Properties

Label 6075.2.a.bq.1.3
Level $6075$
Weight $2$
Character 6075.1
Self dual yes
Analytic conductor $48.509$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6075,2,Mod(1,6075)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6075, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6075.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6075 = 3^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6075.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.5091192279\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 243)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.87939\) of defining polynomial
Character \(\chi\) \(=\) 6075.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.879385 q^{2} -1.22668 q^{4} +2.18479 q^{7} -2.83750 q^{8} +O(q^{10})\) \(q+0.879385 q^{2} -1.22668 q^{4} +2.18479 q^{7} -2.83750 q^{8} +0.162504 q^{11} -2.41147 q^{13} +1.92127 q^{14} -0.0418891 q^{16} -3.00000 q^{17} +3.59627 q^{19} +0.142903 q^{22} -2.83750 q^{23} -2.12061 q^{26} -2.68004 q^{28} +6.71688 q^{29} -5.18479 q^{31} +5.63816 q^{32} -2.63816 q^{34} +6.63816 q^{37} +3.16250 q^{38} -5.80066 q^{41} +6.22668 q^{43} -0.199340 q^{44} -2.49525 q^{46} -7.39693 q^{47} -2.22668 q^{49} +2.95811 q^{52} -1.40373 q^{53} -6.19934 q^{56} +5.90673 q^{58} -5.12061 q^{59} -3.78106 q^{61} -4.55943 q^{62} +5.04189 q^{64} +5.86484 q^{67} +3.68004 q^{68} -15.3182 q^{71} -8.68004 q^{73} +5.83750 q^{74} -4.41147 q^{76} +0.355037 q^{77} -1.26857 q^{79} -5.10101 q^{82} +8.47565 q^{83} +5.47565 q^{86} -0.461104 q^{88} +7.72193 q^{89} -5.26857 q^{91} +3.48070 q^{92} -6.50475 q^{94} +3.90673 q^{97} -1.95811 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 3 q^{4} + 3 q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 3 q^{2} + 3 q^{4} + 3 q^{7} - 6 q^{8} + 3 q^{11} + 3 q^{13} - 3 q^{14} + 3 q^{16} - 9 q^{17} - 3 q^{19} - 6 q^{23} - 12 q^{26} + 12 q^{28} + 12 q^{29} - 12 q^{31} + 9 q^{34} + 3 q^{37} + 12 q^{38} - 3 q^{41} + 12 q^{43} - 15 q^{44} + 9 q^{46} + 6 q^{47} + 12 q^{52} - 18 q^{53} - 33 q^{56} - 9 q^{58} - 21 q^{59} + 6 q^{61} + 12 q^{62} + 12 q^{64} - 6 q^{67} - 9 q^{68} - 9 q^{71} - 6 q^{73} + 15 q^{74} - 3 q^{76} - 24 q^{77} + 6 q^{79} - 18 q^{82} + 6 q^{83} - 3 q^{86} + 36 q^{88} - 6 q^{91} - 24 q^{92} - 36 q^{94} - 15 q^{97} - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.879385 0.621819 0.310910 0.950439i \(-0.399366\pi\)
0.310910 + 0.950439i \(0.399366\pi\)
\(3\) 0 0
\(4\) −1.22668 −0.613341
\(5\) 0 0
\(6\) 0 0
\(7\) 2.18479 0.825774 0.412887 0.910782i \(-0.364520\pi\)
0.412887 + 0.910782i \(0.364520\pi\)
\(8\) −2.83750 −1.00321
\(9\) 0 0
\(10\) 0 0
\(11\) 0.162504 0.0489967 0.0244984 0.999700i \(-0.492201\pi\)
0.0244984 + 0.999700i \(0.492201\pi\)
\(12\) 0 0
\(13\) −2.41147 −0.668823 −0.334411 0.942427i \(-0.608537\pi\)
−0.334411 + 0.942427i \(0.608537\pi\)
\(14\) 1.92127 0.513482
\(15\) 0 0
\(16\) −0.0418891 −0.0104723
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) 3.59627 0.825040 0.412520 0.910949i \(-0.364649\pi\)
0.412520 + 0.910949i \(0.364649\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0.142903 0.0304671
\(23\) −2.83750 −0.591659 −0.295829 0.955241i \(-0.595596\pi\)
−0.295829 + 0.955241i \(0.595596\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −2.12061 −0.415887
\(27\) 0 0
\(28\) −2.68004 −0.506481
\(29\) 6.71688 1.24729 0.623647 0.781706i \(-0.285650\pi\)
0.623647 + 0.781706i \(0.285650\pi\)
\(30\) 0 0
\(31\) −5.18479 −0.931216 −0.465608 0.884991i \(-0.654164\pi\)
−0.465608 + 0.884991i \(0.654164\pi\)
\(32\) 5.63816 0.996695
\(33\) 0 0
\(34\) −2.63816 −0.452440
\(35\) 0 0
\(36\) 0 0
\(37\) 6.63816 1.09131 0.545653 0.838011i \(-0.316282\pi\)
0.545653 + 0.838011i \(0.316282\pi\)
\(38\) 3.16250 0.513026
\(39\) 0 0
\(40\) 0 0
\(41\) −5.80066 −0.905911 −0.452955 0.891533i \(-0.649630\pi\)
−0.452955 + 0.891533i \(0.649630\pi\)
\(42\) 0 0
\(43\) 6.22668 0.949560 0.474780 0.880105i \(-0.342528\pi\)
0.474780 + 0.880105i \(0.342528\pi\)
\(44\) −0.199340 −0.0300517
\(45\) 0 0
\(46\) −2.49525 −0.367905
\(47\) −7.39693 −1.07895 −0.539476 0.842001i \(-0.681378\pi\)
−0.539476 + 0.842001i \(0.681378\pi\)
\(48\) 0 0
\(49\) −2.22668 −0.318097
\(50\) 0 0
\(51\) 0 0
\(52\) 2.95811 0.410216
\(53\) −1.40373 −0.192818 −0.0964088 0.995342i \(-0.530736\pi\)
−0.0964088 + 0.995342i \(0.530736\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −6.19934 −0.828422
\(57\) 0 0
\(58\) 5.90673 0.775591
\(59\) −5.12061 −0.666647 −0.333324 0.942812i \(-0.608170\pi\)
−0.333324 + 0.942812i \(0.608170\pi\)
\(60\) 0 0
