Properties

Label 6075.2.a.bq.1.1
Level $6075$
Weight $2$
Character 6075.1
Self dual yes
Analytic conductor $48.509$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6075,2,Mod(1,6075)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6075, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6075.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6075 = 3^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6075.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.5091192279\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 243)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.53209\) of defining polynomial
Character \(\chi\) \(=\) 6075.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.53209 q^{2} +4.41147 q^{4} +3.22668 q^{7} -6.10607 q^{8} -3.10607 q^{11} +2.18479 q^{13} -8.17024 q^{14} +6.63816 q^{16} -3.00000 q^{17} +0.0418891 q^{19} +7.86484 q^{22} -6.10607 q^{23} -5.53209 q^{26} +14.2344 q^{28} +6.57398 q^{29} -6.22668 q^{31} -4.59627 q^{32} +7.59627 q^{34} -3.59627 q^{37} -0.106067 q^{38} +7.70233 q^{41} +0.588526 q^{43} -13.7023 q^{44} +15.4611 q^{46} +9.66044 q^{47} +3.41147 q^{49} +9.63816 q^{52} -4.95811 q^{53} -19.7023 q^{56} -16.6459 q^{58} -8.53209 q^{59} -1.26857 q^{61} +15.7665 q^{62} -1.63816 q^{64} -10.0077 q^{67} -13.2344 q^{68} +11.8307 q^{71} +8.23442 q^{73} +9.10607 q^{74} +0.184793 q^{76} -10.0223 q^{77} +11.0496 q^{79} -19.5030 q^{82} +1.50980 q^{83} -1.49020 q^{86} +18.9659 q^{88} -15.8726 q^{89} +7.04963 q^{91} -26.9368 q^{92} -24.4611 q^{94} -18.6459 q^{97} -8.63816 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 3 q^{4} + 3 q^{7} - 6 q^{8} + 3 q^{11} + 3 q^{13} - 3 q^{14} + 3 q^{16} - 9 q^{17} - 3 q^{19} - 6 q^{23} - 12 q^{26} + 12 q^{28} + 12 q^{29} - 12 q^{31} + 9 q^{34} + 3 q^{37} + 12 q^{38}+ \cdots - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.53209 −1.79046 −0.895229 0.445607i \(-0.852988\pi\)
−0.895229 + 0.445607i \(0.852988\pi\)
\(3\) 0 0
\(4\) 4.41147 2.20574
\(5\) 0 0
\(6\) 0 0
\(7\) 3.22668 1.21957 0.609786 0.792566i \(-0.291256\pi\)
0.609786 + 0.792566i \(0.291256\pi\)
\(8\) −6.10607 −2.15882
\(9\) 0 0
\(10\) 0 0
\(11\) −3.10607 −0.936514 −0.468257 0.883592i \(-0.655118\pi\)
−0.468257 + 0.883592i \(0.655118\pi\)
\(12\) 0 0
\(13\) 2.18479 0.605952 0.302976 0.952998i \(-0.402020\pi\)
0.302976 + 0.952998i \(0.402020\pi\)
\(14\) −8.17024 −2.18359
\(15\) 0 0
\(16\) 6.63816 1.65954
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) 0.0418891 0.00961001 0.00480501 0.999988i \(-0.498471\pi\)
0.00480501 + 0.999988i \(0.498471\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 7.86484 1.67679
\(23\) −6.10607 −1.27320 −0.636601 0.771193i \(-0.719660\pi\)
−0.636601 + 0.771193i \(0.719660\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −5.53209 −1.08493
\(27\) 0 0
\(28\) 14.2344 2.69005
\(29\) 6.57398 1.22076 0.610379 0.792110i \(-0.291017\pi\)
0.610379 + 0.792110i \(0.291017\pi\)
\(30\) 0 0
\(31\) −6.22668 −1.11835 −0.559173 0.829051i \(-0.688881\pi\)
−0.559173 + 0.829051i \(0.688881\pi\)
\(32\) −4.59627 −0.812513
\(33\) 0 0
\(34\) 7.59627 1.30275
\(35\) 0 0
\(36\) 0 0
\(37\) −3.59627 −0.591223 −0.295611 0.955308i \(-0.595523\pi\)
−0.295611 + 0.955308i \(0.595523\pi\)
\(38\) −0.106067 −0.0172063
\(39\) 0 0
\(40\) 0 0
\(41\) 7.70233 1.20290 0.601451 0.798910i \(-0.294589\pi\)
0.601451 + 0.798910i \(0.294589\pi\)
\(42\) 0 0
\(43\) 0.588526 0.0897494 0.0448747 0.998993i \(-0.485711\pi\)
0.0448747 + 0.998993i \(0.485711\pi\)
\(44\) −13.7023 −2.06570
\(45\) 0 0
\(46\) 15.4611 2.27962
\(47\) 9.66044 1.40912 0.704560 0.709644i \(-0.251144\pi\)
0.704560 + 0.709644i \(0.251144\pi\)
\(48\) 0 0
\(49\) 3.41147 0.487353
\(50\) 0 0
\(51\) 0 0
\(52\) 9.63816 1.33657
\(53\) −4.95811 −0.681049 −0.340524 0.940236i \(-0.610605\pi\)
−0.340524 + 0.940236i \(0.610605\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −19.7023 −2.63284
\(57\) 0 0
\(58\) −16.6459 −2.18571
\(59\) −8.53209 −1.11078 −0.555392 0.831589i \(-0.687432\pi\)
−0.555392 + 0.831589i \(0.687432\pi\)
\(60\) 0 0
\(61\) −1.26857 −0.162424 −0.0812119 0.996697i \(-0.525879\pi\)
−0.0812119 + 0.996697i \(0.525879\pi\)
\(62\) 15.7665 2.00235
\(63\) 0 0
\(64\) −1.63816 −0.204769
\(65\) 0 0
\(66\) 0 0
\(67\) −10.0077 −1.22264 −0.611320 0.791383i \(-0.709361\pi\)
−0.611320 + 0.791383i \(0.709361\pi\)
\(68\) −13.2344 −1.60491
\(69\) 0 0
\(70\) 0 0
\(71\) 11.8307 1.40404 0.702022 0.712155i \(-0.252281\pi\)
0.702022 + 0.712155i \(0.252281\pi\)
