Properties

Label 6069.2.a.p
Level $6069$
Weight $2$
Character orbit 6069.a
Self dual yes
Analytic conductor $48.461$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6069,2,Mod(1,6069)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6069, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6069.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6069 = 3 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6069.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,3,0,0,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.4612089867\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + q^{3} + \beta_{2} q^{4} + (\beta_{2} - \beta_1) q^{5} - \beta_1 q^{6} - q^{7} + (\beta_1 - 1) q^{8} + q^{9} + (\beta_{2} - \beta_1 + 1) q^{10} + ( - 2 \beta_{2} + \beta_1 - 2) q^{11}+ \cdots + ( - 2 \beta_{2} + \beta_1 - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} - 3 q^{7} - 3 q^{8} + 3 q^{9} + 3 q^{10} - 6 q^{11} + 3 q^{13} - 6 q^{16} + 3 q^{19} + 3 q^{20} - 3 q^{21} - 3 q^{24} - 9 q^{25} + 3 q^{27} + 3 q^{29} + 3 q^{30} - 3 q^{31} + 9 q^{32} - 6 q^{33}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{18} + \zeta_{18}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.87939
−0.347296
−1.53209
−1.87939 1.00000 1.53209 −0.347296 −1.87939 −1.00000 0.879385 1.00000 0.652704
1.2 0.347296 1.00000 −1.87939 −1.53209 0.347296 −1.00000 −1.34730 1.00000 −0.532089
1.3 1.53209 1.00000 0.347296 1.87939 1.53209 −1.00000 −2.53209 1.00000 2.87939
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6069.2.a.p yes 3
17.b even 2 1 6069.2.a.n 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6069.2.a.n 3 17.b even 2 1
6069.2.a.p yes 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6069))\):

\( T_{2}^{3} - 3T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{3} - 3T_{5} - 1 \) Copy content Toggle raw display
\( T_{11}^{3} + 6T_{11}^{2} + 3T_{11} - 19 \) Copy content Toggle raw display
\( T_{23}^{3} - 27T_{23} + 27 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 3T + 1 \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 3T - 1 \) Copy content Toggle raw display
$7$ \( (T + 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 6 T^{2} + \cdots - 19 \) Copy content Toggle raw display
$13$ \( T^{3} - 3 T^{2} + \cdots + 17 \) Copy content Toggle raw display
$17$ \( T^{3} \) Copy content Toggle raw display
$19$ \( T^{3} - 3 T^{2} + \cdots + 17 \) Copy content Toggle raw display
$23$ \( T^{3} - 27T + 27 \) Copy content Toggle raw display
$29$ \( T^{3} - 3 T^{2} + \cdots - 37 \) Copy content Toggle raw display
$31$ \( T^{3} + 3 T^{2} + \cdots - 3 \) Copy content Toggle raw display
$37$ \( T^{3} - 3 T^{2} + \cdots + 111 \) Copy content Toggle raw display
$41$ \( T^{3} + 15 T^{2} + \cdots + 19 \) Copy content Toggle raw display
$43$ \( T^{3} + 3 T^{2} + \cdots - 71 \) Copy content Toggle raw display
$47$ \( T^{3} + 6 T^{2} + \cdots - 213 \) Copy content Toggle raw display
$53$ \( T^{3} - 3 T^{2} + \cdots + 57 \) Copy content Toggle raw display
$59$ \( T^{3} - 9 T^{2} + \cdots + 1143 \) Copy content Toggle raw display
$61$ \( T^{3} + 9 T^{2} + \cdots - 37 \) Copy content Toggle raw display
$67$ \( T^{3} + 3 T^{2} + \cdots - 379 \) Copy content Toggle raw display
$71$ \( T^{3} - 3 T^{2} + \cdots - 213 \) Copy content Toggle raw display
$73$ \( T^{3} + 15 T^{2} + \cdots - 51 \) Copy content Toggle raw display
$79$ \( (T + 7)^{3} \) Copy content Toggle raw display
$83$ \( T^{3} - 6 T^{2} + \cdots + 51 \) Copy content Toggle raw display
$89$ \( (T - 1)^{3} \) Copy content Toggle raw display
$97$ \( T^{3} + 3 T^{2} + \cdots - 543 \) Copy content Toggle raw display
show more
show less