\(61\) −3.78106 −0.484115 −0.242058 0.970262i \(-0.577822\pi\)
−0.242058 + 0.970262i \(0.577822\pi\)
\(62\) −4.55943 −0.579048
\(63\) 0 0
\(64\) 5.04189 0.630236
\(65\) 0 0
\(66\) 0 0
\(67\) 5.86484 0.716504 0.358252 0.933625i \(-0.383373\pi\)
0.358252 + 0.933625i \(0.383373\pi\)
\(68\) 3.68004 0.446271
\(69\) 0 0
\(70\) 0 0
\(71\) −15.3182 −1.81794 −0.908968 0.416866i \(-0.863128\pi\)
−0.908968 + 0.416866i \(0.863128\pi\)
\(72\) 0 0
\(73\) −8.68004 −1.01592 −0.507961 0.861380i \(-0.669601\pi\)
−0.507961 + 0.861380i \(0.669601\pi\)
\(74\) 5.83750 0.678595
\(75\) 0 0
\(76\) −4.41147 −0.506031
\(77\) 0.355037 0.0404602
\(78\) 0 0
\(79\) −1.26857 −0.142725 −0.0713627 0.997450i \(-0.522735\pi\)
−0.0713627 + 0.997450i \(0.522735\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −5.10101 −0.563313
\(83\) 8.47565 0.930324 0.465162 0.885226i \(-0.345996\pi\)
0.465162 + 0.885226i \(0.345996\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 5.47565 0.590455
\(87\) 0 0
\(88\) −0.461104 −0.0491538
\(89\) 7.72193 0.818523 0.409262 0.912417i \(-0.365786\pi\)
0.409262 + 0.912417i \(0.365786\pi\)
\(90\) 0 0
\(91\) −5.26857 −0.552296
\(92\) 3.48070 0.362889
\(93\) 0 0
\(94\) −6.50475 −0.670914
\(95\) 0 0
\(96\) 0 0
\(97\) 3.90673 0.396668 0.198334 0.980134i \(-0.436447\pi\)
0.198334 + 0.980134i \(0.436447\pi\)
\(98\) −1.95811 −0.197799
\(99\) 0 0
\(100\) 0 0
\(101\) −8.11381 −0.807354 −0.403677 0.914902i \(-0.632268\pi\)
−0.403677 + 0.914902i \(0.632268\pi\)
\(102\) 0 0
\(103\) −18.6459 −1.83723 −0.918617 0.395148i \(-0.870693\pi\)
−0.918617 + 0.395148i \(0.870693\pi\)
\(104\) 6.84255 0.670967
\(105\) 0 0
\(106\) −1.23442 −0.119898
\(107\) −7.59627 −0.734359 −0.367179 0.930150i \(-0.619676\pi\)
−0.367179 + 0.930150i \(0.619676\pi\)
\(108\) 0 0
\(109\) −15.6382 −1.49786 −0.748932 0.662647i \(-0.769433\pi\)
−0.748932 + 0.662647i \(0.769433\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.0915189 −0.00864772
\(113\) 2.31315 0.217603 0.108801 0.994064i \(-0.465299\pi\)
0.108801 + 0.994064i \(0.465299\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −8.23947 −0.765016
\(117\) 0 0
\(118\) −4.50299 −0.414534
\(119\) −6.55438 −0.600839
\(120\) 0 0
\(121\) −10.9736 −0.997599
\(122\) −3.32501 −0.301032
\(123\) 0 0
\(124\) 6.36009 0.571153
\(125\) 0 0
\(126\) 0 0
\(127\) −0.0418891 −0.00371705 −0.00185853 0.999998i \(-0.500592\pi\)
−0.00185853 + 0.999998i \(0.500592\pi\)
\(128\) −6.84255 −0.604802
\(129\) 0 0
\(130\) 0 0
\(131\) 18.3482 1.60309 0.801546 0.597933i \(-0.204011\pi\)
0.801546 + 0.597933i \(0.204011\pi\)
\(132\) 0 0
\(133\) 7.85710 0.681297
\(134\) 5.15745 0.445536
\(135\) 0 0
\(136\) 8.51249 0.729940
\(137\) −14.3131 −1.22285 −0.611427 0.791301i \(-0.709404\pi\)
−0.611427 + 0.791301i \(0.709404\pi\)
\(138\) 0 0
\(139\) 10.4953 0.890196 0.445098 0.895482i \(-0.353169\pi\)
0.445098 + 0.895482i \(0.353169\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −13.4706 −1.13043
\(143\) −0.391874 −0.0327701
\(144\) 0 0
\(145\) 0 0
\(146\) −7.63310 −0.631720
\(147\) 0 0
\(148\) −8.14290 −0.669343
\(149\) −1.27126 −0.104146 −0.0520728 0.998643i \(-0.516583\pi\)
−0.0520728 + 0.998643i \(0.516583\pi\)
\(150\) 0 0
\(151\) 7.85710 0.639401 0.319701 0.947519i \(-0.396418\pi\)
0.319701 + 0.947519i \(0.396418\pi\)
\(152\) −10.2044 −0.827686
\(153\) 0 0
\(154\) 0.312214 0.0251590
\(155\) 0 0
\(156\) 0 0
\(157\) 12.3523 0.985825 0.492912 0.870079i \(-0.335932\pi\)
0.492912 + 0.870079i \(0.335932\pi\)
\(158\) −1.11556 −0.0887494
\(159\) 0 0
\(160\) 0 0
\(161\) −6.19934 −0.488576
\(162\) 0 0
\(163\) 13.7469 1.07674 0.538371 0.842708i \(-0.319040\pi\)
0.538371 + 0.842708i \(0.319040\pi\)
\(164\) 7.11556 0.555632
\(165\) 0 0
\(166\) 7.45336 0.578493
\(167\) 3.71688 0.287621 0.143810 0.989605i \(-0.454064\pi\)
0.143810 + 0.989605i \(0.454064\pi\)
\(168\) 0 0
\(169\) −7.18479 −0.552676
\(170\) 0 0
\(171\) 0 0
\(172\) −7.63816 −0.582404
\(173\) 1.55943 0.118561 0.0592806 0.998241i \(-0.481119\pi\)
0.0592806 + 0.998241i \(0.481119\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −0.00680713 −0.000513107 0
\(177\) 0 0
\(178\) 6.79055 0.508974
\(179\) −12.1925 −0.911313 −0.455656 0.890156i \(-0.650595\pi\)
−0.455656 + 0.890156i \(0.650595\pi\)
\(180\) 0 0
\(181\) −16.8726 −1.25413 −0.627064 0.778967i \(-0.715744\pi\)
−0.627064 + 0.778967i \(0.715744\pi\)
\(182\) −4.63310 −0.343428
\(183\) 0 0
\(184\) 8.05138 0.593556
\(185\) 0 0
\(186\) 0 0
\(187\) −0.487511 −0.0356504
\(188\) 9.07367 0.661766
\(189\) 0 0
\(190\) 0 0
\(191\) −17.4757 −1.26449 −0.632247 0.774767i \(-0.717867\pi\)