\(72\) 0 0
\(73\) 8.23442 0.963766 0.481883 0.876236i \(-0.339953\pi\)
0.481883 + 0.876236i \(0.339953\pi\)
\(74\) 9.10607 1.05856
\(75\) 0 0
\(76\) 0.184793 0.0211972
\(77\) −10.0223 −1.14215
\(78\) 0 0
\(79\) 11.0496 1.24318 0.621590 0.783343i \(-0.286487\pi\)
0.621590 + 0.783343i \(0.286487\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −19.5030 −2.15375
\(83\) 1.50980 0.165722 0.0828610 0.996561i \(-0.473594\pi\)
0.0828610 + 0.996561i \(0.473594\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.49020 −0.160692
\(87\) 0 0
\(88\) 18.9659 2.02177
\(89\) −15.8726 −1.68249 −0.841245 0.540654i \(-0.818177\pi\)
−0.841245 + 0.540654i \(0.818177\pi\)
\(90\) 0 0
\(91\) 7.04963 0.739002
\(92\) −26.9368 −2.80835
\(93\) 0 0
\(94\) −24.4611 −2.52297
\(95\) 0 0
\(96\) 0 0
\(97\) −18.6459 −1.89320 −0.946602 0.322405i \(-0.895509\pi\)
−0.946602 + 0.322405i \(0.895509\pi\)
\(98\) −8.63816 −0.872585
\(99\) 0 0
\(100\) 0 0
\(101\) 9.08647 0.904137 0.452069 0.891983i \(-0.350686\pi\)
0.452069 + 0.891983i \(0.350686\pi\)
\(102\) 0 0
\(103\) −0.260830 −0.0257003 −0.0128502 0.999917i \(-0.504090\pi\)
−0.0128502 + 0.999917i \(0.504090\pi\)
\(104\) −13.3405 −1.30814
\(105\) 0 0
\(106\) 12.5544 1.21939
\(107\) −4.04189 −0.390744 −0.195372 0.980729i \(-0.562591\pi\)
−0.195372 + 0.980729i \(0.562591\pi\)
\(108\) 0 0
\(109\) −5.40373 −0.517584 −0.258792 0.965933i \(-0.583324\pi\)
−0.258792 + 0.965933i \(0.583324\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 21.4192 2.02393
\(113\) −1.38413 −0.130208 −0.0651041 0.997878i \(-0.520738\pi\)
−0.0651041 + 0.997878i \(0.520738\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 29.0009 2.69267
\(117\) 0 0
\(118\) 21.6040 1.98881
\(119\) −9.68004 −0.887368
\(120\) 0 0
\(121\) −1.35235 −0.122941
\(122\) 3.21213 0.290813
\(123\) 0 0
\(124\) −27.4688 −2.46678
\(125\) 0 0
\(126\) 0 0
\(127\) 6.63816 0.589041 0.294521 0.955645i \(-0.404840\pi\)
0.294521 + 0.955645i \(0.404840\pi\)
\(128\) 13.3405 1.17914
\(129\) 0 0
\(130\) 0 0
\(131\) −12.6408 −1.10444 −0.552218 0.833700i \(-0.686218\pi\)
−0.552218 + 0.833700i \(0.686218\pi\)
\(132\) 0 0
\(133\) 0.135163 0.0117201
\(134\) 25.3405 2.18908
\(135\) 0 0
\(136\) 18.3182 1.57077
\(137\) −10.6159 −0.906975 −0.453487 0.891263i \(-0.649820\pi\)
−0.453487 + 0.891263i \(0.649820\pi\)
\(138\) 0 0
\(139\) −7.46110 −0.632843 −0.316421 0.948619i \(-0.602481\pi\)
−0.316421 + 0.948619i \(0.602481\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −29.9564 −2.51388
\(143\) −6.78611 −0.567483
\(144\) 0 0
\(145\) 0 0
\(146\) −20.8503 −1.72558
\(147\) 0 0
\(148\) −15.8648 −1.30408
\(149\) −4.25402 −0.348503 −0.174252 0.984701i \(-0.555751\pi\)
−0.174252 + 0.984701i \(0.555751\pi\)
\(150\) 0 0
\(151\) 0.135163 0.0109994 0.00549969 0.999985i \(-0.498249\pi\)
0.00549969 + 0.999985i \(0.498249\pi\)
\(152\) −0.255777 −0.0207463
\(153\) 0 0
\(154\) 25.3773 2.04496
\(155\) 0 0
\(156\) 0 0
\(157\) −13.3259 −1.06353 −0.531763 0.846893i \(-0.678470\pi\)
−0.531763 + 0.846893i \(0.678470\pi\)
\(158\) −27.9786 −2.22586
\(159\) 0 0
\(160\) 0 0
\(161\) −19.7023 −1.55276
\(162\) 0 0
\(163\) 9.76382 0.764762 0.382381 0.924005i \(-0.375104\pi\)
0.382381 + 0.924005i \(0.375104\pi\)
\(164\) 33.9786 2.65329
\(165\) 0 0
\(166\) −3.82295 −0.296718
\(167\) 3.57398 0.276563 0.138281 0.990393i \(-0.455842\pi\)
0.138281 + 0.990393i \(0.455842\pi\)
\(168\) 0 0
\(169\) −8.22668 −0.632822
\(170\) 0 0
\(171\) 0 0
\(172\) 2.59627 0.197963
\(173\) −18.7665 −1.42679 −0.713396 0.700761i \(-0.752844\pi\)
−0.713396 + 0.700761i \(0.752844\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −20.6186 −1.55418
\(177\) 0 0
\(178\) 40.1908 3.01243
\(179\) −5.08378 −0.379979 −0.189990 0.981786i \(-0.560845\pi\)
−0.189990 + 0.981786i \(0.560845\pi\)
\(180\) 0 0
\(181\) 7.15064 0.531503 0.265752 0.964042i \(-0.414380\pi\)
0.265752 + 0.964042i \(0.414380\pi\)
\(182\) −17.8503 −1.32315
\(183\) 0 0
\(184\) 37.2841 2.74862
\(185\) 0 0
\(186\) 0 0
\(187\) 9.31820 0.681414
\(188\) 42.6168 3.10815
\(189\) 0 0
\(190\) 0 0
\(191\) −10.5098 −0.760462 −0.380231 0.924891i \(-0.624156\pi\)
−0.380231 + 0.924891i \(0.624156\pi\)
\(192\) 0 0
\(193\) 10.1429 0.730102 0.365051 0.930987i \(-0.381052\pi\)
0.365051 + 0.930987i \(0.381052\pi\)
\(194\) 47.2131 3.38970
\(195\) 0 0
\(196\) 15.0496 1.07497
\(197\) −14.0838 −1.00343 −0.501714 0.865034i \(-0.667297\pi\)
−0.501714 + 0.865034i \(0.667297\pi\)
\(198\) 0 0
