(871\) 2.65489 + 0.966303i 0.0899577 + 0.0327419i
\(872\) 0 0
\(873\) −13.0697 −0.442343
\(874\) 0 0
\(875\) 39.4535i 1.33377i
\(876\) 0 0
\(877\) 2.92760 8.04352i 0.0988581 0.271610i −0.880398 0.474235i \(-0.842725\pi\)
0.979257 + 0.202624i \(0.0649470\pi\)
\(878\) 0 0
\(879\) 0.846616 + 4.80140i 0.0285556 + 0.161947i
\(880\) 0 0
\(881\) 10.6857 18.5082i 0.360010 0.623556i −0.627952 0.778252i \(-0.716107\pi\)
0.987962 + 0.154696i \(0.0494399\pi\)
\(882\) 0 0
\(883\) −18.3568 + 21.8768i −0.617755 + 0.736212i −0.980683 0.195605i \(-0.937333\pi\)
0.362927 + 0.931817i \(0.381777\pi\)
\(884\) 0 0
\(885\) 21.5458 12.4395i 0.724254 0.418148i
\(886\) 0 0
\(887\) 43.5438 15.8486i 1.46206 0.532146i 0.516127 0.856512i \(-0.327373\pi\)
0.945931 + 0.324367i \(0.105151\pi\)
\(888\) 0 0
\(889\) −4.06272 + 23.0408i −0.136259 + 0.772764i
\(890\) 0 0
\(891\) 1.86984 + 2.22839i 0.0626421 + 0.0746539i
\(892\) 0 0
\(893\) −14.3986 14.1473i −0.481832 0.473422i
\(894\) 0 0
\(895\) 29.3385 24.6180i 0.980679 0.822887i
\(896\) 0 0
\(897\) 1.57177 8.91397i 0.0524800 0.297629i
\(898\) 0 0
\(899\) 4.61226 + 12.6721i 0.153827 + 0.422638i
\(900\) 0 0
\(901\) 77.3083 44.6340i 2.57551 1.48697i
\(902\) 0 0
\(903\) −0.552701 0.463772i −0.0183928 0.0154334i
\(904\) 0 0
\(905\) −11.8798 + 20.5765i −0.394899 + 0.683985i
\(906\) 0 0
\(907\) 49.7852 8.77847i 1.65309 0.291484i 0.732137 0.681158i \(-0.238523\pi\)
0.920953 + 0.389674i \(0.127412\pi\)
\(908\) 0 0
\(909\) 1.14930 3.15768i 0.0381199 0.104734i
\(910\) 0 0
\(911\) 35.4145 1.17333 0.586667 0.809828i \(-0.300440\pi\)
0.586667 + 0.809828i \(0.300440\pi\)
\(912\) 0 0
\(913\) −2.77302 −0.0917735
\(914\) 0 0
\(915\) 3.27979 9.01116i 0.108427 0.297900i
\(916\) 0 0
\(917\) 69.6246 12.2767i 2.29921 0.405412i
\(918\) 0 0
\(919\) −10.2605 + 17.7717i −0.338462 + 0.586233i −0.984144 0.177374i \(-0.943240\pi\)
0.645682 + 0.763607i \(0.276573\pi\)
\(920\) 0 0
\(921\) −4.94452 4.14894i −0.162927 0.136712i
\(922\) 0 0
\(923\) −18.9228 + 10.9251i −0.622851 + 0.359603i
\(924\) 0 0
\(925\) −16.3326 44.8733i −0.537011 1.47543i
\(926\) 0 0
\(927\) 4.01634 22.7778i 0.131914 0.748121i
\(928\) 0 0
\(929\) 15.6951 13.1697i 0.514938 0.432085i −0.347925 0.937523i \(-0.613113\pi\)
0.862863 + 0.505438i \(0.168669\pi\)
\(930\) 0 0
\(931\) 11.4851 + 24.0743i 0.376410 + 0.789003i
\(932\) 0 0
\(933\) 4.45057 + 5.30398i 0.145705 + 0.173645i
\(934\) 0 0
\(935\) −1.84660 + 10.4726i −0.0603903 + 0.342490i
\(936\) 0 0
\(937\) 48.0662 17.4947i 1.57025 0.571526i 0.597198 0.802094i \(-0.296281\pi\)
0.973056 + 0.230569i \(0.0740586\pi\)
\(938\) 0 0
\(939\) 8.05447 4.65025i 0.262848 0.151755i
\(940\) 0 0
\(941\) −5.29132 + 6.30595i −0.172492 + 0.205568i −0.845364 0.534191i \(-0.820616\pi\)
0.672872 + 0.739759i \(0.265061\pi\)
\(942\) 0 0
\(943\) −1.82419 + 3.15959i −0.0594038 + 0.102890i
\(944\) 0 0