−0.632247 + 0.774767i \(0.717867\pi\)
\(192\) 0 0
\(193\) 1.99226 0.143406 0.0717030 0.997426i \(-0.477157\pi\)
0.0717030 + 0.997426i \(0.477157\pi\)
\(194\) 3.43552 0.246656
\(195\) 0 0
\(196\) 2.73143 0.195102
\(197\) −21.1925 −1.50991 −0.754953 0.655779i \(-0.772340\pi\)
−0.754953 + 0.655779i \(0.772340\pi\)
\(198\) 0 0
\(199\) −3.08378 −0.218603 −0.109302 0.994009i \(-0.534861\pi\)
−0.109302 + 0.994009i \(0.534861\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −7.13516 −0.502028
\(203\) 14.6750 1.02998
\(204\) 0 0
\(205\) 0 0
\(206\) −16.3969 −1.14243
\(207\) 0 0
\(208\) 0.101014 0.00700409
\(209\) 0.584407 0.0404243
\(210\) 0 0
\(211\) 1.00774 0.0693757 0.0346879 0.999398i \(-0.488956\pi\)
0.0346879 + 0.999398i \(0.488956\pi\)
\(212\) 1.72193 0.118263
\(213\) 0 0
\(214\) −6.68004 −0.456638
\(215\) 0 0
\(216\) 0 0
\(217\) −11.3277 −0.768974
\(218\) −13.7520 −0.931400
\(219\) 0 0
\(220\) 0 0
\(221\) 7.23442 0.486640
\(222\) 0 0
\(223\) −18.2841 −1.22439 −0.612195 0.790707i \(-0.709713\pi\)
−0.612195 + 0.790707i \(0.709713\pi\)
\(224\) 12.3182 0.823044
\(225\) 0 0
\(226\) 2.03415 0.135310
\(227\) 2.64496 0.175552 0.0877762 0.996140i \(-0.472024\pi\)
0.0877762 + 0.996140i \(0.472024\pi\)
\(228\) 0 0
\(229\) −3.46286 −0.228832 −0.114416 0.993433i \(-0.536500\pi\)
−0.114416 + 0.993433i \(0.536500\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −19.0591 −1.25129
\(233\) −6.12567 −0.401306 −0.200653 0.979662i \(-0.564306\pi\)
−0.200653 + 0.979662i \(0.564306\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 6.28136 0.408882
\(237\) 0 0
\(238\) −5.76382 −0.373613
\(239\) −28.9513 −1.87270 −0.936352 0.351062i \(-0.885821\pi\)
−0.936352 + 0.351062i \(0.885821\pi\)
\(240\) 0 0
\(241\) 22.3259 1.43814 0.719070 0.694937i \(-0.244568\pi\)
0.719070 + 0.694937i \(0.244568\pi\)
\(242\) −9.65002 −0.620326
\(243\) 0 0
\(244\) 4.63816 0.296927
\(245\) 0 0
\(246\) 0 0
\(247\) −8.67230 −0.551805
\(248\) 14.7118 0.934202
\(249\) 0 0
\(250\) 0 0
\(251\) −22.7219 −1.43420 −0.717098 0.696972i \(-0.754530\pi\)
−0.717098 + 0.696972i \(0.754530\pi\)
\(252\) 0 0
\(253\) −0.461104 −0.0289894
\(254\) −0.0368366 −0.00231134
\(255\) 0 0
\(256\) −16.1010 −1.00631
\(257\) 19.5895 1.22196 0.610978 0.791647i \(-0.290776\pi\)
0.610978 + 0.791647i \(0.290776\pi\)
\(258\) 0 0
\(259\) 14.5030 0.901172
\(260\) 0 0
\(261\) 0 0
\(262\) 16.1352 0.996834
\(263\) −17.8007 −1.09764 −0.548818 0.835942i \(-0.684922\pi\)
−0.548818 + 0.835942i \(0.684922\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 6.90941 0.423643
\(267\) 0 0
\(268\) −7.19429 −0.439461
\(269\) 22.7888 1.38946 0.694729 0.719272i \(-0.255524\pi\)
0.694729 + 0.719272i \(0.255524\pi\)
\(270\) 0 0
\(271\) −3.44562 −0.209307 −0.104653 0.994509i \(-0.533373\pi\)
−0.104653 + 0.994509i \(0.533373\pi\)
\(272\) 0.125667 0.00761969
\(273\) 0 0
\(274\) −12.5868 −0.760395
\(275\) 0 0
\(276\) 0 0
\(277\) 2.61350 0.157030 0.0785151 0.996913i \(-0.474982\pi\)
0.0785151 + 0.996913i \(0.474982\pi\)
\(278\) 9.22937 0.553541
\(279\) 0 0
\(280\) 0 0
\(281\) −13.6851 −0.816384 −0.408192 0.912896i \(-0.633841\pi\)
−0.408192 + 0.912896i \(0.633841\pi\)
\(282\) 0 0
\(283\) −22.8803 −1.36009 −0.680047 0.733169i \(-0.738041\pi\)
−0.680047 + 0.733169i \(0.738041\pi\)
\(284\) 18.7906 1.11501
\(285\) 0 0
\(286\) −0.344608 −0.0203771
\(287\) −12.6732 −0.748078
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) 10.6477 0.623107
\(293\) −24.2814 −1.41853 −0.709266 0.704941i \(-0.750974\pi\)
−0.709266 + 0.704941i \(0.750974\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −18.8357 −1.09481
\(297\) 0 0
\(298\) −1.11793 −0.0647597
\(299\) 6.84255 0.395715
\(300\) 0 0
\(301\) 13.6040 0.784122
\(302\) 6.90941 0.397592
\(303\) 0 0
\(304\) −0.150644 −0.00864004
\(305\) 0 0
\(306\) 0 0
\(307\) 16.1489 0.921666 0.460833 0.887487i \(-0.347551\pi\)
0.460833 + 0.887487i \(0.347551\pi\)
\(308\) −0.435518 −0.0248159
\(309\) 0 0
\(310\) 0 0
\(311\) 18.7101 1.06095 0.530475 0.847700i \(-0.322013\pi\)
0.530475 + 0.847700i \(0.322013\pi\)
\(312\) 0 0
\(313\) −2.77332 −0.156757 −0.0783786 0.996924i \(-0.524974\pi\)
−0.0783786 + 0.996924i \(0.524974\pi\)
\(314\) 10.8625 0.613005
\(315\) 0 0
\(316\) 1.55613 0.0875393
\(317\) −17.4825 −0.981913 −0.490956 0.871184i \(-0.663353\pi\)
−0.490956 + 0.871184i \(0.663353\pi\)
\(318\) 0 0
\(319\) 1.09152 0.0611133
\(320\) 0 0
\(321\) 0 0
\(322\) −5.45161 −0.303806
\(323\) −10.7888 −0.600305
\(324\) 0 0
\(325\) 0 0
\(326\) 12.0888 0.669538
\(327\) 0 0
\(328\) 16.4593 0.908816