\(199\) 10.2763 0.728468 0.364234 0.931307i \(-0.381331\pi\)
0.364234 + 0.931307i \(0.381331\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −23.0077 −1.61882
\(203\) 21.2121 1.48880
\(204\) 0 0
\(205\) 0 0
\(206\) 0.660444 0.0460153
\(207\) 0 0
\(208\) 14.5030 1.00560
\(209\) −0.130110 −0.00899991
\(210\) 0 0
\(211\) −7.14290 −0.491738 −0.245869 0.969303i \(-0.579073\pi\)
−0.245869 + 0.969303i \(0.579073\pi\)
\(212\) −21.8726 −1.50221
\(213\) 0 0
\(214\) 10.2344 0.699611
\(215\) 0 0
\(216\) 0 0
\(217\) −20.0915 −1.36390
\(218\) 13.6827 0.926712
\(219\) 0 0
\(220\) 0 0
\(221\) −6.55438 −0.440895
\(222\) 0 0
\(223\) 10.3354 0.692112 0.346056 0.938214i \(-0.387521\pi\)
0.346056 + 0.938214i \(0.387521\pi\)
\(224\) −14.8307 −0.990917
\(225\) 0 0
\(226\) 3.50475 0.233132
\(227\) 13.0223 0.864320 0.432160 0.901797i \(-0.357752\pi\)
0.432160 + 0.901797i \(0.357752\pi\)
\(228\) 0 0
\(229\) −28.0993 −1.85685 −0.928426 0.371518i \(-0.878837\pi\)
−0.928426 + 0.371518i \(0.878837\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −40.1411 −2.63540
\(233\) 13.9145 0.911567 0.455784 0.890091i \(-0.349359\pi\)
0.455784 + 0.890091i \(0.349359\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −37.6391 −2.45010
\(237\) 0 0
\(238\) 24.5107 1.58879
\(239\) −15.0196 −0.971537 −0.485769 0.874087i \(-0.661460\pi\)
−0.485769 + 0.874087i \(0.661460\pi\)
\(240\) 0 0
\(241\) −12.9736 −0.835703 −0.417851 0.908515i \(-0.637217\pi\)
−0.417851 + 0.908515i \(0.637217\pi\)
\(242\) 3.42427 0.220120
\(243\) 0 0
\(244\) −5.59627 −0.358264
\(245\) 0 0
\(246\) 0 0
\(247\) 0.0915189 0.00582321
\(248\) 38.0205 2.41431
\(249\) 0 0
\(250\) 0 0
\(251\) 0.872578 0.0550766 0.0275383 0.999621i \(-0.491233\pi\)
0.0275383 + 0.999621i \(0.491233\pi\)
\(252\) 0 0
\(253\) 18.9659 1.19237
\(254\) −16.8084 −1.05465
\(255\) 0 0
\(256\) −30.5030 −1.90644
\(257\) −4.57667 −0.285485 −0.142742 0.989760i \(-0.545592\pi\)
−0.142742 + 0.989760i \(0.545592\pi\)
\(258\) 0 0
\(259\) −11.6040 −0.721038
\(260\) 0 0
\(261\) 0 0
\(262\) 32.0077 1.97744
\(263\) −4.29767 −0.265005 −0.132503 0.991183i \(-0.542301\pi\)
−0.132503 + 0.991183i \(0.542301\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −0.342244 −0.0209843
\(267\) 0 0
\(268\) −44.1489 −2.69682
\(269\) 12.1257 0.739315 0.369657 0.929168i \(-0.379475\pi\)
0.369657 + 0.929168i \(0.379475\pi\)
\(270\) 0 0
\(271\) −0.319955 −0.0194359 −0.00971795 0.999953i \(-0.503093\pi\)
−0.00971795 + 0.999953i \(0.503093\pi\)
\(272\) −19.9145 −1.20749
\(273\) 0 0
\(274\) 26.8803 1.62390
\(275\) 0 0
\(276\) 0 0
\(277\) 26.8212 1.61153 0.805765 0.592236i \(-0.201755\pi\)
0.805765 + 0.592236i \(0.201755\pi\)
\(278\) 18.8922 1.13308
\(279\) 0 0
\(280\) 0 0
\(281\) 26.6810 1.59165 0.795827 0.605524i \(-0.207037\pi\)
0.795827 + 0.605524i \(0.207037\pi\)
\(282\) 0 0
\(283\) 9.29355 0.552444 0.276222 0.961094i \(-0.410917\pi\)
0.276222 + 0.961094i \(0.410917\pi\)
\(284\) 52.1908 3.09695
\(285\) 0 0
\(286\) 17.1830 1.01605
\(287\) 24.8530 1.46702
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) 36.3259 2.12581
\(293\) 19.6391 1.14733 0.573664 0.819091i \(-0.305522\pi\)
0.573664 + 0.819091i \(0.305522\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 21.9590 1.27634
\(297\) 0 0
\(298\) 10.7716 0.623980
\(299\) −13.3405 −0.771500
\(300\) 0 0
\(301\) 1.89899 0.109456
\(302\) −0.342244 −0.0196939
\(303\) 0 0
\(304\) 0.278066 0.0159482
\(305\) 0 0
\(306\) 0 0
\(307\) −28.3432 −1.61763 −0.808815 0.588063i \(-0.799891\pi\)
−0.808815 + 0.588063i \(0.799891\pi\)
\(308\) −44.2131 −2.51927
\(309\) 0 0
\(310\) 0 0
\(311\) −2.04458 −0.115937 −0.0579687 0.998318i \(-0.518462\pi\)
−0.0579687 + 0.998318i \(0.518462\pi\)
\(312\) 0 0
\(313\) −8.41147 −0.475445 −0.237722 0.971333i \(-0.576401\pi\)
−0.237722 + 0.971333i \(0.576401\pi\)
\(314\) 33.7425 1.90420
\(315\) 0 0
\(316\) 48.7452 2.74213
\(317\) −31.1284 −1.74834 −0.874171 0.485618i \(-0.838595\pi\)
−0.874171 + 0.485618i \(0.838595\pi\)
\(318\) 0 0
\(319\) −20.4192 −1.14326
\(320\) 0 0
\(321\) 0 0
\(322\) 49.8881 2.78015
\(323\) −0.125667 −0.00699231
\(324\) 0 0
\(325\) 0 0
\(326\) −24.7229 −1.36927
\(327\) 0 0
\(328\) −47.0310 −2.59685
\(329\) 31.1712 1.71852
\(330\) 0 0
\(331\) 31.0310 1.70562 0.852808 0.522225i \(-0.174898\pi\)
0.852808 + 0.522225i \(0.174898\pi\)
\(332\) 6.66044 0.365539
\(333\) 0 0
\(334\) −9.04963 −0.495174
\(335\) 0 0
\(336\) 0 0
\(337\) −23.7297 −1.29264 −0.646319 0.763067i \(-0.723692\pi\)
