Properties

Label 6069.2.a.h
Level $6069$
Weight $2$
Character orbit 6069.a
Self dual yes
Analytic conductor $48.461$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6069,2,Mod(1,6069)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6069, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6069.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6069 = 3 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6069.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,-2,3,0,-1,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.4612089867\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{13})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} - q^{3} + (\beta + 1) q^{4} - \beta q^{6} - q^{7} + 3 q^{8} + q^{9} + ( - \beta - 1) q^{12} + (2 \beta - 4) q^{13} - \beta q^{14} + (\beta - 2) q^{16} + \beta q^{18} + 2 q^{19} + q^{21} + \cdots + \beta q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - 2 q^{3} + 3 q^{4} - q^{6} - 2 q^{7} + 6 q^{8} + 2 q^{9} - 3 q^{12} - 6 q^{13} - q^{14} - 3 q^{16} + q^{18} + 4 q^{19} + 2 q^{21} + 2 q^{23} - 6 q^{24} - 10 q^{25} + 10 q^{26} - 2 q^{27}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.30278
2.30278
−1.30278 −1.00000 −0.302776 0 1.30278 −1.00000 3.00000 1.00000 0
1.2 2.30278 −1.00000 3.30278 0 −2.30278 −1.00000 3.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( +1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6069.2.a.h 2
17.b even 2 1 6069.2.a.i yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6069.2.a.h 2 1.a even 1 1 trivial
6069.2.a.i yes 2 17.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6069))\):

\( T_{2}^{2} - T_{2} - 3 \) Copy content Toggle raw display
\( T_{5} \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{23}^{2} - 2T_{23} - 51 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T - 3 \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 6T - 4 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( (T - 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 2T - 51 \) Copy content Toggle raw display
$29$ \( T^{2} - 4T - 9 \) Copy content Toggle raw display
$31$ \( T^{2} + 6T - 4 \) Copy content Toggle raw display
$37$ \( (T + 5)^{2} \) Copy content Toggle raw display
$41$ \( (T + 6)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 13 \) Copy content Toggle raw display
$47$ \( T^{2} - 10T + 12 \) Copy content Toggle raw display
$53$ \( T^{2} - 8T + 3 \) Copy content Toggle raw display
$59$ \( T^{2} + 2T - 12 \) Copy content Toggle raw display
$61$ \( T^{2} - 52 \) Copy content Toggle raw display
$67$ \( T^{2} - 12T - 16 \) Copy content Toggle raw display
$71$ \( T^{2} + 2T - 51 \) Copy content Toggle raw display
$73$ \( T^{2} - 18T + 68 \) Copy content Toggle raw display
$79$ \( T^{2} + 12T + 23 \) Copy content Toggle raw display
$83$ \( (T + 6)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 22T + 108 \) Copy content Toggle raw display
$97$ \( T^{2} + 10T - 92 \) Copy content Toggle raw display
show more
show less