\(329\) −16.1607 −0.890971
\(330\) 0 0
\(331\) −32.4593 −1.78413 −0.892064 0.451910i \(-0.850743\pi\)
−0.892064 + 0.451910i \(0.850743\pi\)
\(332\) −10.3969 −0.570605
\(333\) 0 0
\(334\) 3.26857 0.178848
\(335\) 0 0
\(336\) 0 0
\(337\) −8.28581 −0.451357 −0.225678 0.974202i \(-0.572460\pi\)
−0.225678 + 0.974202i \(0.572460\pi\)
\(338\) −6.31820 −0.343665
\(339\) 0 0
\(340\) 0 0
\(341\) −0.842549 −0.0456266
\(342\) 0 0
\(343\) −20.1584 −1.08845
\(344\) −17.6682 −0.952605
\(345\) 0 0
\(346\) 1.37134 0.0737237
\(347\) −14.9632 −0.803265 −0.401632 0.915801i \(-0.631557\pi\)
−0.401632 + 0.915801i \(0.631557\pi\)
\(348\) 0 0
\(349\) 33.6459 1.80102 0.900512 0.434832i \(-0.143192\pi\)
0.900512 + 0.434832i \(0.143192\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0.916222 0.0488348
\(353\) 15.7537 0.838486 0.419243 0.907874i \(-0.362296\pi\)
0.419243 + 0.907874i \(0.362296\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −9.47235 −0.502034
\(357\) 0 0
\(358\) −10.7219 −0.566672
\(359\) 18.1257 0.956636 0.478318 0.878187i \(-0.341247\pi\)
0.478318 + 0.878187i \(0.341247\pi\)
\(360\) 0 0
\(361\) −6.06687 −0.319309
\(362\) −14.8375 −0.779841
\(363\) 0 0
\(364\) 6.46286 0.338746
\(365\) 0 0
\(366\) 0 0
\(367\) 19.1429 0.999251 0.499626 0.866241i \(-0.333471\pi\)
0.499626 + 0.866241i \(0.333471\pi\)
\(368\) 0.118860 0.00619601
\(369\) 0 0
\(370\) 0 0
\(371\) −3.06687 −0.159224
\(372\) 0 0
\(373\) 15.2499 0.789610 0.394805 0.918765i \(-0.370812\pi\)
0.394805 + 0.918765i \(0.370812\pi\)
\(374\) −0.428710 −0.0221681
\(375\) 0 0
\(376\) 20.9887 1.08241
\(377\) −16.1976 −0.834218
\(378\) 0 0
\(379\) 9.84760 0.505837 0.252919 0.967488i \(-0.418610\pi\)
0.252919 + 0.967488i \(0.418610\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −15.3678 −0.786287
\(383\) −28.3901 −1.45067 −0.725334 0.688397i \(-0.758315\pi\)
−0.725334 + 0.688397i \(0.758315\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1.75196 0.0891726
\(387\) 0 0
\(388\) −4.79231 −0.243293
\(389\) 10.8844 0.551863 0.275931 0.961177i \(-0.411014\pi\)
0.275931 + 0.961177i \(0.411014\pi\)
\(390\) 0 0
\(391\) 8.51249 0.430495
\(392\) 6.31820 0.319117
\(393\) 0 0
\(394\) −18.6364 −0.938888
\(395\) 0 0
\(396\) 0 0
\(397\) 18.1070 0.908764 0.454382 0.890807i \(-0.349860\pi\)
0.454382 + 0.890807i \(0.349860\pi\)
\(398\) −2.71183 −0.135932
\(399\) 0 0
\(400\) 0 0
\(401\) 1.43376 0.0715987 0.0357993 0.999359i \(-0.488602\pi\)
0.0357993 + 0.999359i \(0.488602\pi\)
\(402\) 0 0
\(403\) 12.5030 0.622818
\(404\) 9.95306 0.495183
\(405\) 0 0
\(406\) 12.9050 0.640463
\(407\) 1.07873 0.0534704
\(408\) 0 0
\(409\) 8.60401 0.425441 0.212720 0.977113i \(-0.431768\pi\)
0.212720 + 0.977113i \(0.431768\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 22.8726 1.12685
\(413\) −11.1875 −0.550500
\(414\) 0 0
\(415\) 0 0
\(416\) −13.5963 −0.666612
\(417\) 0 0
\(418\) 0.513919 0.0251366
\(419\) −12.3114 −0.601451 −0.300725 0.953711i \(-0.597229\pi\)
−0.300725 + 0.953711i \(0.597229\pi\)
\(420\) 0 0
\(421\) 11.1165 0.541785 0.270892 0.962610i \(-0.412681\pi\)
0.270892 + 0.962610i \(0.412681\pi\)
\(422\) 0.886192 0.0431392
\(423\) 0 0
\(424\) 3.98309 0.193436
\(425\) 0 0
\(426\) 0 0
\(427\) −8.26083 −0.399770
\(428\) 9.31820 0.450412
\(429\) 0 0
\(430\) 0 0
\(431\) −36.8958 −1.77721 −0.888604 0.458675i \(-0.848324\pi\)
−0.888604 + 0.458675i \(0.848324\pi\)
\(432\) 0 0
\(433\) 37.9982 1.82608 0.913040 0.407871i \(-0.133729\pi\)
0.913040 + 0.407871i \(0.133729\pi\)
\(434\) −9.96141 −0.478163
\(435\) 0 0
\(436\) 19.1830 0.918701
\(437\) −10.2044 −0.488142
\(438\) 0 0
\(439\) 0.202029 0.00964231 0.00482115 0.999988i \(-0.498465\pi\)
0.00482115 + 0.999988i \(0.498465\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 6.36184 0.302602
\(443\) −21.2294 −1.00864 −0.504319 0.863517i \(-0.668256\pi\)
−0.504319 + 0.863517i \(0.668256\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −16.0787 −0.761350
\(447\) 0 0
\(448\) 11.0155 0.520433
\(449\) −33.2594 −1.56961 −0.784804 0.619744i \(-0.787236\pi\)
−0.784804 + 0.619744i \(0.787236\pi\)
\(450\) 0 0
\(451\) −0.942629 −0.0443867
\(452\) −2.83750 −0.133465
\(453\) 0 0
\(454\) 2.32594 0.109162
\(455\) 0 0
\(456\) 0 0
\(457\) 0.0341483 0.00159739 0.000798695 1.00000i \(-0.499746\pi\)
0.000798695 1.00000i \(0.499746\pi\)
\(458\) −3.04519 −0.142292
\(459\) 0 0
\(460\) 0 0
\(461\) −14.9864 −0.697986 −0.348993 0.937125i \(-0.613476\pi\)
−0.348993 + 0.937125i \(0.613476\pi\)
\(462\) 0 0
\(463\) 30.4424 1.41478 0.707390 0.706823i \(-0.249872\pi\)