−0.646319 + 0.763067i \(0.723692\pi\)
\(338\) 20.8307 1.13304
\(339\) 0 0
\(340\) 0 0
\(341\) 19.3405 1.04735
\(342\) 0 0
\(343\) −11.5790 −0.625209
\(344\) −3.59358 −0.193753
\(345\) 0 0
\(346\) 47.5185 2.55461
\(347\) 1.80840 0.0970800 0.0485400 0.998821i \(-0.484543\pi\)
0.0485400 + 0.998821i \(0.484543\pi\)
\(348\) 0 0
\(349\) 15.2608 0.816893 0.408447 0.912782i \(-0.366071\pi\)
0.408447 + 0.912782i \(0.366071\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 14.2763 0.760930
\(353\) 32.3824 1.72354 0.861770 0.507299i \(-0.169356\pi\)
0.861770 + 0.507299i \(0.169356\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −70.0215 −3.71113
\(357\) 0 0
\(358\) 12.8726 0.680337
\(359\) −1.91447 −0.101042 −0.0505209 0.998723i \(-0.516088\pi\)
−0.0505209 + 0.998723i \(0.516088\pi\)
\(360\) 0 0
\(361\) −18.9982 −0.999908
\(362\) −18.1061 −0.951634
\(363\) 0 0
\(364\) 31.0993 1.63004
\(365\) 0 0
\(366\) 0 0
\(367\) 26.8648 1.40233 0.701167 0.712998i \(-0.252663\pi\)
0.701167 + 0.712998i \(0.252663\pi\)
\(368\) −40.5330 −2.11293
\(369\) 0 0
\(370\) 0 0
\(371\) −15.9982 −0.830588
\(372\) 0 0
\(373\) −14.8402 −0.768396 −0.384198 0.923251i \(-0.625522\pi\)
−0.384198 + 0.923251i \(0.625522\pi\)
\(374\) −23.5945 −1.22004
\(375\) 0 0
\(376\) −58.9873 −3.04204
\(377\) 14.3628 0.739721
\(378\) 0 0
\(379\) −33.7870 −1.73552 −0.867762 0.496980i \(-0.834442\pi\)
−0.867762 + 0.496980i \(0.834442\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 26.6117 1.36158
\(383\) 9.27900 0.474135 0.237067 0.971493i \(-0.423814\pi\)
0.237067 + 0.971493i \(0.423814\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −25.6827 −1.30722
\(387\) 0 0
\(388\) −82.2559 −4.17591
\(389\) −15.9786 −0.810149 −0.405075 0.914284i \(-0.632755\pi\)
−0.405075 + 0.914284i \(0.632755\pi\)
\(390\) 0 0
\(391\) 18.3182 0.926391
\(392\) −20.8307 −1.05211
\(393\) 0 0
\(394\) 35.6614 1.79659
\(395\) 0 0
\(396\) 0 0
\(397\) −19.7050 −0.988967 −0.494483 0.869187i \(-0.664643\pi\)
−0.494483 + 0.869187i \(0.664643\pi\)
\(398\) −26.0205 −1.30429
\(399\) 0 0
\(400\) 0 0
\(401\) 1.14796 0.0573262 0.0286631 0.999589i \(-0.490875\pi\)
0.0286631 + 0.999589i \(0.490875\pi\)
\(402\) 0 0
\(403\) −13.6040 −0.677664
\(404\) 40.0847 1.99429
\(405\) 0 0
\(406\) −53.7110 −2.66563
\(407\) 11.1702 0.553688
\(408\) 0 0
\(409\) −3.10101 −0.153335 −0.0766676 0.997057i \(-0.524428\pi\)
−0.0766676 + 0.997057i \(0.524428\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −1.15064 −0.0566882
\(413\) −27.5303 −1.35468
\(414\) 0 0
\(415\) 0 0
\(416\) −10.0419 −0.492344
\(417\) 0 0
\(418\) 0.329451 0.0161140
\(419\) 35.4492 1.73181 0.865904 0.500209i \(-0.166744\pi\)
0.865904 + 0.500209i \(0.166744\pi\)
\(420\) 0 0
\(421\) 9.21719 0.449218 0.224609 0.974449i \(-0.427889\pi\)
0.224609 + 0.974449i \(0.427889\pi\)
\(422\) 18.0865 0.880435
\(423\) 0 0
\(424\) 30.2746 1.47026
\(425\) 0 0
\(426\) 0 0
\(427\) −4.09327 −0.198087
\(428\) −17.8307 −0.861879
\(429\) 0 0
\(430\) 0 0
\(431\) 11.5794 0.557758 0.278879 0.960326i \(-0.410037\pi\)
0.278879 + 0.960326i \(0.410037\pi\)
\(432\) 0 0
\(433\) −6.06511 −0.291471 −0.145735 0.989324i \(-0.546555\pi\)
−0.145735 + 0.989324i \(0.546555\pi\)
\(434\) 50.8735 2.44201
\(435\) 0 0
\(436\) −23.8384 −1.14165
\(437\) −0.255777 −0.0122355
\(438\) 0 0
\(439\) 29.0060 1.38438 0.692190 0.721715i \(-0.256646\pi\)
0.692190 + 0.721715i \(0.256646\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 16.5963 0.789404
\(443\) −30.8922 −1.46773 −0.733866 0.679294i \(-0.762286\pi\)
−0.733866 + 0.679294i \(0.762286\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −26.1702 −1.23920
\(447\) 0 0
\(448\) −5.28581 −0.249731
\(449\) −39.0820 −1.84439 −0.922197 0.386720i \(-0.873608\pi\)
−0.922197 + 0.386720i \(0.873608\pi\)
\(450\) 0 0
\(451\) −23.9240 −1.12654
\(452\) −6.10607 −0.287205
\(453\) 0 0
\(454\) −32.9736 −1.54753
\(455\) 0 0
\(456\) 0 0
\(457\) 1.50475 0.0703891 0.0351946 0.999380i \(-0.488795\pi\)
0.0351946 + 0.999380i \(0.488795\pi\)
\(458\) 71.1498 3.32461
\(459\) 0 0
\(460\) 0 0
\(461\) 26.2371 1.22198 0.610992 0.791637i \(-0.290771\pi\)
0.610992 + 0.791637i \(0.290771\pi\)
\(462\) 0 0
\(463\) −6.75641 −0.313997 −0.156998 0.987599i \(-0.550182\pi\)
−0.156998 + 0.987599i \(0.550182\pi\)
\(464\) 43.6391 2.02589
\(465\) 0 0
\(466\) −35.2327 −1.63212
\(467\) −33.7469 −1.56162 −0.780810 0.624768i \(-0.785194\pi\)
−0.780810 + 0.624768i \(0.785194\pi\)
\(468\) 0 0
\(469\) −32.2918 −1.49110
\(470\) 0 0