\(945\) −6.77537 38.4251i −0.220403 1.24997i
\(946\) 0 0
\(947\) 5.52282 15.1738i 0.179467 0.493083i −0.817041 0.576580i \(-0.804387\pi\)
0.996508 + 0.0834975i \(0.0266090\pi\)
\(948\) 0 0
\(949\) 10.5395i 0.342126i
\(950\) 0 0
\(951\) 3.44438 0.111692
\(952\) 0 0
\(953\) 27.6668 + 10.0699i 0.896214 + 0.326195i 0.748735 0.662870i \(-0.230662\pi\)
0.147479 + 0.989065i \(0.452884\pi\)
\(954\) 0 0
\(955\) 49.5407 8.73535i 1.60310 0.282669i
\(956\) 0 0
\(957\) −0.514760 0.297197i −0.0166398 0.00960702i
\(958\) 0 0
\(959\) 0.477600 + 0.400754i 0.0154225 + 0.0129410i
\(960\) 0 0
\(961\) 2.03863 + 3.53100i 0.0657621 + 0.113903i
\(962\) 0 0
\(963\) −3.74808 10.2978i −0.120780 0.331841i
\(964\) 0 0
\(965\) −37.8921 6.68140i −1.21979 0.215082i
\(966\) 0 0
\(967\) −26.9862 + 22.6441i −0.867818 + 0.728186i −0.963637 0.267213i \(-0.913897\pi\)
0.0958196 + 0.995399i \(0.469453\pi\)
\(968\) 0 0
\(969\) −4.07868 14.7028i −0.131026 0.472323i
\(970\) 0 0
\(971\) 22.9117 + 27.3051i 0.735272 + 0.876263i 0.996019 0.0891439i \(-0.0284131\pi\)
−0.260746 + 0.965407i \(0.583969\pi\)
\(972\) 0 0
\(973\) −34.6706 6.11337i −1.11149 0.195986i
\(974\) 0 0
\(975\) −12.3609 + 4.49899i −0.395865 + 0.144083i
\(976\) 0 0
\(977\) 23.8606 + 41.3278i 0.763369 + 1.32219i 0.941105 + 0.338115i \(0.109789\pi\)
−0.177736 + 0.984078i \(0.556877\pi\)
\(978\) 0 0
\(979\) 0.830579 0.989845i 0.0265454 0.0316356i
\(980\) 0 0
\(981\) −9.34701 5.39650i −0.298427 0.172297i
\(982\) 0 0
\(983\) −0.872531 4.94837i −0.0278294 0.157829i 0.967726 0.252004i \(-0.0810896\pi\)
−0.995556 + 0.0941755i \(0.969979\pi\)
\(984\) 0 0
\(985\) −66.3820 24.1611i −2.11511 0.769836i
\(986\) 0 0
\(987\) 8.74210i 0.278264i
\(988\) 0 0
\(989\) 2.10892i 0.0670598i
\(990\) 0 0
\(991\) 9.63806 + 3.50797i 0.306163 + 0.111434i 0.490533 0.871423i \(-0.336802\pi\)
−0.184370 + 0.982857i \(0.559024\pi\)
\(992\) 0 0
\(993\) 2.84136 + 16.1142i 0.0901679 + 0.511368i
\(994\) 0 0
\(995\) −31.2270 18.0289i −0.989961 0.571554i
\(996\) 0 0
\(997\) 10.2645 12.2327i 0.325079 0.387414i −0.578610 0.815605i \(-0.696404\pi\)
0.903688 + 0.428191i \(0.140849\pi\)
\(998\) 0 0
\(999\) −8.88957 15.3972i −0.281253 0.487145i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 608.2.bf.a.177.10 108
4.3 odd 2 152.2.t.a.101.8 yes 108
8.3 odd 2 152.2.t.a.101.1 108
8.5 even 2 inner 608.2.bf.a.177.9 108
19.16 even 9 inner 608.2.bf.a.529.9 108
76.35 odd 18 152.2.t.a.149.1 yes 108
152.35 odd 18 152.2.t.a.149.8 yes 108
152.149 even 18 inner 608.2.bf.a.529.10 108
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.t.a.101.1 108 8.3 odd 2
152.2.t.a.101.8 yes 108 4.3 odd 2
152.2.t.a.149.1 yes 108 76.35 odd 18
152.2.t.a.149.8 yes 108 152.35 odd 18
608.2.bf.a.177.9 108 8.5 even 2 inner
608.2.bf.a.177.10 108 1.1 even 1 trivial
608.2.bf.a.529.9 108 19.16 even 9 inner
608.2.bf.a.529.10 108 152.149 even 18 inner