0.707390 + 0.706823i \(0.249872\pi\)
\(464\) −0.281364 −0.0130620
\(465\) 0 0
\(466\) −5.38682 −0.249540
\(467\) 0.510734 0.0236339 0.0118170 0.999930i \(-0.496238\pi\)
0.0118170 + 0.999930i \(0.496238\pi\)
\(468\) 0 0
\(469\) 12.8135 0.591670
\(470\) 0 0
\(471\) 0 0
\(472\) 14.5297 0.668785
\(473\) 1.01186 0.0465254
\(474\) 0 0
\(475\) 0 0
\(476\) 8.04013 0.368519
\(477\) 0 0
\(478\) −25.4593 −1.16448
\(479\) −15.4507 −0.705959 −0.352980 0.935631i \(-0.614832\pi\)
−0.352980 + 0.935631i \(0.614832\pi\)
\(480\) 0 0
\(481\) −16.0077 −0.729890
\(482\) 19.6331 0.894263
\(483\) 0 0
\(484\) 13.4611 0.611868
\(485\) 0 0
\(486\) 0 0
\(487\) −29.5107 −1.33726 −0.668629 0.743596i \(-0.733119\pi\)
−0.668629 + 0.743596i \(0.733119\pi\)
\(488\) 10.7287 0.485667
\(489\) 0 0
\(490\) 0 0
\(491\) 2.15745 0.0973644 0.0486822 0.998814i \(-0.484498\pi\)
0.0486822 + 0.998814i \(0.484498\pi\)
\(492\) 0 0
\(493\) −20.1506 −0.907539
\(494\) −7.62630 −0.343123
\(495\) 0 0
\(496\) 0.217186 0.00975194
\(497\) −33.4671 −1.50120
\(498\) 0 0
\(499\) 7.49525 0.335534 0.167767 0.985827i \(-0.446344\pi\)
0.167767 + 0.985827i \(0.446344\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −19.9813 −0.891811
\(503\) −28.5963 −1.27504 −0.637522 0.770432i \(-0.720041\pi\)
−0.637522 + 0.770432i \(0.720041\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −0.405488 −0.0180261
\(507\) 0 0
\(508\) 0.0513845 0.00227982
\(509\) −1.69190 −0.0749923 −0.0374962 0.999297i \(-0.511938\pi\)
−0.0374962 + 0.999297i \(0.511938\pi\)
\(510\) 0 0
\(511\) −18.9641 −0.838922
\(512\) −0.473897 −0.0209435
\(513\) 0 0
\(514\) 17.2267 0.759836
\(515\) 0 0
\(516\) 0 0
\(517\) −1.20203 −0.0528652
\(518\) 12.7537 0.560366
\(519\) 0 0
\(520\) 0 0
\(521\) −22.4037 −0.981525 −0.490763 0.871293i \(-0.663282\pi\)
−0.490763 + 0.871293i \(0.663282\pi\)
\(522\) 0 0
\(523\) −2.42871 −0.106200 −0.0531000 0.998589i \(-0.516910\pi\)
−0.0531000 + 0.998589i \(0.516910\pi\)
\(524\) −22.5074 −0.983242
\(525\) 0 0
\(526\) −15.6536 −0.682531
\(527\) 15.5544 0.677559
\(528\) 0 0
\(529\) −14.9486 −0.649940
\(530\) 0 0
\(531\) 0 0
\(532\) −9.63816 −0.417867
\(533\) 13.9881 0.605894
\(534\) 0 0
\(535\) 0 0
\(536\) −16.6415 −0.718801
\(537\) 0 0
\(538\) 20.0401 0.863992
\(539\) −0.361844 −0.0155857
\(540\) 0 0
\(541\) 38.9394 1.67414 0.837069 0.547098i \(-0.184267\pi\)
0.837069 + 0.547098i \(0.184267\pi\)
\(542\) −3.03003 −0.130151
\(543\) 0 0
\(544\) −16.9145 −0.725202
\(545\) 0 0
\(546\) 0 0
\(547\) 14.6723 0.627342 0.313671 0.949532i \(-0.398441\pi\)
0.313671 + 0.949532i \(0.398441\pi\)
\(548\) 17.5577 0.750027
\(549\) 0 0
\(550\) 0 0
\(551\) 24.1557 1.02907
\(552\) 0 0
\(553\) −2.77156 −0.117859
\(554\) 2.29828 0.0976444
\(555\) 0 0
\(556\) −12.8743 −0.545993
\(557\) 11.1070 0.470619 0.235309 0.971921i \(-0.424390\pi\)
0.235309 + 0.971921i \(0.424390\pi\)
\(558\) 0 0
\(559\) −15.0155 −0.635087
\(560\) 0 0
\(561\) 0 0
\(562\) −12.0345 −0.507644
\(563\) −16.3081 −0.687304 −0.343652 0.939097i \(-0.611664\pi\)
−0.343652 + 0.939097i \(0.611664\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −20.1206 −0.845733
\(567\) 0 0
\(568\) 43.4653 1.82376
\(569\) 36.0164 1.50989 0.754943 0.655790i \(-0.227664\pi\)
0.754943 + 0.655790i \(0.227664\pi\)
\(570\) 0 0
\(571\) 39.1584 1.63873 0.819364 0.573274i \(-0.194327\pi\)
0.819364 + 0.573274i \(0.194327\pi\)
\(572\) 0.480704 0.0200993
\(573\) 0 0
\(574\) −11.1447 −0.465169
\(575\) 0 0
\(576\) 0 0
\(577\) −11.8057 −0.491478 −0.245739 0.969336i \(-0.579031\pi\)
−0.245739 + 0.969336i \(0.579031\pi\)
\(578\) −7.03508 −0.292621
\(579\) 0 0
\(580\) 0 0
\(581\) 18.5175 0.768237
\(582\) 0 0
\(583\) −0.228112 −0.00944744
\(584\) 24.6296 1.01918
\(585\) 0 0
\(586\) −21.3527 −0.882071
\(587\) 39.9614 1.64938 0.824692 0.565582i \(-0.191349\pi\)
0.824692 + 0.565582i \(0.191349\pi\)
\(588\) 0 0
\(589\) −18.6459 −0.768291
\(590\) 0 0
\(591\) 0 0
\(592\) −0.278066 −0.0114284
\(593\) 29.2995 1.20319 0.601594 0.798802i \(-0.294533\pi\)
0.601594 + 0.798802i \(0.294533\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.55943 0.0638767
\(597\) 0 0
\(598\) 6.01724 0.246063
\(599\) 10.0719 0.411527 0.205764 0.978602i \(-0.434032\pi\)
0.205764 + 0.978602i \(0.434032\pi\)
\(600\) 0 0
\(601\) −30.4192 −1.24083 −0.620413 0.784275i \(-0.713035\pi\)
−0.620413 + 0.784275i \(0.713035\pi\)
\(602\) 11.9632 0.487582
\(603\) 0 0
\(604\) −9.63816 −0.392171
\(605\) 0 0
\(606\) 0 0
\(607\) 23.0743 0.936556 0.468278 0.883581i \(-0.344875\pi\)
0.468278 + 0.883581i \(0.344875\pi\)
\(608\) 20.2763 0.822313
\(609\) 0 0