\(471\) 0 0
\(472\) 52.0975 2.39798
\(473\) −1.82800 −0.0840516
\(474\) 0 0
\(475\) 0 0
\(476\) −42.7033 −1.95730
\(477\) 0 0
\(478\) 38.0310 1.73950
\(479\) 11.1266 0.508387 0.254194 0.967153i \(-0.418190\pi\)
0.254194 + 0.967153i \(0.418190\pi\)
\(480\) 0 0
\(481\) −7.85710 −0.358253
\(482\) 32.8503 1.49629
\(483\) 0 0
\(484\) −5.96585 −0.271175
\(485\) 0 0
\(486\) 0 0
\(487\) 4.74691 0.215103 0.107552 0.994200i \(-0.465699\pi\)
0.107552 + 0.994200i \(0.465699\pi\)
\(488\) 7.74598 0.350644
\(489\) 0 0
\(490\) 0 0
\(491\) 22.3405 1.00821 0.504106 0.863642i \(-0.331822\pi\)
0.504106 + 0.863642i \(0.331822\pi\)
\(492\) 0 0
\(493\) −19.7219 −0.888231
\(494\) −0.231734 −0.0104262
\(495\) 0 0
\(496\) −41.3337 −1.85594
\(497\) 38.1739 1.71233
\(498\) 0 0
\(499\) −10.4611 −0.468303 −0.234152 0.972200i \(-0.575231\pi\)
−0.234152 + 0.972200i \(0.575231\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −2.20945 −0.0986124
\(503\) −25.0419 −1.11656 −0.558281 0.829652i \(-0.688539\pi\)
−0.558281 + 0.829652i \(0.688539\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −48.0232 −2.13489
\(507\) 0 0
\(508\) 29.2841 1.29927
\(509\) 18.0624 0.800603 0.400301 0.916384i \(-0.368905\pi\)
0.400301 + 0.916384i \(0.368905\pi\)
\(510\) 0 0
\(511\) 26.5699 1.17538
\(512\) 50.5553 2.23425
\(513\) 0 0
\(514\) 11.5885 0.511148
\(515\) 0 0
\(516\) 0 0
\(517\) −30.0060 −1.31966
\(518\) 29.3824 1.29099
\(519\) 0 0
\(520\) 0 0
\(521\) −25.9581 −1.13725 −0.568623 0.822598i \(-0.692524\pi\)
−0.568623 + 0.822598i \(0.692524\pi\)
\(522\) 0 0
\(523\) −25.5945 −1.11917 −0.559585 0.828773i \(-0.689039\pi\)
−0.559585 + 0.828773i \(0.689039\pi\)
\(524\) −55.7648 −2.43609
\(525\) 0 0
\(526\) 10.8821 0.474481
\(527\) 18.6800 0.813716
\(528\) 0 0
\(529\) 14.2841 0.621046
\(530\) 0 0
\(531\) 0 0
\(532\) 0.596267 0.0258514
\(533\) 16.8280 0.728902
\(534\) 0 0
\(535\) 0 0
\(536\) 61.1079 2.63946
\(537\) 0 0
\(538\) −30.7033 −1.32371
\(539\) −10.5963 −0.456414
\(540\) 0 0
\(541\) 27.8476 1.19726 0.598631 0.801025i \(-0.295712\pi\)
0.598631 + 0.801025i \(0.295712\pi\)
\(542\) 0.810155 0.0347991
\(543\) 0 0
\(544\) 13.7888 0.591190
\(545\) 0 0
\(546\) 0 0
\(547\) 5.90848 0.252628 0.126314 0.991990i \(-0.459685\pi\)
0.126314 + 0.991990i \(0.459685\pi\)
\(548\) −46.8316 −2.00055
\(549\) 0 0
\(550\) 0 0
\(551\) 0.275378 0.0117315
\(552\) 0 0
\(553\) 35.6536 1.51615
\(554\) −67.9136 −2.88537
\(555\) 0 0
\(556\) −32.9145 −1.39588
\(557\) −26.7050 −1.13153 −0.565764 0.824567i \(-0.691419\pi\)
−0.565764 + 0.824567i \(0.691419\pi\)
\(558\) 0 0
\(559\) 1.28581 0.0543838
\(560\) 0 0
\(561\) 0 0
\(562\) −67.5586 −2.84979
\(563\) −36.0624 −1.51985 −0.759925 0.650011i \(-0.774764\pi\)
−0.759925 + 0.650011i \(0.774764\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −23.5321 −0.989127
\(567\) 0 0
\(568\) −72.2390 −3.03108
\(569\) −9.04727 −0.379281 −0.189641 0.981854i \(-0.560732\pi\)
−0.189641 + 0.981854i \(0.560732\pi\)
\(570\) 0 0
\(571\) 30.5790 1.27969 0.639846 0.768503i \(-0.278998\pi\)
0.639846 + 0.768503i \(0.278998\pi\)
\(572\) −29.9368 −1.25172
\(573\) 0 0
\(574\) −62.9299 −2.62665
\(575\) 0 0
\(576\) 0 0
\(577\) 25.1489 1.04696 0.523481 0.852037i \(-0.324633\pi\)
0.523481 + 0.852037i \(0.324633\pi\)
\(578\) 20.2567 0.842568
\(579\) 0 0
\(580\) 0 0
\(581\) 4.87164 0.202110
\(582\) 0 0
\(583\) 15.4002 0.637812
\(584\) −50.2799 −2.08060
\(585\) 0 0
\(586\) −49.7279 −2.05424
\(587\) −20.8735 −0.861542 −0.430771 0.902461i \(-0.641758\pi\)
−0.430771 + 0.902461i \(0.641758\pi\)
\(588\) 0 0
\(589\) −0.260830 −0.0107473
\(590\) 0 0
\(591\) 0 0
\(592\) −23.8726 −0.981157
\(593\) −15.6212 −0.641488 −0.320744 0.947166i \(-0.603933\pi\)
−0.320744 + 0.947166i \(0.603933\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −18.7665 −0.768706
\(597\) 0 0
\(598\) 33.7793 1.38134
\(599\) −0.448311 −0.0183175 −0.00915874 0.999958i \(-0.502915\pi\)
−0.00915874 + 0.999958i \(0.502915\pi\)
\(600\) 0 0
\(601\) −17.6723 −0.720868 −0.360434 0.932785i \(-0.617371\pi\)
−0.360434 + 0.932785i \(0.617371\pi\)
\(602\) −4.80840 −0.195976
\(603\) 0 0
\(604\) 0.596267 0.0242617
\(605\) 0 0
\(606\) 0 0
\(607\) −26.1985 −1.06337 −0.531683 0.846944i \(-0.678440\pi\)
−0.531683 + 0.846944i \(0.678440\pi\)
\(608\) −0.192533 −0.00780826
\(609\) 0 0
\(610\) 0 0
\(611\) 21.1061 0.853860
\(612\) 0 0
\(613\) −14.5544 −0.587846 −0.293923 0.955829i \(-0.594961\pi\)
−0.293923 + 0.955829i \(0.594961\pi\)
\(614\) 71.7674 2.89630