\(610\) 0 0
\(611\) 17.8375 0.721628
\(612\) 0 0
\(613\) −0.765578 −0.0309214 −0.0154607 0.999880i \(-0.504921\pi\)
−0.0154607 + 0.999880i \(0.504921\pi\)
\(614\) 14.2011 0.573110
\(615\) 0 0
\(616\) −1.00742 −0.0405900
\(617\) 9.28817 0.373928 0.186964 0.982367i \(-0.440135\pi\)
0.186964 + 0.982367i \(0.440135\pi\)
\(618\) 0 0
\(619\) −35.0823 −1.41008 −0.705039 0.709168i \(-0.749071\pi\)
−0.705039 + 0.709168i \(0.749071\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 16.4534 0.659720
\(623\) 16.8708 0.675915
\(624\) 0 0
\(625\) 0 0
\(626\) −2.43882 −0.0974747
\(627\) 0 0
\(628\) −15.1524 −0.604647
\(629\) −19.9145 −0.794042
\(630\) 0 0
\(631\) 35.7621 1.42367 0.711833 0.702349i \(-0.247865\pi\)
0.711833 + 0.702349i \(0.247865\pi\)
\(632\) 3.59956 0.143183
\(633\) 0 0
\(634\) −15.3738 −0.610572
\(635\) 0 0
\(636\) 0 0
\(637\) 5.36959 0.212751
\(638\) 0.959866 0.0380014
\(639\) 0 0
\(640\) 0 0
\(641\) 2.92633 0.115583 0.0577915 0.998329i \(-0.481594\pi\)
0.0577915 + 0.998329i \(0.481594\pi\)
\(642\) 0 0
\(643\) 20.2517 0.798647 0.399324 0.916810i \(-0.369245\pi\)
0.399324 + 0.916810i \(0.369245\pi\)
\(644\) 7.60462 0.299664
\(645\) 0 0
\(646\) −9.48751 −0.373281
\(647\) −10.7219 −0.421523 −0.210761 0.977538i \(-0.567594\pi\)
−0.210761 + 0.977538i \(0.567594\pi\)
\(648\) 0 0
\(649\) −0.832119 −0.0326635
\(650\) 0 0
\(651\) 0 0
\(652\) −16.8631 −0.660409
\(653\) −35.7270 −1.39811 −0.699053 0.715070i \(-0.746395\pi\)
−0.699053 + 0.715070i \(0.746395\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.242984 0.00948694
\(657\) 0 0
\(658\) −14.2115 −0.554023
\(659\) 30.8658 1.20236 0.601180 0.799114i \(-0.294698\pi\)
0.601180 + 0.799114i \(0.294698\pi\)
\(660\) 0 0
\(661\) −9.84793 −0.383040 −0.191520 0.981489i \(-0.561342\pi\)
−0.191520 + 0.981489i \(0.561342\pi\)
\(662\) −28.5443 −1.10940
\(663\) 0 0
\(664\) −24.0496 −0.933307
\(665\) 0 0
\(666\) 0 0
\(667\) −19.0591 −0.737972
\(668\) −4.55943 −0.176410
\(669\) 0 0
\(670\) 0 0
\(671\) −0.614437 −0.0237201
\(672\) 0 0
\(673\) 19.6973 0.759274 0.379637 0.925135i \(-0.376049\pi\)
0.379637 + 0.925135i \(0.376049\pi\)
\(674\) −7.28642 −0.280662
\(675\) 0 0
\(676\) 8.81345 0.338979
\(677\) 28.4570 1.09369 0.546845 0.837234i \(-0.315829\pi\)
0.546845 + 0.837234i \(0.315829\pi\)
\(678\) 0 0
\(679\) 8.53539 0.327558
\(680\) 0 0
\(681\) 0 0
\(682\) −0.740925 −0.0283715
\(683\) −12.5107 −0.478710 −0.239355 0.970932i \(-0.576936\pi\)
−0.239355 + 0.970932i \(0.576936\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −17.7270 −0.676819
\(687\) 0 0
\(688\) −0.260830 −0.00994405
\(689\) 3.38507 0.128961
\(690\) 0 0
\(691\) 42.6255 1.62155 0.810775 0.585358i \(-0.199046\pi\)
0.810775 + 0.585358i \(0.199046\pi\)
\(692\) −1.91292 −0.0727185
\(693\) 0 0
\(694\) −13.1584 −0.499485
\(695\) 0 0
\(696\) 0 0
\(697\) 17.4020 0.659147
\(698\) 29.5877 1.11991
\(699\) 0 0
\(700\) 0 0
\(701\) 51.7701 1.95533 0.977665 0.210167i \(-0.0674008\pi\)
0.977665 + 0.210167i \(0.0674008\pi\)
\(702\) 0 0
\(703\) 23.8726 0.900371
\(704\) 0.819326 0.0308795
\(705\) 0 0
\(706\) 13.8536 0.521387
\(707\) −17.7270 −0.666692
\(708\) 0 0
\(709\) 15.1584 0.569285 0.284643 0.958634i \(-0.408125\pi\)
0.284643 + 0.958634i \(0.408125\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −21.9110 −0.821148
\(713\) 14.7118 0.550962
\(714\) 0 0
\(715\) 0 0
\(716\) 14.9564 0.558945
\(717\) 0 0
\(718\) 15.9394 0.594855
\(719\) −2.61493 −0.0975206 −0.0487603 0.998811i \(-0.515527\pi\)
−0.0487603 + 0.998811i \(0.515527\pi\)
\(720\) 0 0
\(721\) −40.7374 −1.51714
\(722\) −5.33511 −0.198552
\(723\) 0 0
\(724\) 20.6973 0.769208
\(725\) 0 0
\(726\) 0 0
\(727\) 4.09926 0.152033 0.0760166 0.997107i \(-0.475780\pi\)
0.0760166 + 0.997107i \(0.475780\pi\)
\(728\) 14.9495 0.554067
\(729\) 0 0
\(730\) 0 0
\(731\) −18.6800 −0.690906
\(732\) 0 0
\(733\) 38.2080 1.41125 0.705623 0.708588i \(-0.250667\pi\)
0.705623 + 0.708588i \(0.250667\pi\)
\(734\) 16.8340 0.621354
\(735\) 0 0
\(736\) −15.9982 −0.589703
\(737\) 0.953058 0.0351064
\(738\) 0 0
\(739\) −24.2094 −0.890559 −0.445279 0.895392i \(-0.646896\pi\)
−0.445279 + 0.895392i \(0.646896\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −2.69696 −0.0990084
\(743\) 3.31139 0.121483 0.0607416 0.998154i \(-0.480653\pi\)
0.0607416 + 0.998154i \(0.480653\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 13.4105 0.490995
\(747\) 0 0
\(748\) 0.598021 0.0218658
\(749\) −16.5963 −0.606414
\(750\) 0 0
\(751\) 13.7110 0.500322 0.250161 0.968204i \(-0.419516\pi\)
0.250161 + 0.968204i \(0.419516\pi\)
\(752\) 0.309850 0.0112991
\(753\) 0 0
\(754\) −14.2439 −0.518733
\(755\) 0 0
\(756\) 0 0
\(757\) −12.3833 −0.450079 −0.225040 0.974350i \(-0.572251\pi\)
−0.225040 + 0.974350i \(0.572251\pi\)
\(758\) 8.65984 0.314539
\(759\) 0 0
\(760\) 0 0
\(761\) 7.58265 0.274871 0.137435 0.990511i \(-0.456114\pi\)
0.137435 + 0.990511i \(0.456114\pi\)
\(762\) 0 0
\(763\) −34.1661 −1.23690
\(764\) 21.4371 0.775566
\(765\) 0 0
\(766\) −24.9659 −0.902053
\(767\) 12.3482 0.445869
\(768\) 0 0
\(769\) 3.21719 0.116015 0.0580073 0.998316i \(-0.481525\pi\)
0.0580073 + 0.998316i \(0.481525\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −2.44387 −0.0879567
\(773\) 0.184468 0.00663486 0.00331743 0.999994i \(-0.498944\pi\)
0.00331743 + 0.999994i \(0.498944\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −11.0853 −0.397940
\(777\) 0 0
\(778\) 9.57161 0.343159
\(779\) −20.8607 −0.747413
\(780\) 0 0
\(781\) −2.48927 −0.0890729
\(782\) 7.48576 0.267690
\(783\) 0 0
\(784\) 0.0932736 0.00333120
\(785\) 0 0
\(786\) 0 0
\(787\) 0.478016 0.0170394 0.00851971 0.999964i \(-0.497288\pi\)
0.00851971 + 0.999964i \(0.497288\pi\)
\(788\) 25.9965 0.926087
\(789\) 0 0
\(790\) 0 0
\(791\) 5.05375 0.179691
\(792\) 0 0
\(793\) 9.11793 0.323787
\(794\) 15.9230 0.565087
\(795\) 0 0
\(796\) 3.78281 0.134078
\(797\) −14.4989 −0.513576 −0.256788 0.966468i \(-0.582664\pi\)
−0.256788 + 0.966468i \(0.582664\pi\)
\(798\) 0 0
\(799\) 22.1908 0.785053
\(800\) 0 0
\(801\) 0 0
\(802\) 1.26083 0.0445215
\(803\) −1.41054 −0.0497769
\(804\) 0 0
\(805\) 0 0
\(806\) 10.9949 0.387281
\(807\) 0 0
\(808\) 23.0229 0.809943
\(809\) −14.8743 −0.522954 −0.261477 0.965210i \(-0.584210\pi\)
−0.261477 + 0.965210i \(0.584210\pi\)
\(810\) 0 0
\(811\) 21.5963 0.758347 0.379174 0.925325i \(-0.376208\pi\)
0.379174 + 0.925325i \(0.376208\pi\)
\(812\) −18.0015 −0.631730
\(813\) 0 0
\(814\) 0.948615 0.0332490
\(815\) 0 0
\(816\) 0 0
\(817\) 22.3928 0.783425
\(818\) 7.56624 0.264547
\(819\) 0 0
\(820\) 0 0
\(821\) −3.28136 −0.114520 −0.0572602 0.998359i \(-0.518236\pi\)
−0.0572602 + 0.998359i \(0.518236\pi\)
\(822\) 0 0
\(823\) −13.7314 −0.478648 −0.239324 0.970940i \(-0.576926\pi\)
−0.239324 + 0.970940i \(0.576926\pi\)
\(824\) 52.9077 1.84313
\(825\) 0 0
\(826\) −9.83811 −0.342311
\(827\) −20.2327 −0.703559 −0.351779 0.936083i \(-0.614423\pi\)
−0.351779 + 0.936083i \(0.614423\pi\)
\(828\) 0 0
\(829\) 25.5276 0.886612 0.443306 0.896370i \(-0.353806\pi\)
0.443306 + 0.896370i \(0.353806\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −12.1584 −0.421516
\(833\) 6.68004 0.231450
\(834\) 0 0
\(835\) 0 0
\(836\) −0.716881 −0.0247939
\(837\) 0 0
\(838\) −10.8265 −0.373994
\(839\) 17.3800 0.600025 0.300012 0.953935i \(-0.403009\pi\)
0.300012 + 0.953935i \(0.403009\pi\)
\(840\) 0 0
\(841\) 16.1165 0.555741
\(842\) 9.77568 0.336892
\(843\) 0 0
\(844\) −1.23618 −0.0425510
\(845\) 0 0
\(846\) 0 0
\(847\) −23.9750 −0.823792
\(848\) 0.0588011 0.00201924
\(849\) 0 0
\(850\) 0 0
\(851\) −18.8357 −0.645681
\(852\) 0 0
\(853\) −13.3027 −0.455476 −0.227738 0.973722i \(-0.573133\pi\)
−0.227738 + 0.973722i \(0.573133\pi\)
\(854\) −7.26445 −0.248584
\(855\) 0 0
\(856\) 21.5544 0.736713
\(857\) 19.9213 0.680498 0.340249 0.940335i \(-0.389489\pi\)
0.340249 + 0.940335i \(0.389489\pi\)
\(858\) 0 0
\(859\) 26.3446 0.898866 0.449433 0.893314i \(-0.351626\pi\)
0.449433 + 0.893314i \(0.351626\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −32.4456 −1.10510
\(863\) −38.2995 −1.30373 −0.651866 0.758334i \(-0.726013\pi\)
−0.651866 + 0.758334i \(0.726013\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 33.4151 1.13549
\(867\) 0 0
\(868\) 13.8955 0.471643
\(869\) −0.206148 −0.00699308
\(870\) 0 0
\(871\) −14.1429 −0.479214
\(872\) 44.3732 1.50267
\(873\) 0 0
\(874\) −8.97359 −0.303536
\(875\) 0 0
\(876\) 0 0
\(877\) 27.0574 0.913662 0.456831 0.889553i \(-0.348984\pi\)
0.456831 + 0.889553i \(0.348984\pi\)
\(878\) 0.177661 0.00599577
\(879\) 0 0
\(880\) 0 0
\(881\) 30.5776 1.03019 0.515093 0.857134i \(-0.327757\pi\)
0.515093 + 0.857134i \(0.327757\pi\)
\(882\) 0 0
\(883\) −44.1052 −1.48426 −0.742130 0.670256i \(-0.766184\pi\)
−0.742130 + 0.670256i \(0.766184\pi\)
\(884\) −8.87433 −0.298476
\(885\) 0 0
\(886\) −18.6688 −0.627190
\(887\) 7.88444 0.264734 0.132367 0.991201i \(-0.457742\pi\)
0.132367 + 0.991201i \(0.457742\pi\)
\(888\) 0 0
\(889\) −0.0915189 −0.00306945
\(890\) 0 0
\(891\) 0 0
\(892\) 22.4287 0.750969
\(893\) −26.6013 −0.890179
\(894\) 0 0
\(895\) 0 0
\(896\) −14.9495 −0.499429
\(897\) 0 0
\(898\) −29.2478 −0.976013