\(615\) 0 0
\(616\) 61.1968 2.46569
\(617\) −14.0205 −0.564445 −0.282223 0.959349i \(-0.591072\pi\)
−0.282223 + 0.959349i \(0.591072\pi\)
\(618\) 0 0
\(619\) −31.7124 −1.27463 −0.637315 0.770603i \(-0.719955\pi\)
−0.637315 + 0.770603i \(0.719955\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 5.17705 0.207581
\(623\) −51.2158 −2.05192
\(624\) 0 0
\(625\) 0 0
\(626\) 21.2986 0.851263
\(627\) 0 0
\(628\) −58.7870 −2.34586
\(629\) 10.7888 0.430178
\(630\) 0 0
\(631\) −38.5758 −1.53568 −0.767840 0.640642i \(-0.778668\pi\)
−0.767840 + 0.640642i \(0.778668\pi\)
\(632\) −67.4698 −2.68380
\(633\) 0 0
\(634\) 78.8198 3.13033
\(635\) 0 0
\(636\) 0 0
\(637\) 7.45336 0.295313
\(638\) 51.7033 2.04695
\(639\) 0 0
\(640\) 0 0
\(641\) −30.6168 −1.20929 −0.604645 0.796495i \(-0.706685\pi\)
−0.604645 + 0.796495i \(0.706685\pi\)
\(642\) 0 0
\(643\) 34.2249 1.34970 0.674850 0.737955i \(-0.264208\pi\)
0.674850 + 0.737955i \(0.264208\pi\)
\(644\) −86.9163 −3.42498
\(645\) 0 0
\(646\) 0.318201 0.0125194
\(647\) 12.8726 0.506073 0.253037 0.967457i \(-0.418571\pi\)
0.253037 + 0.967457i \(0.418571\pi\)
\(648\) 0 0
\(649\) 26.5012 1.04026
\(650\) 0 0
\(651\) 0 0
\(652\) 43.0729 1.68686
\(653\) 11.3191 0.442952 0.221476 0.975166i \(-0.428913\pi\)
0.221476 + 0.975166i \(0.428913\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 51.1293 1.99626
\(657\) 0 0
\(658\) −78.9282 −3.07694
\(659\) −13.7692 −0.536372 −0.268186 0.963367i \(-0.586424\pi\)
−0.268186 + 0.963367i \(0.586424\pi\)
\(660\) 0 0
\(661\) −20.2668 −0.788288 −0.394144 0.919049i \(-0.628959\pi\)
−0.394144 + 0.919049i \(0.628959\pi\)
\(662\) −78.5732 −3.05383
\(663\) 0 0
\(664\) −9.21894 −0.357764
\(665\) 0 0
\(666\) 0 0
\(667\) −40.1411 −1.55427
\(668\) 15.7665 0.610025
\(669\) 0 0
\(670\) 0 0
\(671\) 3.94027 0.152112
\(672\) 0 0
\(673\) 30.5449 1.17742 0.588709 0.808345i \(-0.299636\pi\)
0.588709 + 0.808345i \(0.299636\pi\)
\(674\) 60.0856 2.31441
\(675\) 0 0
\(676\) −36.2918 −1.39584
\(677\) 3.71925 0.142942 0.0714711 0.997443i \(-0.477231\pi\)
0.0714711 + 0.997443i \(0.477231\pi\)
\(678\) 0 0
\(679\) −60.1644 −2.30890
\(680\) 0 0
\(681\) 0 0
\(682\) −48.9718 −1.87523
\(683\) 21.7469 0.832122 0.416061 0.909337i \(-0.363410\pi\)
0.416061 + 0.909337i \(0.363410\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 29.3191 1.11941
\(687\) 0 0
\(688\) 3.90673 0.148943
\(689\) −10.8324 −0.412683
\(690\) 0 0
\(691\) −37.5948 −1.43017 −0.715087 0.699035i \(-0.753613\pi\)
−0.715087 + 0.699035i \(0.753613\pi\)
\(692\) −82.7880 −3.14713
\(693\) 0 0
\(694\) −4.57903 −0.173818
\(695\) 0 0
\(696\) 0 0
\(697\) −23.1070 −0.875240
\(698\) −38.6418 −1.46261
\(699\) 0 0
\(700\) 0 0
\(701\) 23.3351 0.881355 0.440678 0.897665i \(-0.354738\pi\)
0.440678 + 0.897665i \(0.354738\pi\)
\(702\) 0 0
\(703\) −0.150644 −0.00568166
\(704\) 5.08822 0.191770
\(705\) 0 0
\(706\) −81.9951 −3.08592
\(707\) 29.3191 1.10266
\(708\) 0 0
\(709\) 6.57903 0.247081 0.123540 0.992340i \(-0.460575\pi\)
0.123540 + 0.992340i \(0.460575\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 96.9190 3.63219
\(713\) 38.0205 1.42388
\(714\) 0 0
\(715\) 0 0
\(716\) −22.4270 −0.838135
\(717\) 0 0
\(718\) 4.84760 0.180911
\(719\) −16.8324 −0.627744 −0.313872 0.949465i \(-0.601626\pi\)
−0.313872 + 0.949465i \(0.601626\pi\)
\(720\) 0 0
\(721\) −0.841615 −0.0313434
\(722\) 48.1052 1.79029
\(723\) 0 0
\(724\) 31.5449 1.17236
\(725\) 0 0
\(726\) 0 0
\(727\) −25.5621 −0.948046 −0.474023 0.880512i \(-0.657199\pi\)
−0.474023 + 0.880512i \(0.657199\pi\)
\(728\) −43.0455 −1.59537
\(729\) 0 0
\(730\) 0 0
\(731\) −1.76558 −0.0653022
\(732\) 0 0
\(733\) 14.7980 0.546576 0.273288 0.961932i \(-0.411889\pi\)
0.273288 + 0.961932i \(0.411889\pi\)
\(734\) −68.0242 −2.51082
\(735\) 0 0
\(736\) 28.0651 1.03449
\(737\) 31.0847 1.14502
\(738\) 0 0
\(739\) 9.19078 0.338088 0.169044 0.985608i \(-0.445932\pi\)
0.169044 + 0.985608i \(0.445932\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 40.5090 1.48713
\(743\) −44.4492 −1.63068 −0.815342 0.578979i \(-0.803451\pi\)
−0.815342 + 0.578979i \(0.803451\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 37.5767 1.37578
\(747\) 0 0
\(748\) 41.1070 1.50302
\(749\) −13.0419 −0.476540
\(750\) 0 0
\(751\) −35.8060 −1.30658 −0.653290 0.757107i \(-0.726612\pi\)
−0.653290 + 0.757107i \(0.726612\pi\)
\(752\) 64.1275 2.33849
\(753\) 0 0
\(754\) −36.3678 −1.32444
\(755\) 0 0
\(756\) 0 0
\(757\) 45.8976 1.66818 0.834088 0.551632i \(-0.185995\pi\)