\(899\) −34.8256 −1.16150
\(900\) 0 0
\(901\) 4.21120 0.140295
\(902\) −0.828934 −0.0276005
\(903\) 0 0
\(904\) −6.56355 −0.218300
\(905\) 0 0
\(906\) 0 0
\(907\) 12.9067 0.428561 0.214280 0.976772i \(-0.431259\pi\)
0.214280 + 0.976772i \(0.431259\pi\)
\(908\) −3.24453 −0.107673
\(909\) 0 0
\(910\) 0 0
\(911\) 21.1857 0.701914 0.350957 0.936391i \(-0.385856\pi\)
0.350957 + 0.936391i \(0.385856\pi\)
\(912\) 0 0
\(913\) 1.37733 0.0455828
\(914\) 0.0300295 0.000993287 0
\(915\) 0 0
\(916\) 4.24783 0.140352
\(917\) 40.0871 1.32379
\(918\) 0 0
\(919\) 31.4688 1.03806 0.519031 0.854756i \(-0.326293\pi\)
0.519031 + 0.854756i \(0.326293\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −13.1788 −0.434021
\(923\) 36.9394 1.21588
\(924\) 0 0
\(925\) 0 0
\(926\) 26.7706 0.879737
\(927\) 0 0
\(928\) 37.8708 1.24317
\(929\) −2.32676 −0.0763386 −0.0381693 0.999271i \(-0.512153\pi\)
−0.0381693 + 0.999271i \(0.512153\pi\)
\(930\) 0 0
\(931\) −8.00774 −0.262443
\(932\) 7.51424 0.246137
\(933\) 0 0
\(934\) 0.449132 0.0146960
\(935\) 0 0
\(936\) 0 0
\(937\) 10.9982 0.359297 0.179649 0.983731i \(-0.442504\pi\)
0.179649 + 0.983731i \(0.442504\pi\)
\(938\) 11.2680 0.367912
\(939\) 0 0
\(940\) 0 0
\(941\) −24.1037 −0.785758 −0.392879 0.919590i \(-0.628521\pi\)
−0.392879 + 0.919590i \(0.628521\pi\)
\(942\) 0 0
\(943\) 16.4593 0.535990
\(944\) 0.214498 0.00698131
\(945\) 0 0
\(946\) 0.889814 0.0289304
\(947\) 11.9195 0.387332 0.193666 0.981067i \(-0.437962\pi\)
0.193666 + 0.981067i \(0.437962\pi\)
\(948\) 0 0
\(949\) 20.9317 0.679472
\(950\) 0 0
\(951\) 0 0
\(952\) 18.5980 0.602765
\(953\) 36.8289 1.19301 0.596503 0.802611i \(-0.296556\pi\)
0.596503 + 0.802611i \(0.296556\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 35.5140 1.14861
\(957\) 0 0
\(958\) −13.5871 −0.438979
\(959\) −31.2713 −1.00980
\(960\) 0 0
\(961\) −4.11793 −0.132836
\(962\) −14.0770 −0.453860
\(963\) 0 0
\(964\) −27.3868 −0.882070
\(965\) 0 0
\(966\) 0 0
\(967\) −53.5604 −1.72239 −0.861193 0.508279i \(-0.830282\pi\)
−0.861193 + 0.508279i \(0.830282\pi\)
\(968\) 31.1375 1.00080
\(969\) 0 0
\(970\) 0 0
\(971\) 53.2327 1.70832 0.854159 0.520012i \(-0.174073\pi\)
0.854159 + 0.520012i \(0.174073\pi\)
\(972\) 0 0
\(973\) 22.9299 0.735100
\(974\) −25.9513 −0.831533
\(975\) 0 0
\(976\) 0.158385 0.00506978
\(977\) −13.4570 −0.430527 −0.215264 0.976556i \(-0.569061\pi\)
−0.215264 + 0.976556i \(0.569061\pi\)
\(978\) 0 0
\(979\) 1.25484 0.0401050
\(980\) 0 0
\(981\) 0 0
\(982\) 1.89723 0.0605431
\(983\) 10.2412 0.326644 0.163322 0.986573i \(-0.447779\pi\)
0.163322 + 0.986573i \(0.447779\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −17.7202 −0.564325
\(987\) 0 0
\(988\) 10.6382 0.338445
\(989\) −17.6682 −0.561816
\(990\) 0 0
\(991\) 2.00000 0.0635321 0.0317660 0.999495i \(-0.489887\pi\)
0.0317660 + 0.999495i \(0.489887\pi\)
\(992\) −29.2327 −0.928138
\(993\) 0 0
\(994\) −29.4305 −0.933478
\(995\) 0 0
\(996\) 0 0
\(997\) −38.5016 −1.21936 −0.609678 0.792649i \(-0.708701\pi\)
−0.609678 + 0.792649i \(0.708701\pi\)
\(998\) 6.59121 0.208641
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6075.2.a.bq.1.3 3
3.2 odd 2 6075.2.a.bv.1.1 3
5.4 even 2 243.2.a.f.1.1 yes 3
15.14 odd 2 243.2.a.e.1.3 3
20.19 odd 2 3888.2.a.bk.1.3 3
45.4 even 6 243.2.c.e.163.3 6
45.14 odd 6 243.2.c.f.163.1 6
45.29 odd 6 243.2.c.f.82.1 6
45.34 even 6 243.2.c.e.82.3 6
60.59 even 2 3888.2.a.bd.1.1 3
135.4 even 18 729.2.e.b.406.1 6
135.14 odd 18 729.2.e.a.163.1 6
135.29 odd 18 729.2.e.a.568.1 6
135.34 even 18 729.2.e.b.325.1 6
135.49 even 18 729.2.e.c.649.1 6
135.59 odd 18 729.2.e.h.649.1 6
135.74 odd 18 729.2.e.g.325.1 6
135.79 even 18 729.2.e.i.568.1 6
135.94 even 18 729.2.e.i.163.1 6
135.104 odd 18 729.2.e.g.406.1 6
135.119 odd 18 729.2.e.h.82.1 6
135.124 even 18 729.2.e.c.82.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
243.2.a.e.1.3 3 15.14 odd 2
243.2.a.f.1.1 yes 3 5.4 even 2
243.2.c.e.82.3 6 45.34 even 6
243.2.c.e.163.3 6 45.4 even 6
243.2.c.f.82.1 6 45.29 odd 6
243.2.c.f.163.1 6 45.14 odd 6
729.2.e.a.163.1 6 135.14 odd 18
729.2.e.a.568.1 6 135.29 odd 18
729.2.e.b.325.1 6 135.34 even 18
729.2.e.b.406.1 6 135.4 even 18
729.2.e.c.82.1 6 135.124 even 18
729.2.e.c.649.1 6 135.49 even 18
729.2.e.g.325.1 6 135.74 odd 18
729.2.e.g.406.1 6 135.104 odd 18
729.2.e.h.82.1 6 135.119 odd 18
729.2.e.h.649.1 6 135.59 odd 18
729.2.e.i.163.1 6 135.94 even 18
729.2.e.i.568.1 6 135.79 even 18
3888.2.a.bd.1.1 3 60.59 even 2
3888.2.a.bk.1.3 3 20.19 odd 2
6075.2.a.bq.1.3 3 1.1 even 1 trivial
6075.2.a.bv.1.1 3 3.2 odd 2