0.834088 + 0.551632i \(0.185995\pi\)
\(758\) 85.5518 3.10738
\(759\) 0 0
\(760\) 0 0
\(761\) −37.1952 −1.34833 −0.674163 0.738583i \(-0.735495\pi\)
−0.674163 + 0.738583i \(0.735495\pi\)
\(762\) 0 0
\(763\) −17.4361 −0.631230
\(764\) −46.3637 −1.67738
\(765\) 0 0
\(766\) −23.4953 −0.848918
\(767\) −18.6408 −0.673082
\(768\) 0 0
\(769\) −38.3337 −1.38235 −0.691174 0.722688i \(-0.742906\pi\)
−0.691174 + 0.722688i \(0.742906\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 44.7452 1.61041
\(773\) −52.8272 −1.90006 −0.950031 0.312156i \(-0.898949\pi\)
−0.950031 + 0.312156i \(0.898949\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 113.853 4.08709
\(777\) 0 0
\(778\) 40.4593 1.45054
\(779\) 0.322644 0.0115599
\(780\) 0 0
\(781\) −36.7469 −1.31491
\(782\) −46.3833 −1.65866
\(783\) 0 0
\(784\) 22.6459 0.808782
\(785\) 0 0
\(786\) 0 0
\(787\) −45.2404 −1.61265 −0.806323 0.591475i \(-0.798546\pi\)
−0.806323 + 0.591475i \(0.798546\pi\)
\(788\) −62.1302 −2.21330
\(789\) 0 0
\(790\) 0 0
\(791\) −4.46616 −0.158798
\(792\) 0 0
\(793\) −2.77156 −0.0984211
\(794\) 49.8949 1.77070
\(795\) 0 0
\(796\) 45.3337 1.60681
\(797\) 16.9189 0.599299 0.299649 0.954049i \(-0.403130\pi\)
0.299649 + 0.954049i \(0.403130\pi\)
\(798\) 0 0
\(799\) −28.9813 −1.02529
\(800\) 0 0
\(801\) 0 0
\(802\) −2.90673 −0.102640
\(803\) −25.5767 −0.902581
\(804\) 0 0
\(805\) 0 0
\(806\) 34.4466 1.21333
\(807\) 0 0
\(808\) −55.4826 −1.95187
\(809\) −34.9145 −1.22753 −0.613764 0.789490i \(-0.710345\pi\)
−0.613764 + 0.789490i \(0.710345\pi\)
\(810\) 0 0
\(811\) 18.0419 0.633536 0.316768 0.948503i \(-0.397402\pi\)
0.316768 + 0.948503i \(0.397402\pi\)
\(812\) 93.5768 3.28390
\(813\) 0 0
\(814\) −28.2841 −0.991356
\(815\) 0 0
\(816\) 0 0
\(817\) 0.0246528 0.000862492 0
\(818\) 7.85204 0.274540
\(819\) 0 0
\(820\) 0 0
\(821\) 40.6391 1.41831 0.709157 0.705051i \(-0.249076\pi\)
0.709157 + 0.705051i \(0.249076\pi\)
\(822\) 0 0
\(823\) −26.0496 −0.908033 −0.454017 0.890993i \(-0.650009\pi\)
−0.454017 + 0.890993i \(0.650009\pi\)
\(824\) 1.59264 0.0554824
\(825\) 0 0
\(826\) 69.7093 2.42550
\(827\) 37.6195 1.30816 0.654079 0.756426i \(-0.273056\pi\)
0.654079 + 0.756426i \(0.273056\pi\)
\(828\) 0 0
\(829\) −35.0215 −1.21635 −0.608173 0.793805i \(-0.708097\pi\)
−0.608173 + 0.793805i \(0.708097\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −3.57903 −0.124081
\(833\) −10.2344 −0.354602
\(834\) 0 0
\(835\) 0 0
\(836\) −0.573978 −0.0198514
\(837\) 0 0
\(838\) −89.7606 −3.10073
\(839\) 26.6141 0.918821 0.459411 0.888224i \(-0.348061\pi\)
0.459411 + 0.888224i \(0.348061\pi\)
\(840\) 0 0
\(841\) 14.2172 0.490248
\(842\) −23.3387 −0.804306
\(843\) 0 0
\(844\) −31.5107 −1.08464
\(845\) 0 0
\(846\) 0 0
\(847\) −4.36360 −0.149935
\(848\) −32.9127 −1.13023
\(849\) 0 0
\(850\) 0 0
\(851\) 21.9590 0.752746
\(852\) 0 0
\(853\) −2.45512 −0.0840616 −0.0420308 0.999116i \(-0.513383\pi\)
−0.0420308 + 0.999116i \(0.513383\pi\)
\(854\) 10.3645 0.354667
\(855\) 0 0
\(856\) 24.6800 0.843547
\(857\) 9.82976 0.335778 0.167889 0.985806i \(-0.446305\pi\)
0.167889 + 0.985806i \(0.446305\pi\)
\(858\) 0 0
\(859\) 8.81696 0.300831 0.150415 0.988623i \(-0.451939\pi\)
0.150415 + 0.988623i \(0.451939\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −29.3200 −0.998642
\(863\) 6.62124 0.225390 0.112695 0.993630i \(-0.464052\pi\)
0.112695 + 0.993630i \(0.464052\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 15.3574 0.521866
\(867\) 0 0
\(868\) −88.6332 −3.00841
\(869\) −34.3209 −1.16426
\(870\) 0 0
\(871\) −21.8648 −0.740862
\(872\) 32.9956 1.11737
\(873\) 0 0
\(874\) 0.647651 0.0219071
\(875\) 0 0
\(876\) 0 0
\(877\) 4.07604 0.137638 0.0688190 0.997629i \(-0.478077\pi\)
0.0688190 + 0.997629i \(0.478077\pi\)
\(878\) −73.4457 −2.47867
\(879\) 0 0
\(880\) 0 0
\(881\) 9.25133 0.311685 0.155843 0.987782i \(-0.450191\pi\)
0.155843 + 0.987782i \(0.450191\pi\)
\(882\) 0 0
\(883\) 37.7701 1.27107 0.635533 0.772074i \(-0.280780\pi\)
0.635533 + 0.772074i \(0.280780\pi\)
\(884\) −28.9145 −0.972499
\(885\) 0 0
\(886\) 78.2217 2.62791
\(887\) −18.9786 −0.637241 −0.318620 0.947882i \(-0.603219\pi\)
−0.318620 + 0.947882i \(0.603219\pi\)
\(888\) 0 0
\(889\) 21.4192 0.718377
\(890\) 0 0
\(891\) 0 0
\(892\) 45.5945 1.52662
\(893\) 0.404667 0.0135417
\(894\) 0 0
\(895\) 0 0
\(896\) 43.0455 1.43805
\(897\) 0 0
\(898\) 98.9592 3.30231
\(899\) −40.9341 −1.36523
\(900\) 0 0
\(901\) 14.8743 0.495536
\(902\) 60.5776 2.01701
\(903\) 0 0
\(904\) 8.45161 0.281096
\(905\) 0 0
\(906\) 0 0
\(907\) −9.64590 −0.320287 −0.160143 0.987094i \(-0.551196\pi\)
−0.160143 + 0.987094i \(0.551196\pi\)
\(908\) 57.4475 1.90646
\(909\) 0 0
\(910\) 0 0
\(911\) −6.53478 −0.216507 −0.108253 0.994123i \(-0.534526\pi\)
−0.108253 + 0.994123i \(0.534526\pi\)
\(912\) 0 0
\(913\) −4.68954 −0.155201
\(914\) −3.81016 −0.126029
\(915\) 0 0
\(916\) −123.959 −4.09573
\(917\) −40.7880 −1.34694
\(918\) 0 0
\(919\) 3.89124 0.128360 0.0641802 0.997938i \(-0.479557\pi\)
0.0641802 + 0.997938i \(0.479557\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −66.4347 −2.18791
\(923\) 25.8476 0.850784
\(924\) 0 0
\(925\) 0 0
\(926\) 17.1078 0.562198
\(927\) 0 0
\(928\) −30.2158 −0.991881
\(929\) −39.8530 −1.30753 −0.653767 0.756696i \(-0.726812\pi\)
−0.653767 + 0.756696i \(0.726812\pi\)
\(930\) 0 0
\(931\) 0.142903 0.00468347
\(932\) 61.3833 2.01068
\(933\) 0 0
\(934\) 85.4502 2.79602
\(935\) 0 0
\(936\) 0 0
\(937\) −33.0651 −1.08019 −0.540095 0.841604i \(-0.681612\pi\)
−0.540095 + 0.841604i \(0.681612\pi\)
\(938\) 81.7657 2.66974
\(939\) 0 0
\(940\) 0 0
\(941\) −53.8066 −1.75405 −0.877023 0.480448i \(-0.840474\pi\)
−0.877023 + 0.480448i \(0.840474\pi\)
\(942\) 0 0
\(943\) −47.0310 −1.53154
\(944\) −56.6373 −1.84339
\(945\) 0 0
\(946\) 4.62866 0.150491
\(947\) −42.2354 −1.37246 −0.686232 0.727382i \(-0.740737\pi\)
−0.686232 + 0.727382i \(0.740737\pi\)
\(948\) 0 0
\(949\) 17.9905 0.583996
\(950\) 0 0
\(951\) 0 0
\(952\) 59.1070 1.91567
\(953\) −24.5776 −0.796147 −0.398073 0.917354i \(-0.630321\pi\)
−0.398073 + 0.917354i \(0.630321\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −66.2586 −2.14296
\(957\) 0 0
\(958\) −28.1735 −0.910246
\(959\) −34.2540 −1.10612
\(960\) 0 0
\(961\) 7.77156 0.250696
\(962\) 19.8949 0.641436
\(963\) 0 0
\(964\) −57.2327 −1.84334
\(965\) 0 0
\(966\) 0 0
\(967\) −4.47203 −0.143811 −0.0719054 0.997411i \(-0.522908\pi\)
−0.0719054 + 0.997411i \(0.522908\pi\)
\(968\) 8.25753 0.265407
\(969\) 0 0
\(970\) 0 0
\(971\) −4.61949 −0.148246 −0.0741232 0.997249i \(-0.523616\pi\)
−0.0741232 + 0.997249i \(0.523616\pi\)
\(972\) 0 0
\(973\) −24.0746 −0.771796
\(974\) −12.0196 −0.385133
\(975\) 0 0
\(976\) −8.42097 −0.269549
\(977\) 11.2808 0.360903 0.180452 0.983584i \(-0.442244\pi\)
0.180452 + 0.983584i \(0.442244\pi\)
\(978\) 0 0
\(979\) 49.3013 1.57568
\(980\) 0 0
\(981\) 0 0
\(982\) −56.5681 −1.80516
\(983\) 17.0642 0.544263 0.272131 0.962260i \(-0.412271\pi\)
0.272131 + 0.962260i \(0.412271\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 49.9377 1.59034
\(987\) 0 0
\(988\) 0.403733 0.0128445
\(989\) −3.59358 −0.114269
\(990\) 0 0
\(991\) 2.00000 0.0635321 0.0317660 0.999495i \(-0.489887\pi\)
0.0317660 + 0.999495i \(0.489887\pi\)
\(992\) 28.6195 0.908670
\(993\) 0 0
\(994\) −96.6596 −3.06586
\(995\) 0 0
\(996\) 0 0
\(997\) −22.3847 −0.708932 −0.354466 0.935069i \(-0.615337\pi\)
−0.354466 + 0.935069i \(0.615337\pi\)
\(998\) 26.4884 0.838477
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6075.2.a.bq.1.1 3
3.2 odd 2 6075.2.a.bv.1.3 3
5.4 even 2 243.2.a.f.1.3 yes 3
15.14 odd 2 243.2.a.e.1.1 3
20.19 odd 2 3888.2.a.bk.1.1 3
45.4 even 6 243.2.c.e.163.1 6
45.14 odd 6 243.2.c.f.163.3 6
45.29 odd 6 243.2.c.f.82.3 6
45.34 even 6 243.2.c.e.82.1 6
60.59 even 2 3888.2.a.bd.1.3 3
135.4 even 18 729.2.e.i.406.1 6
135.14 odd 18 729.2.e.h.163.1 6
135.29 odd 18 729.2.e.h.568.1 6
135.34 even 18 729.2.e.i.325.1 6
135.49 even 18 729.2.e.b.649.1 6
135.59 odd 18 729.2.e.g.649.1 6
135.74 odd 18 729.2.e.a.325.1 6
135.79 even 18 729.2.e.c.568.1 6
135.94 even 18 729.2.e.c.163.1 6
135.104 odd 18 729.2.e.a.406.1 6
135.119 odd 18 729.2.e.g.82.1 6
135.124 even 18 729.2.e.b.82.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
243.2.a.e.1.1 3 15.14 odd 2
243.2.a.f.1.3 yes 3 5.4 even 2
243.2.c.e.82.1 6 45.34 even 6
243.2.c.e.163.1 6 45.4 even 6
243.2.c.f.82.3 6 45.29 odd 6
243.2.c.f.163.3 6 45.14 odd 6
729.2.e.a.325.1 6 135.74 odd 18
729.2.e.a.406.1 6 135.104 odd 18
729.2.e.b.82.1 6 135.124 even 18
729.2.e.b.649.1 6 135.49 even 18
729.2.e.c.163.1 6 135.94 even 18
729.2.e.c.568.1 6 135.79 even 18
729.2.e.g.82.1 6 135.119 odd 18
729.2.e.g.649.1 6 135.59 odd 18
729.2.e.h.163.1 6 135.14 odd 18
729.2.e.h.568.1 6 135.29 odd 18
729.2.e.i.325.1 6 135.34 even 18
729.2.e.i.406.1 6 135.4 even 18
3888.2.a.bd.1.3 3 60.59 even 2
3888.2.a.bk.1.1 3 20.19 odd 2
6075.2.a.bq.1.1 3 1.1 even 1 trivial
6075.2.a.bv.1.3 3 3.2 odd 2